
Stochastic Testing Method for Transistor-Level Uncertainty
Quantification Based on Generalized Polynomial Chaos

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Zhang, Zheng; El-Moselhy, Tarek A.; Elfadel, Ibrahim M. and Daniel,
Luca. "Stochastic Testing Method for Transistor-Level Uncertainty
Quantification Based on Generalized Polynomial Chaos." IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems 32, no. 10 (October 2013): 1533-1545. © 2013 Institute of
Electrical and Electronics Engineers (IEEE)

As Published http://dx.doi.org/10.1109/TCAD.2013.2263039

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/108401

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/108401
http://creativecommons.org/licenses/by-nc-sa/4.0/

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2013 1

Stochastic Testing Method for Transistor-Level

Uncertainty Quantification Based on Generalized

Polynomial Chaos
Zheng Zhang, Tarek A. El-Moselhy, Ibrahim (Abe) M. Elfadel, and Luca Daniel

Abstract—Uncertainties have become a major concern in
integrated circuit design. In order to avoid the huge number
of repeated simulations in conventional Monte Carlo flows, this
paper presents an intrusive spectral simulator for statistical
circuit analysis. Our simulator employs the recently developed
generalized polynomial chaos expansion to perform uncertainty
quantification of nonlinear transistor circuits with both Gaussian
and non-Gaussian random parameters. We modify the nonintru-
sive stochastic collocation (SC) method and develop an intrusive
variant called stochastic testing (ST) method. Compared with the
popular intrusive stochastic Galerkin (SG) method, the coupled
deterministic equations resulting from our proposed ST method
can be solved in a decoupled manner at each time point. At the
same time, ST requires fewer samples and allows more flexible
time step size controls than directly using a nonintrusive SC
solver. These two properties make ST more efficient than SG and
than existing SC methods, and more suitable for time-domain
circuit simulation. Simulation results of several digital, analog
and RF circuits are reported. Since our algorithm is based on
generic mathematical models, the proposed ST algorithm can be
applied to many other engineering problems.

Index Terms—Uncertainty quantification, stochastic circuit
simulation, generalized polynomial chaos, stochastic testing
method, variation analysis.

I. INTRODUCTION

VARIATION has become a major concern in today’s

nanometer integrated circuit design [1]. It is well known

that the uncertainties of transistor threshold voltages have

significantly limited the scaling down of the supply voltage

in low-power design [2], [3]. Meanwhile, manufacturing un-

certainties can remarkably influence the performance of on-

chip interconnects [4]–[11], leading to timing variations [12],

[13]. These device-level uncertainties can propagate to the

circuit or system level, and finally influence chip performance

and yield [14]. Therefore, new electronic design automation

(EDA) tools are highly desirable to model and simulate the

uncertainties at different levels [4]–[9], [15]–[19].

One bottleneck lies in propagating the effect of uncertainties

from the device level to the circuit or system level. Such

This work was supported by the Cooperative Agreement Between the
Masdar Institute of Science and Technology, Abu Dhabi, UAE and the Mas-
sachusetts Institute of Technology (MIT), Cambridge, MA, USA, Reference
No.196F/002/707/102f/70/9374.

Z. Zhang and L. Daniel are with the Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology (MIT), Cam-
bridge, MA 02139, USA. E-mail: z zhang@mit.edu, luca@mit.edu.

T. El-Moselhy is with the Department of Aeronautics and Astronautics,
MIT, Cambridge, MA 02139, USA. E-mail: tmoselhy@mit.edu

I. M. Elfadel is with Masdar Institute of Science and Technology, Abu
Dhabi, United Arab Emirates. E-mail: ielfadel@masdar.ac.ae.

uncertainty quantification (UQ) problems require specialized

stochastic solvers to estimate the underlying statistical infor-

mation by detailed transistor-level simulation. The mainstream

transistor-level simulators such as PSpice [20], Cadence Spec-

tre [21], and Synopsys HSPICE [22] utilize the well-known

Monte Carlo (MC) algorithm [23] to perform a statistical char-

acterization. Unfortunately, MC must run repeated transistor-

level simulations at a huge number of sampling points due to

its slow convergence rate. Although some improvements have

been proposed (such as Quasi-Monte Carlo and Latin Hyper-

cube samplings [24]–[26]), MC simulation is still inefficient

for many circuit UQ problems.

As an alternative, spectral methods based on polynomial

chaos (PC) expansions have been proposed to accelerate the

UQ of circuits with Gaussian random parameters [4]–[9], [27],

[28]. Spectral methods represent the circuit uncertainties by

truncated Hermite-chaos polynomial [29] [which is abbrevi-

ated to polynomial chaos (PC)] series expansions, and they

compute the PC coefficients by a stochastic Galerkin (SG) [30]

or stochastic collocation (SC) [31] approach. The intrusive SG

method solves a coupled deterministic equation by modifying

an existing deterministic solver to directly compute the PC

coefficients. Alternatively, the nonintrusive SC scheme solves

a set of decoupled equations at some sampling points by

repeatedly calling an existing deterministic solver, followed

by a numerical procedure to reconstruct the PC coefficients.

Since the truncated PC expansion converges very fast when

the solution dependence on the random parameters is smooth,

spectral methods have shown remarkable speedup over MC

when the number of parameters is small or medium. In the

context of EDA, most work has been focused on applying SC

and SG to solve the linear stochastic equations arising from

interconnect analysis [4]–[9], whereas only a limited number

of publications have discussed nonlinear circuits [27], [28].

In [27], SC is combined with PC to simulate RF circuits

with Gaussian variations. Later, [28] developed a SPICE-type

stochastic simulator for nonlinear circuits. The key idea is to

construct some stochastic library models for both linear and

nonlinear devices by linearization and Galerkin projection.

However, one has to reconstruct these library models for

different uncertainty specifications and bias conditions, and

thus industrial semiconductor device models cannot be feasibly

integrated with this PC-based simulator.

There often exist non-Gaussian variations in practical circuit

design, which cannot be easily handled by existing PC-based

UQ tools. Due to the development of generalized Polynomial

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2013 2

Chaos (gPC) [32]–[34], spectral methods can now be applied

to physical models with non-Gaussian variations, and exten-

sive results have been reported [34]–[42]. Unfortunately, there

seems to be limited research investigating the application of

gPC to EDA problems. In [41], gPC was employed with SC to

construct linear stochastic models for electromagnetic devices.

Later, gPC-based SC and SG were applied to the UQ of

linear circuits with Gaussian and non-Gaussian variations [38].

However, directly applying existing SG or SC methods to

circuit problems can be inefficient, as will be discussed in

Section IV and demonstrated by the examples in Section V.

Among various SC methods, there exists a special kind

of SC scheme [35]–[38]1. Different from the mainstream SC

methods using sparse grids or tensor rules, this SC scheme

uses the same number of basis functions and sampling nodes

to construct a coupled deterministic equation. The resulting

equation can be decoupled a-priori with a transformation [35]

and then solved by repeatedly calling existing deterministic

solvers. Combined with gPC, this nonintrusive method has

been used for the UQ of the nonlinear dynamic systems

arising from multibody problems [35] and of linear differential

algebraic equations (DAEs) from linear circuit analysis [38].

In [38], the tensor product rule is used to construct the

basis functions and sampling nodes for SC, leading to some

computational overhead.

Our Contribution. In this paper, we propose a gPC-based

intrusive simulator, called stochastic testing (ST), for the

UQ of transistor-level simulation. This work is a variant of the

interpolation-based SC [35], [38]. Our work uses a collocation

testing method to set up a coupled equation, and decoupling is

used to accelerate the computation. However, our ST simulator

differs from the previous work in the following aspects:

1) Different from the nonintrusive SC in [35], [38], our

proposed method is an intrusive simulator: the resulting

coupled equation is solved directly to obtain the spectral

coefficients, without decoupling a-priori. To distinguish

our simulator with the intrusive SG and nonintrusive

sampling-based SC, we call it “stochastic testing” (ST).

2) ST uses fewer testing nodes than the mainstream SC

algorithms [31] (which use sampling nodes from tensor

products or sparse grids) and the recent work in [38],

leading to remarkable computational speedup. ST pro-

vides extra speedup in time-domain simulation, since the

intrusive nature of ST allows adaptive time stepping.

3) Decoupling is applied inside the intrusive solver. This

makes our solver much more efficient over existing

intrusive solvers such as SG without sacrificing flexible

time stepping controls.

Our algorithm is implemented in a SPICE-type stochastic

simulator and integrated with several semiconductor device

models for algorithm verification. The proposed method can

be applied to many general engineering problems as the

mathematical derivation is very generic and does not make

any restrictive assumptions in the stochastic DAE’s.

Paper Organization. In section II we review MC, the

1The authors would like to thank the anonymous reviewer for pointing out
the related work in the mathematical community, specifically Ref. [35], [38].

existing spectral methods for stochastic circuit simulation, as

well as gPC. Section III presents our intrusive ST simulator

and its numerical implementation. In Section IV, gPC-based

SG and SC are briefly extended to nonlinear circuits and

compared with ST, and we further classify various stochastic

simulators. Section V provides some circuit simulation results

and discusses the speedup of ST over SC in detail.

II. REVIEW: STOCHASTIC SIMULATORS AND GPC

Let us consider a general nonlinear circuit with random

parameters. Applying modified nodal analysis (MNA) [43], we

obtain a stochastic Differential Algebraic Equation (DAE):

d~q
(

~x
(

t, ~ξ
)

, ~ξ
)

dt
+ ~f

(

~x
(

t, ~ξ
)

, ~ξ
)

= B~u (t)
(1)

where ~u(t) ∈ R
m is the input signal, ~x ∈ R

n denotes nodal

voltages and branch currents, ~q ∈ R
n and ~f ∈ R

n represent the

charge/flux term and current/voltage term, respectively. Vector
~ξ = [ξ1; ξ2; · · · ξl] denotes l random variables describing the

device-level uncertainties assumed mutually independent. In

this paper, the port selection matrix B is assumed independent

of the random parameters ~ξ. We focus on how to solve (1) to

extract some statistical information such as mean, variance and

probability density function (PDF) of the state vector ~x
(

t, ~ξ
)

.

A. Monte Carlo Method

Monte Carlo (MC) is the most widely used UQ tool, and

it is implemented in almost all commercial circuit simulators.

In MC, Ns samples ~ξ1, · · · , ~ξNs are first generated according

to PDF(~ξ), the joint Probability Density Function (PDF) of
~ξ. Any available deterministic solver is then called to run a

simulation at each sample, generating a set of deterministic

solutions. Finally, all deterministic solutions are utilized to

compute the statistical characterization of interest. The error

of MC is proportional to 1√
Ns

. Very often, a huge number

(thousands to millions) of samples are required to obtain the

desired level of accuracy even when improvements on sam-

pling point selection, such as Mixture Importance Sampling,

Quasi-Monte Carlo and Latin Hypercube sampling [24]–[26],

are used. The excessive number of samples render the repeated

simulation prohibitively expensive in many cases.

B. PC-based SG and SC Methods

In the EDA community, most existing spectral stochastic

simulators focus on linear circuits with Gaussian parame-

ters [4]–[9] by considering the following linear stochastic DAE

E
(

~ξ
) d~x

(

t, ~ξ
)

dt
+A

(

~ξ
)

~x
(

t, ~ξ
)

= Bu (t) . (2)

Since ~ξ contains only Gaussian parameters, ~x
(

t, ~ξ
)

can be

well approximated by a truncated Hermite expansion

~x
(

t, ~ξ
)

≈
K
∑

k=1

x̂k(t)Hk(~ξ) (3)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2013 3

TABLE I
UNIVARIATE GPC POLYNOMIAL BASIS OF DIFFERENT RANDOM PARAMETERS [34].

Distribution of ξk PDF of component ξk [ρk(ξk)]
1 univariate gPC basis function φik (ξk) Support of ξk

Gaussian 1√
2π

exp

(

−ξ2k
2

)

Hermite-chaos polynomial (−∞,+∞)

Gamma
ξ
γ−1

k
exp(−ξk)

Γ(γ)
, γ > 0 Laguerre-chaos polynomial [0,+∞)

Beta
ξk

α−1(1−ξk)
β−1

B(α,β)
, α, β > 0 Jacobi-chaos polynomial [0, 1]

Uniform 1
2

Legendre-chaos polynomial [−1, 1]

1 Γ (γ) =
∞
∫

0

tγ−1 exp (−t) dt and B (α, β) =
1
∫

0

tα−1 (1− t)β−1 dt are the Gamma and Beta functions, respectively.

where Hk(~ξ) is an orthonormal multivariate Hermite polyno-

mial [30], and x̂k(t) the PC coefficient. If the total polynomial

order is p, then the above Hermite expansion uses

K =

(

p+ l
p

)

=
(p+ l)!

p!l!
(4)

basis functions in total to approximate ~x(~ξ, t).
In the intrusive SG method [30], the Hermite expansion (3)

is first substituted into (2). Applying Galerkin testing, SG sets

up a coupled equation of dimension nK. The PC coefficients

are then directly computed by solving this coupled equation.

The nonintrusive SC method [31] first selects a set of

sampling points according to some rules (such as Gauss-

quadrature tensor product rule or sparse grid rule). At each

sampling point, (2) is solved as a deterministic equation to get

a deterministic solution. After that, a post-processing step such

as numerical integration is applied to get the PC coefficients.

C. Generalized Polynomial Chaos (gPC)

Generalized polynomial chaos (gPC) [32]–[34] is a gen-

eralization of the original Hermite-type PC [29], and it can

handle both Gaussian and non-Gaussian random parameters

efficiently. A multivariate gPC basis function H~i(
~ξ) reads

H~i

(

~ξ
)

=

l
∏

k=1

φik (ξk), (5)

where φik (ξk) is a univariate orthonormal polynomial of

degree ik. The specific form of φik (ξk) depends on the density

function of ξk. Table I lists the correspondence between

some typical univariate gPC polynomial basis φik (ξk) and

the probability distributions of ξk [34].

In the stochastic space Ω, the inner product of any two

general functions y1

(

~ξ
)

and y2

(

~ξ
)

is defined as

〈

y1

(

~ξ
)

, y2

(

~ξ
)〉

=

∫

Ω

PDF
(

~ξ
)

y1

(

~ξ
)

y2

(

~ξ
)

d~ξ. (6)

The normalized gPC bases have the the orthogonality property
〈

H~i

(

~ξ
)

, H~j

(

~ξ
)〉

= δ~i,~j .

With gPC, one can also approximate a second-order stochastic

process ~x(~ξ, t) by an order-p truncated series

~x(t, ~ξ) ≈
∑

|~i|≤p

x̃~i(t)H~i(
~ξ) (7)

which has totally K basis functions [K is given in (4)]. In (7),

~i=[i1; i2; · · · ; il] is the index vector with |~i|=
l
∑

k=1

|ik|, integer

ik the highest order of ξk in H~i(
~ξ). The mean value and

standard deviation of ~x(~ξ, t) are easily calculated as:

E
(

~x
(

t, ~ξ
))

= x̃~i(t), |
~i| = 0

σ
(

~x
(

t, ~ξ
))

≈

√

p
∑

|~i|=1

|x̃~i(t)|
2.

(8)

In PC and gPC, the random parameters are assumed mutu-

ally independent. For general cases with arbitrary probability

measures, constructing orthogonal basis functions is much

more involved. A nice approach is proposed in [44], however,

its numerical implementation is not trivial. In this paper, we

keep the assumption that all random parameters are mutually

independent, and we apply gPC to develop more efficient UQ

tools for nonlinear transistor-level circuit analysis.

III. STOCHASTIC TESTING SIMULATOR

Since there is a one-to-one correspondence between 1 ≤
k ≤ K and the index vector ~i, we denote

x̂(t, ~ξ) =
K
∑

k=1

x̂k(t)Hk(~ξ) (9)

for convenience. Now Hk(~ξ) denotes the k-th multivariate

orthonormal gPC basis function of (7). Replacing the exact

solution ~x
(

t, ~ξ
)

in stochastic DAE (1) with the above trun-

cated gPC expansion yields a residual function

Res(~X(t), ~ξ) =
d~q

(

x̂(t, ~ξ), ~ξ
)

dt
+ ~f

(

x̂(t, ~ξ), ~ξ
)

−B~u(t).

(10)
Now the unknown vector reads

~X (t) = [x̂1 (t) ; · · · ; x̂K (t)] ∈ R
N
, with N = nK. (11)

A. Basic Idea of the ST Method

In order to compute ~X (t), ST starts from (10) and sets

up a larger-size determined equation by collocation testing.

Specifically, ST selects K testing (or collocation) points
~ξ1, · · · , ~ξK , then it enforces the residual function to be zero

at each point, leading to the following deterministic DAE:

dQ
(

~X (t)
)

dt
+ F

(

~X (t)
)

= B̃~u (t) (12)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2013 4

0 50 100 150 200 250

0

50

100

150

200

250

Fig. 1. Structure of the Jacobian matrix in ST-based simulator, with l =
p = 3 and K = 20.

with

Q
(

~X (t)
)

=

~q
(

x̂(t, ~ξ1), ~ξ1
)

...

~q
(

x̂(t, ~ξK), ~ξK
)

, B̃ =

B
...

B

F
(

~X (t)
)

=

~f
(

x̂(t, ~ξ1), ~ξ1
)

...

~f
(

x̂(t, ~ξKt), ~ξK
)

.

(13)

The collocation testing used in ST is the same with that used

in collocation-based integral equation solvers [45]. However,

in stochastic computation, “stochastic collocation” means a

different sampling-based method (c.f. Section IV-B). There-

fore, we name our proposed method as “stochastic testing”.

There remain two important issues, and how to address them

distinguishes our ST solver with the nonintrusive stochastic

solvers in [35], [38]. The first issue is how to solve the

resulting coupled DAE. ST directly solves (12) by an intrusive

solver. As a result, the gPC coefficients can be directly com-

puted and adaptive time stepping [46] can be used. The second

issue is how to select the testing nodes. ST selects K testing

points from some candidate nodes, whereas (p+1)l≫K nodes

are used in [38] to make the transformation matrix invertible.

B. Intrusive Decoupled Solver

ST is an intrusive simulator: the coupled DAE is passed

into a specialized transient solver to directly compute the

gPC coefficients, and matrix structures are exploited inside

Newton’s iterations to obtain simulation speedup. As a demon-

stration, we consider backward-Euler integration. Other types

of numerical integration schemes (e.g., Trapezoidal or Gear-2

method) are implemented in a similar way inside ST.

Let ~Xk= ~X (tk) and ~uk=~u (tk). In the transient solver, DAE

(12) is discretized, leading to an algebraic equation

R(~Xk) = αk(Q(~Xk)−Q(~Xk−1)) + F (~Xk)− B̃~uk = 0

with αk=
1

tk−tk−1

. The time step size is adaptively selected

according to the local truncation error (LTE) [20], [46].

Starting from an initial guess ~X0
k , ~Xk is computed using

Newton’s iterations

solve J
(

~Xj
k

)

∆ ~Xj
k = −R

(

~Xj
k

)

,

update ~Xj+1
k = ~Xj

k +∆ ~Xj
k,

(14)

until convergence. Here J (~Xj
k) is the Jacobian matrix of

R(~Xj
k). Fig. 1 shows the structure of J (~Xj

k) from a CMOS

low-noise amplifier (LNA) with n=14, l=p=3 and K=20.

Clearly, all off-diagonal blocks are filled with non-zero sub-

matrices. As a result, directly using a matrix solver to compute

∆ ~Xj
k can be inefficient. If a direct matrix solver is employed,

the linear system solution costs O(N3) = O(K3n3); when an

iterative method is applied, the cost is m̂O(K2n) where m̂ is

the number of iterations.

The coupled linear equation in (14) is instead solved in a

decoupled manner. We rewrite the Jacobian matrix in (14) as

J (~Xj
k) = J̃ (~Xj

k)M. (15)

Matrix J̃ (~Xj
k) has a block-diagonal structure:

J̃ (~Xj
k) =

J(~Xj
k,
~ξ1)

. . .

J(~Xj
k,
~ξK)

. (16)

Let x̂k,j
n2

denotes the n2-th gPC coefficient vector in Xj
k, then

J(~Xj
k,
~ξ) = αk

∂~q(~x, ~ξ)

∂~x
+

∂ ~f(~x, ~ξ)

∂~x

∣

∣

∣

∣

∣

~x=
K∑

n2=1

x̂
k,j
n2

Hn2
(~ξ)

. (17)

The matrix M is

M = Φ⊗ In, Φ =

H1(~ξ
1) · · · HK(~ξ1)

...
. . .

...

H1(~ξ
K) HK(~ξK)

(18)

where ⊗ denotes the Kronecker product operation. The

Vandermonde-like matrix Φ ∈ R
K×K only depends on the

testing points and basis functions. The inverse of M is

M−1 = Φ−1 ⊗ In×n (19)

which can be easily computed because: 1) Φ is of small

size; and 2) fast inverse algorithms exist for Vandermonde-

like matrices [47]. Both Φ and Φ−1 are calculated only once

and then reused for all time points.

Finally, the linear equation in (14) is solved as follows:

1) Solve J̃ (~Xj
k)∆z = −R(~Xj

k) for ∆z. Due to the block-

diagonal structure, this step costs only KO
(

n3
)

for a

direct solver or m̂KO(n) for an iterative solver.

2) Calculate the sparse matrix-vector product ∆ ~Xj
k =

M−1∆z. Since the closed form of M−1 is ready, the

matrix-vector multiplication costs only O(nK).

The computational cost of ST solver now has only a linear

dependence on K, as contrasted with the cubic or quadratic

dependence when directly solving the coupled linear equation.

The ST solver can be easily implemented inside a com-

mercial circuit simulator. Inside each Newton’s iteration, one

can convert ~Xj
k to a deterministic state variable and then

evaluate the corresponding Jacobian and function values for

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2013 5

a testing node. Repeating this procedure for all nodes, J̃ (~Xj
k)

and R(~Xj
k) can be obtained. After that, all blocks are solved

independently to obtain ∆z and then ∆ ~Xj
k . If the Newton’s

iterations get converged, the local truncation error (LTE) is

checked by an existing estimator [20], [46]. The solution is

accepted and ST proceeds to the next time point if the LTE is

below a threshold; otherwise, the time step size is reduced and
~Xk is recomputed. Since the function/Jacobian evaluation and

linear system solutions are well decoupled, ST can be easily

implemented on a parallel computing platform.

C. Testing Node Selection

The testing nodes in ST are selected by two steps. First, (p+
1)l candidate nodes are generated by a Gaussian-quadrature

tensor product rule. Next, only K nodes (with K ≪ p+ 1)l)
are selected from the candidate nodes and used as the final

testing nodes. Note that (p + 1)l sampling nodes are used

in [38], which are exactly the candidate nodes of ST.

1) Candidate Node Generation: Let ξk ∈ Ωk be a ran-

dom parameter and ρk(ξk) the corresponding PDF. Gaussian

quadrature can be used to evaluate a 1-D stochastic integral:

∫

Ωk

g (ξk) ρk (ξk) dξk ≈

n̂
∑

j=1

g
(

ξjk

)

wj
k (20)

where ξjk denotes the j-th quadrature point and wj
k the

corresponding weight. The choice of a Gaussian quadrature

rule depends on the support Ωk and the PDF ρk (ξk).

With the computed 1-D quadrature points and weights for

each ξk, one can construct multi-dimensional quadrature points

to calculate the multivariate stochastic integral

∫

Ω

g
(

~ξ
)

PDF
(

~ξ
)

d~ξ ≈

N̂
∑

j=1

g
(

~ξj

)

wj (21)

by a tensor product or sparse grid technique [34], [39]. In

this work, we set n̂ = p + 1 [p is highest total polynomial

order in (7)] and then use a tensor product rule to construct

N̂ = n̂l quadrature nodes in the l-D stochastic space. For

convenience, we define an index matrix I ∈ Z
l×N̂ , the j-th

column of which is decided according to the constraint

1 +
l

∑

k=1

(n̂− 1)
k−1

(I(k, j)− 1) = j. (22)

Then the j-th quadrature node in Ω is

~ξj = [ξ
I(1,j)
1 , · · · , ξ

I(l,j)
l], (23)

where 1 ≤ I (k, j) ≤ n̂ indicates the index of the quadrature

point in Ωk. The corresponding weight of ~ξj is computed by

wj =

l
∏

k=1

w
I(k,j)
k . (24)

Algorithm 1 Testing Node Selection.

1: Construct N̂ l-D Gaussian quadrature nodes and weights;

2: [~w, ind]=sort(~w, ‘descend’); % reorder the weights

3: V = ~H
(

~ξk

)

/|| ~H
(

~ξk

)

||, with k = ind(1);

4: ~ξ1 = ~ξk, m = 1; % the 1st testing node

5: for j = 2, · · · , N̂ do

6: k = ind(j), ~v = ~H
(

~ξk

)

− V
(

V T ~H
(

~ξk

))

;

7: if ||~v||/|| ~H
(

~ξk

)

|| > β

8: V = [V ;~v/||~v||], m = m+ 1 ;

9: ~ξm = ~ξk; % select as a new testing node.

10: if m ≥ K, break, end;

11: end if

12: end for

2) Selecting Testing Nodes: K testing nodes are selected

from the (p+ 1)l candidate nodes based on two criteria:

1) We prefer those quadrature nodes that are statistically

“important”, i.e., those nodes with large weight values;

2) The matrix Φ should be full-rank and well conditioned.

The Matlab pseudo codes of selecting the final testing nodes

are provided in Algorithm 1. In Line 7, β > 0 is a threshold

scalar. The input vector in Line 2 is ~w=[|w1|, |w2|, · · · , |wN̂ |],
and the vector-valued function ~H(ξ) ∈ R

K×1 is

~H(~ξ) = [H1(~ξ), H2(~ξ), · · · , HK(~ξ)]T . (25)

The basic idea of Algorithm 1 is as follows. All candidate

nodes and their weights are reordered such that |wj | ≥ |wj+1|,
and the first node is selected as the first testing node ~ξ1. Then,

we consider the remaining candidate nodes from the “most

important” to the “least important”. Assuming that m − 1
testing nodes have been selected, this defines a vector space

V = span
{

~H(~ξ1), · · · , ~H(~ξm−1)
}

. (26)

The next “most important” candidate ~ξk is selected as a new

testing node if and only if ~H(~ξk) has a large enough compo-

nent orthogonal to V . This means that the dimensionality of

V can be increased by adding ~ξk as a new testing point.

When l is large, generating and saving the candidate

nodes and index matrix I become expensive. A solution

is to select the testing nodes without explicitly generating

the candidate nodes or I. First, we generate weight wj’s

and the corresponding index j’s according to (24) and (22),

respectively. In the k-th step, we find the k-th largest weight

wj and its corresponding index j. According to (22), the j-

th column of the index matrix I can be calculated, and then

we can construct candidate node ~ξj . Finally ~ξj is selected as

a new testing node if ~H(~ξj) has a large enough component

orthogonal to V , otherwise it is omitted and not stored.

There exist other possible ways to select the testing nodes.

A recent progress is to generate the nodes by Leja sequences,

a greedy approximation to Fekete nodes [37]. How to select

the optimal testing nodes is still an open problem.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2013 6

IV. COMPARISON WITH OTHER STOCHASTIC SOLVERS

This section briefly extends the gPC-based SG and SC

to nonlinear circuit problems and compares them with our

proposed ST algorithm. After that, a high-level classification

of the mainstream stochastic solvers is presented.

A. Comparison with Stochastic Galerkin (SG) Method

1) SG for Nonlinear Circuits: Similar to ST, SG starts from

the residual function (10), but it sets up a deterministic DAE in

the form (12) by Galerkin testing. Specifically, SG enforces the

residual function to be orthogonal to each gPC basis function:
〈

Res
(

~X(t), ~ξ
)

, Hk

(

~ξ
)〉

= 0, for k = 1, · · · ,K. (27)

Now Q(~X(t)), F (~X(t)) and B̃ in (12) have the block form

Q
(

~X(t)
)

=

Q1

(

~X(t)
)

...

QK

(

~X(t)
)

, B̃ =

B1

...

BK

F
(

~X(t)
)

=

F1

(

~X(t)
)

...

FK

(

~X(t)
)

,

(28)

with the n1-th block defined by

Qn1

(

~X (t)
)

=
〈

~q
(

x̂(t, ~ξ), ~ξ
)

, Hn1
(~ξ)

〉

,

Fn1

(

~X (t)
)

=
〈

~f
(

x̂(t, ~ξ), ~ξ
)

, Hn1
(~ξ)

〉

,

Bn1
=

〈

B,Hn1
(~ξ)

〉

.

(29)

To obtain the above inner product, one can use numerical

quadrature or Monte Carlo integration [48].

2) ST versus SG: Both of them are intrusive solvers, and

the coupled DAEs from ST and SG have the same dimension.

However, SG is much more expensive compared to ST.

First, SG must evaluate multivariate stochastic integrals,

hence functions ~q and ~f must be evaluated at many quadrature

or sampling nodes. This step is not cheap because evaluating

a semiconductor device model (e.g., BISM3 model) at each

node involves running tens of thousands of lines of codes.

Second, the linear system solution inside the Newton’s

iteration of SG is much more expensive. Assume that Gaussian

quadrature is applied to calculate the inner products in (29),

then the Jacobian J (~Xj
k) has the following structure

J
(

~Xj
k

)

=

J1,1

(

~Xj
k

)

· · · J1,K

(

~Xj
k

)

...
. . .

...

JK,1

(

~Xj
k

)

· · · JK,K

(

~Xj
k

)

, (30)

and the submatrix Jn1,n2

(

~Xj
k

)

∈ R
n×n is calculated by

Jn1,n2

(

~Xj
k

)

=
N̂
∑

q=1
wqHn1

(

~ξq
)

Hn2

(

~ξq
)

J
(

~Xj
k,
~ξq
)

.

Here ~ξq is the q-th Gaussian quadrature node and wq the

corresponding weight, J
(

~Xj
k,
~ξq
)

is calculated according to

the definition in (17). The Jacobian in SG cannot be decou-

pled. Therefore, solving the resulting DAE of SG requires

O(N3) = O(K3n3) at each time point if a direct solver is

used (or m̂O(K2n) if m̂ iterations are used in an iterative

solver), much more expensive compared to ST.

B. Comparison with Stochastic Collocation (SC) Method

1) SC for Nonlinear Circuits: Unlike ST and SG, SC starts

from the original stochastic DAE (1) without using gPC ap-

proximation a-priori. SC first selects N̂s samples ~ξ1, · · · , ~ξN̂s

and solves (1) at each sample to obtain a deterministic solution

~x(t, ~ξk). The gPC coefficients are then computed using a post-

processing step. For example, one can select the sample ~ξk and

weight wk by a Gauss-quadrature tensor product rule or sparse

grid technique, and then compute the gPC coefficient by

x̂j(t) =
〈

~x(t, ~ξ), Hj(~ξ)
〉

≈

N̂s
∑

k=1

wkHj(~ξ
k)~x(t, ~ξk). (31)

2) ST versus SC: Like MC, SC is a sampling-based sim-

ulator. Therefore, the cost of SC has a linear dependence

on N̂s, the number of samples. However, SC uses more

sampling nodes than ST (c.f. Section V-F). Furthermore,

SC is not as efficient as ST in time-domain simulation. To

reconstruct the gPC coefficients of time-domain solutions, SC

must use the same time grid for simulating all deterministic

DAEs. Since it is difficult to preselect an adaptive time

grid, a small fixed step size is normally used, leading to

excessive computational cost. In contrast, ST can use any

standard adaptive step stepping to accelerate the time-domain

simulation since it directly computes the gPC coefficients. It

seems that SC can use adaptive time stepping to simulate

each deterministic DAE, and then uses interpolation at the

time points where solutions are missing. Unfortunately, the

errors caused by such interpolations are much larger than

the threshold inside Newton’s iterations, causing inaccurate

computation of higher-order gPC coefficients. However, SC

indeed can use adaptive time stepping if one is not interested

in the statistical information of the time-domain waveforms.

C. Classification and Summary

Fig. 2 shows the classification of different stochastic solvers,

which is detailed below.

• MC and SC are nonintrusive (or sampling-based) solvers.

They both start from the original stochastic equation

(1) and compute the deterministic solutions at a set of

sampling points. The main difference of MC and SC

lies in how to select the samples. MC draws the samples

randomly according to PDF(~ξ), whereas SC selects the

samples by a tensor-product (TP) numerical quadrature

or sparse grid (SP) technique. After repeatedly simulating

each deterministic equation, MC provides the statistical

information such as distribution or moments, whereas SC

reconstructs the gPC coefficients by a post-processing

step such as numerical integration.

• SG and ST are intrusive solvers as they both directly

compute the gPC coefficients by simulating a larger-size

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2013 7

Fig. 2. The classification of MC, SG, SC and ST methods.

TABLE II
COMPARISON OF DIFFERENT SPECTRAL METHODS.

Method Type Decoupled? Adapt. step size?

SC nonintrusive
√

×
SG intrusive ×

√

ST intrusive
√ √

Vin

Vdd

Rd

Rs

Vout

Fig. 3. Schematic of the common-source amplifier.

coupled DAE only once. With gPC approximations, they

both start from the residual function (10). SG sets up

a larger-size coupled deterministic model by Galerkin

testing, whereas ST uses a collocation testing technique.

The spectral methods ST, SC and SG are further compared

in Table II. ST allows both adaptive time stepping and decou-

pled simulation, therefore, it is more efficient over SC and SG.

V. NUMERICAL RESULTS

This section presents the simulation results of some analog,

RF and digital integrated circuits. Our ST algorithm is im-

plemented in a MATLAB prototype simulator and integrated

with several semiconductor device models for algorithm verifi-

cation. In this work, Level-3 MOSFET model and Ebers-Moll

BJT model are used for transistor evaluation [49]. The TSMC

0.25µm CMOS model card [50] is used to describe the device

parameters of all MOSFETs. SC, SG and Monte Carlo (MC)

methods are implemented for comparison and validation. In

SG and ST, step sizes are selected adaptively according to the

local truncation error (LTE) [46] for time-domain simulation.

In contrast, uniform step sizes are used for both MC and SC

since we need to obtain the statistical information of time-

domain solutions. In our experiments, all candidate nodes of

ST are generated by Gaussian quadrature and tensor-product

rules. The cost of generating the candidate nodes and selecting

testing nodes is several milliseconds, which is negligible. For

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

V
in

I(
V

d
d

)

Proposed ST

Monte Carlo

Fig. 4. Error bars showing the mean and s.t.d values from our ST method
(blue) and Monte Carlo method (red) of I(Vdd).

8.5 9 9.5 10 10.5

x 10
−4

0

200

400

600

800

1000

Power

N
u
m

b
er

 o
f

sa
m

p
le

s

(a) ST method

8.5 9 9.5 10 10.5

x 10
−4

0

200

400

600

800

1000

Power

N
u
m

b
er

 o
f

sa
m

p
le

s

(b) Monte Carlo

Fig. 5. Histograms showing the distributions of the power dissipation at
Vin = 1.4V, obtained by ST method (left) and Monte Carlo (right).

all circuit examples, SC and SG use the samples from a tensor-

product rule. The sparse-grid and tensor-product SC methods

are compared with ST in detail in Section V-F.

A. Illustrative Example: Common-Source (CS) Amplifier

The common-source (CS) amplifier in Fig. 3 is used to

compare comprehensively our ST-based simulator with MC

and other spectral methods. This amplifier has 4 random

parameters: 1) VT (threshold voltage when Vbs = 0) has a

normal distribution; 2) temperate T has a shifted and scaled

Beta distribution, which influences Vth; 3) Rs and Rd have

Gamma and uniform distributions, respectively.

1) ST versus MC: ST method is first compared with MC

in DC sweep. By sweeping the input voltage from 0 V up to

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2013 8

1 2 3 4 5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

total gPC order (p)

ab
s.

 e
rr

o
r

(L
2
 n

o
rm

)

ST

SG

SC

10
−2

10
0

10
2

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

CPU time (s)

ab
s.

 e
rr

o
r

(L
2
 n

o
rm

)

ST

SG

SC

Fig. 6. Absolute errors (measured by L2 norm) of the gPC coefficients for
the DC analysis of the CS amplifier, with Vin = 1.6V. Left: absolute errors
versus gPC order p. Right: absolute errors versus CPU times.

TABLE III
COMPUTATIONAL COST OF THE DC ANALYSIS FOR CS AMPLIFIER.

gPC order (p) 1 2 3 4 5 6

ST
time (s) 0.16 0.22 0.29 0.51 0.78 1.37
nodes 5 15 35 70 126 210

SC
time (s) 0.23 0.33 1.09 2.89 6.18 11.742
nodes 16 81 256 625 1296 2401

SG
time (s) 0.25 0.38 5.33 31.7 304 1283
nodes 16 81 256 625 1296 2401

3 V with a step size of 0.2 V, we estimate the supply currents

and DC power dissipation. In MC, 105 sampling points are

used. In our ST simulator, using an order-3 truncated gPC

expansion (with 35 gPC basis functions, and 35 testing nodes

selected from 256 candidate nodes) achieves the same level

of accuracy. The error bars in Fig. 4 show that the mean

and s.t.d values from both methods are indistinguishable.

The histograms in Fig. 5 plots the distributions of the power

dissipation at Vin = 1.4V. Again, the results obtained by ST is

consistent with MC. The expected value at 1.4V is 0.928 mW

from both methods, and the s.t.d. value is 22.07 µW from both

approaches. Apparently, the variation of power dissipation is

not a Gaussian distribution due to the presence of circuit

nonlinearity and non-Gaussian random parameters.

CPU times: For this DC sweep, MC costs about 2.6 hours,

whereas our ST simulator only costs 5.4 seconds. Therefore,

a 1700× speedup is achieved by using our ST simulator.

2) ST versus SC and SG in DC Analysis: Next, ST method

is compared with SG and SC. Specifically, we set Vin = 1.6V

and compute the gPC coefficients of all state variables with

the total gPC order p increasing from 1 to 6. We use the results

from p = 6 as the “exact solution” and plot the L2 norm of

the absolute errors of the computed gPC coefficients versus

p and CPU times, respectively. The left part of Fig. 6 shows

that as p increases, ST, SC and SG all converge very fast.

Although ST has a slightly lower convergence rate, its error

still rapidly reduces to below 10−4 when p = 3. The right part

of Fig. 6 shows that ST costs the least CPU time to achieve the

same level of accuracy with SC and SG, due to the decoupled

Newton’s iterations and fewer nodes used in ST.

CPU times: The computational costs of different solvers are

summarized in Table III. The speedup of ST becomes more

significant as the total gPC order p increases. We remark that

the speedup factor will be smaller if SC uses sparse grids, as

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0.5

1

1.5

2

2.5

time (s)

(a) Mean value

ST

SC

SG

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0.05

0.1

0.15

0.2

0.25

0.3

time (s)

(b) Standard deviation

ST

SC

SG

Fig. 7. Transient waveform of the output of the CS amplifier.

TABLE IV
COMPUTATIONAL COST OF TRANSIENT SIMULATION FOR CS AMPLIFIER.

Methods ST SG SC

CPU times 41 s > 1 h 1180 s

nodes 35 256 256

speedup of ST 1 > 88 29

will be discussed in Section V-F.

3) ST versus SC and SG in Transient Simulation: Finally,

ST is compared with SG and SC in transient simulation. It is

well known that the SG method provides an optimal solution

in terms of accuracy [32]–[34], therefore, the solution from

SG is used as the reference for accuracy comparison. The

total gPC order is set as p = 3 (with K = 35 testing nodes

selected from 256 candidate nodes), and the Gear-2 integration

scheme [46] is used for all spectral methods. In SC, a uniform

step size of 10µs is used, which is the largest step size that

does not cause simulation failures. The input is kept as Vin =
1 V for 0.2 ms and then added with a small-signal square

wave (with 0.2V amplitude and 1 kHz frequency) as the AC

component. The transient waveforms of Vout are plotted in

Fig. 7. The mean value and standard deviation from ST are

almost indistinguishable with those from SG.

It is interesting that the result from ST is more accurate than

that from SC in this transient simulation example. This is be-

cause of the employment of LTE-based step size control [46].

With a LTE-based time stepping [46], the truncation errors

caused by numerical integration can be well controlled in ST

and SG. In contrast, SC cannot adaptively select the time step

sizes according to LTEs, leading to larger integration errors.

CPU times: The computational costs of different solvers

are summarized in Table IV. It is noted that SC uses about

7× of nodes of ST, but the speedup factor of ST is 29. This

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2013 9

V in

Vdd

Vout

M1

M2

M3
CL

R1

R2

R3

C1 L1

L2

L3

Fig. 8. Schematic of the LNA.

1 2 3 4 5
10

−10

10
−8

10
−6

10
−4

10
−2

total gPC order (p)

ab
s.

 e
rr

o
r

ST

SG

SC

10
−2

10
−1

10
0

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

CPU time (s)

ab
s.

 e
rr

o
r

ST

SG

SC

Fig. 9. Absolute errors (measured by L2 norm) of the gPC coefficients for
the DC analysis of LNA. Left: absolute errors versus gPC order p. Right:
absolute errors versus CPU times.

is because the adaptive time stepping in ST causes an extra

speedup factor of about 4. MC is prohibitively expensive for

transient simulation and thus not compared here.

B. Low-Noise Amplifier (LNA)

Now we consider a practical low-noise amplifier (LNA)

shown in Fig 8. This LNA has 3 random parameters in total:

resistor R3 is a Gamma-type variable; R2 has a uniform

distribution; the gate width of M1 has a uniform distribution.

DC Analysis: We first run DC analysis by ST, SC and SG

with p increasing from 1 to 6, and plot the errors of the gPC

coefficients of the state vector versus p and CPU times in

Fig. 9. For this LNA, ST has almost the same accuracy with

SC and SG, and it requires the smallest amount of CPU time.

The cost of the DC analysis is summarized in Table V.

Transient Analysis: An input signal Vin = 0.5sin(2πft)
with f = 108 Hz is added to this LNA. We are interested

in the uncertainties of the transient waveform at the output.

Setting p = 3, our ST method uses 20 gPC basis functions

(with 20 testing nodes selected from 64 candidate nodes) to

obtain the waveforms of the first 4 cycles. The result from ST

is indistinguishable with that from SG, as shown in Fig. 10.

ST consumes only 56 seconds for this LNA. Meanwhile, SG

costs 26 minutes, which is 28× slower compared to ST.

C. 6-T SRAM Cell

The 6-T SRAM cell in Fig. 11 is studied to show the

application of ST in digital cell analysis. When the write line

has a high voltage (logic 1), the information of the bit line can

TABLE V
COMPUTATIONAL COST OF THE DC ANALYSIS FOR LNA.

gPC order (p) 1 2 3 4 5 6

ST
time (s) 0.24 0.33 0.42 0.90 1.34 2.01
nodes 4 10 20 35 56 84

SC
time (s) 0.26 0.59 1.20 2.28 4.10 6.30
nodes 8 27 64 125 216 343

SG
time (s) 0.58 2.00 6.46 24.9 87.2 286
nodes 8 27 64 125 216 343

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−8

1.3

1.4

1.5

1.6

1.7

1.8

1.9

time (s)

E
(V

o
u
t)

ST

SG

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−8

0

0.005

0.01

0.015

time (s)

σ(
V

o
u
t)

ST

SG

Fig. 10. Transient simulation results of the LNA. Upper part: expectation of
the output voltage; bottom part: standard deviation of the output voltage.

be written into the cell and stored on transistors M1 − M4.

The 1-bit information is represented by the voltage of node

Q. When the write line has a low voltage (logic 0), M5 and

M6 turn off. In this case, M1 −M4 are disconnected with the

bit line, and they form a latch to store and hold the state of

node Q. Here Vdd is set as 1 V, while the high voltages of the

write and bit lines are both set as 2 V.

Now we assume that due to mismatch, the gate widths of

M1 − M4 have some variations which can be expressed as

Gaussian variables. Here we study the influence of device

variations on the transient waveforms, which can be further

used for power and timing analysis. Note that in this paper we

do not consider the rare failure events of SRAM cells [24]. To

quantify the uncertainties of the voltage waveform at node

Q, our ST method with p = 3 and K = 35 (with 35

testing nodes selected from 256 candidate nodes) is applied to

perform transient simulation under a given input waveforms.

Fig. 12 shows the waveforms of write and bit lines and the

corresponding uncertainties during the time interval [0, 1]µs.

CPU times: Our ST method costs 6 minutes to obtain the

result. SG generates the same results at the cost of several

hours. Simulating this circuit with SC or MC is prohibitively

expensive, as a very small uniform step size must be used due

to the presence of sharp state transitions.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2013 10

Vdd

Q
Q’

M1M2

M3M4

M5 M6

Write line

Bit line

Fig. 11. Schematic of the CMOS 6-T SRAM.

0 0.2 0.4 0.6 0.8 1

x 10
−6

0

0.5

1

1.5

time (s)

(a) Mean value of V(Q)

0 0.2 0.4 0.6 0.8 1

x 10
−6

0

2

4

6

8
x 10

−3

time (s)

(b) Standard deviation of V(Q)

0 0.2 0.4 0.6 0.8 1

x 10
−6

0

0.5

1

1.5

2

time (s)

(c) Write−line signal

0 0.2 0.4 0.6 0.8 1

x 10
−6

0

0.5

1

1.5

2

time (s)

(d) Bit−line signal

Fig. 12. Uncertainties of the SRAM cell. (a) and (b) shows the expectation
and standard deviation of Vout; (c) and (d) shows the waveforms of the write
line and bit line, respectively.

D. BJT Feedback Amplifier

To show the application of our ST method in AC analysis

and in BJT-type circuits, we consider the feedback amplifier

in Fig. 13. In this circuit, R1 and R2 have Gamma-type

uncertainties. The temperature is a Gaussian variable which

significantly influences the performances of BJTs and diodes.

Therefore, the transfer function from Vin to Vout is uncertain.

Using p = 3 and K = 20 (with 20 testing nodes selected

Q1 Q2

Q3

Vdd=20V

Vss=-20V

Q4

Q6

Q5

Q7

Q8

Vout

Vin

R1

R2

Fig. 13. Schematic of the BJT feedback amplifier.

10
−2

10
0

10
2

10
4

10
6

10
8

8

10

12

14

16

18

freq (Hz)

(a) Real part

Monte Carlo

ST method

10
−2

10
0

10
2

10
4

10
6

10
8

−5

−4

−3

−2

−1

0

freq (Hz)

(b) Imag. part

Monte Carlo

ST method

Fig. 14. Uncertainties of the transfer function of the BJT amplifier.

from 64 candidate nodes), our ST simulator achieves the

similar level of accuracy of a MC simulation using 105

samples. The error bars in Fig. 14 show that the results

from both methods are indistinguishable. In ST, the real and

imaginary parts of the transfer functions are both obtained

as truncated gPC expansions. Therefore, the signal gain at

each frequency point can be easily calculated with a simple

polynomial evaluation. Fig. 15 shows the calculated PDF of

the small-signal gain at f = 8697.49 Hz using both ST and

MC. The PDF curves from both methods are indistinguishable.

CPU times: The simulation time of ST and Monte Carlo

are 3.6 seconds and over 2000 seconds, respectively.

E. BJT Double-Balanced Mixer

As the final circuit example, we consider the time-domain

simulation of RF circuits excited by multi-rate signals, by

studying the double-balanced mixer in Fig. 16. Transistors

Q1 and Q2 accept an input voltage of frequency f1, and

Q3 ∼ Q6 accept the second input of frequency f2. The output

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2013 11

9.4 9.45 9.5 9.55 9.6 9.65 9.7 9.75
0

2

4

6

8

10

12

14

Signal gain from V
in

 to V
out

PDF of gain @ 8697.49 Hz

ST method

Monte Carlo

Fig. 15. Simulated probability density functions of the signal gain.

Vdd=8V

1.8mA1.8V

Vout1

Vout2

6V

Vin1

Vin2

R1 R2

Q1 Q2

Q3 Q4 Q5 Q6

Fig. 16. Schematic of the BJT double-balanced mixer.

vout = Vout1−Vout2 will have components at two frequencies:

one at |f1 − f2| and the other at f1 + f2. Now we assume

that R1 and R2 are both Gaussian-type random variables,

and we measure the uncertainties of the output voltage. In

our simulation, we set Vin1 = 0.01sin(2πf1t) with f1 = 4
MHz and Vin2 = 0.01sin(2πf2t) with f2 = 100 kHz. We

set p = 3 and K = 10 (with 10 testing nodes selected from

16 candidate nodes), and then use our ST simulator to run a

transient simulation from t = 0 to t = 30µs. The expectation

and standard deviation of Vout1−Vout2 are plotted in Fig. 17.

CPU times: The cost of our ST method is 21 minutes,

whereas simulating this mixer by SG, SC or MC on the

same MATLAB platform is prohibitively expensive due to the

presence of multi-rate signals and the large problem size.

F. Discussion: Speedup Factor of ST over SC

Finally we comprehensively compare the costs of ST and

SC. Two kinds of SC methods are considered according

to the sampling nodes used in the solvers [39]: SC using

tensor product (denoted as SC-TP) and SC using sparse grids

(denoted as SC-SP). SC-TP uses (p+1)l nodes to reconstruct

the gPC coefficients, and the work in [38] belongs to this class.

For SC-SP, a level-p+1 sparse grid must be used to obtain the

p-th-order gPC coefficients in (31). We use the Fejèr nested

sparse grid in [42], and according to [51] the total number of

0 0.5 1 1.5 2 2.5 3

x 10
−5

−0.04

−0.02

0

0.02

0.04

time (s)

(a) Expectation of V
out

0 0.5 1 1.5 2 2.5 3

x 10
−5

1

2

3

4
x 10

−3

time (s)

(b) Standard deviation of V
out

Fig. 17. Uncertainties of Vout=Vout1−Vout2 of the double-balanced mixer.

0 10 20 30
10

0

10
5

10
10

10
15

10
20

10
25

dim. of parameter space (l)

sp
ee

d
u
p
 f

ac
to

r

(a) ST vs SC−TP

0 10 20 30
10

0

10
1

10
2

10
3

dim. of parameter space (l)

sp
ee

d
u
p
 f

ac
to

r

(b) ST vs SC−SP

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

Fig. 18. The speedup factor of ST over SC caused by node selection: (a)
ST versus SC-TP, (b) ST versus SC-SP. This is also the speedup factor in DC
analysis.

nodes in SC-SP is estimated as

NSC−SP =

p
∑

i=0

2i
(l − 1 + i)!

(l − 1)!i!
(32)

DC Analysis: In DC analysis, since both ST and SC

use decoupled solvers and their costs linearly depend on the

number of nodes, the speedup factor of ST versus SC is

νDC ≈ NSC/K (33)

where NSC and K are the the numbers of nodes used by SC

and ST, respectively. Fig. 18 plots the values of NSC/K for

both SC-TP and SC-SP, which is also the speedup factor of ST

over SC in DC analysis. Since ST uses the smallest number of

nodes, it is more efficient over SC-TP and SC-SP. When low-

order gPC expansions are used (p ≤ 3), the speedup factor

over SC-SP is below 10. The speedup factor can be above 10
if p ≥ 4, and it gets larger as p increases. In high-dimensional

cases (l ≫ 1), the speedup factor of ST over SC-SP only

depends on p. It is the similar case if Smolyak sparse grids

are used in SC [31]. For example, compared with the sparse-

grid SC in [31], our ST has a speedup factor of 2p if l ≫ 1.

Transient Simulation: The speedup factor of ST over SC

in a transient simulation can be estimated as

νTrans ≈ (NSC/K)× κ, with κ > 1, (34)

which is larger than νDC. The first part is the same as in DC

analysis. The second part κ represents the speedup caused by

adaptive time stepping in our intrusive ST simulator, which is

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2013 12

case dependent. For weakly nonlinear analog circuits (e.g., the

SC amplifier in Section V-A), κ can be below 10. For digital

cells (e.g., the SRAM cell in Section V-C) and multi-rate RF

circuits (e.g., the double-balanced mixer in Section V-E), SC-

based transient simulation can be prohibitively expensive due

to the inefficiency of using a small uniform time step size. In

this case, κ can be significantly large.

VI. CONCLUSION

This paper has proposed an intrusive-type stochastic solver,

named stochastic testing (ST), to quantify the uncertainties in

transistor-level circuit analysis. With gPC expansions, ST can

handle both Gaussian and non-Gaussian variations. Compared

with SG and SC, ST can simultaneously allow decoupled nu-

merical simulation and adaptive step size control. In addition,

multivariate integral calculation is avoided in ST. Such prop-

erties make ST method hundreds to thousands of times faster

over Monte Carlo, and tens to hundreds of times faster than

SG. The speedup of ST over SC is caused by two factors: 1) a

smaller number of nodes required in ST; and 2) adaptive time

stepping in the intrusive ST simulator. The overall speedup

factor of ST over SC is normally case dependent. Various sim-

ulations (e.g., DC, AC and transient analysis) are performed

on some analog, digital and RF circuits, demonstrating the

effectiveness of our proposed algorithm.

REFERENCES

[1] D. S. Boning, “Variation,” IEEE Trans. Semiconductor Manufacturing,
vol. 21, no. 1, pp. 63–71, Feb 2008.

[2] S.-W. Sun and P. G. Y. Tsui, “Limitation of CMOS supply-voltage
scaling by MOSFET threshold-voltage variation,” IEEE Journal of Solid-

State Circuits, vol. 30, no. 8, pp. 947–949, Aug 1995.
[3] N. Tega, H. Miki, F. Pagette, D. J. Frank, A. Ray, M. J. Rooks,

W. Haensch, and K. Torii, “Increasing threshold voltage variation due
to random telegraph noise in FETs as gate lengths scale to 20 nm,” in
Proc. Intl. Symp. VLSI Technology, Jun. 2009, pp. 50–51.

[4] T. Moselhy and L. Daniel, “Stochastic integral equation solver for
efficient variation aware interconnect extraction,” in Proc. Design Auto.

Conf., Jun. 2008, pp. 415–420.
[5] ——, “Stochastic dominant singular vectors method for variation-aware

extraction,” in Proc. Design Auto. Conf., Jun. 2010, pp. 667–672.
[6] ——, “Variation-aware stochastic extraction with large parameter dimen-

sionality: Review and comparison of state of the art intrusive and non-
intrusive techniques,” in Proc. Intl. Symp. Quality Electronic Design,
Mar. 2011, pp. 14–16.

[7] T. A. El-Moselhy, “Field solver technologies for variation-aware inter-
connect parasitic extraction,” PhD Dissertation, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technol-
ogy, Cambridge, MA, 2010.

[8] D. V. Ginste, D. D. Zutter, D. Deschrijver, T. Dhaene, P. Manfredi, and
F. Canavero, “Stochastic modeling-based variability analysis of on-chip
interconnects,” IEEE Trans. Components, Packaging and Manufacturing

Technology, vol. 2, no. 7, pp. 1182–1192, Jul. 2012.
[9] I. S. Stievano, P. Manfredi, and F. G. Canavero, “Carbon nanotube

interconnects: Process variation via polynomial chaos,” IEEE Trans.

Electromagnetic Compatibility, vol. 54, no. 1, pp. 140–148, Feb. 2012.
[10] Z. Zhang, I. M. Elfadel, and L. Daniel, “Model order reduction of fully

parameterized systems by recursive least square optimization,” in Proc.

Intl. Conf. Computer-Aided Design, Jun. 2011, pp. 523–530.
[11] L. Daniel, C. S. Ong, S. C. Low, K. H. Lee, and J. K. White, “A mul-

tiparameter moment-matching model-reduction approach for generating
geometrically parameterized interconnect performance models,” IEEE

Trans. CAD of Integrated Circuits and Systems, vol. 23, no. 5, pp. 678–
693, May. 2004.

[12] V. Mehrotra, S. Nassif, D. Boning, and J. Chung, “Modeling the effects
of manufacturing variation on high-speed microprocessor interconnect
performance,” in Proc. Intl. Electron Devices Meeting, Dec. 1998, pp.
767–770.

[13] K. Agarwal, D. Sylvester, D. Blaauw, F. Liu, S. Nassif, and S. Vrudhula,
“Variational delay metrics for interconnect timing analysis,” in Proc.

Design Auto. Conf. New York, NY, Jun. 2004, pp. 381–384.

[14] C. H. Stapper and R. J. Rosner, “Integrated circuit yield management
and yield analysis: development and implementation,” IEEE Trans.

Semiconductor Manufacturing, vol. 8, no. 2, pp. 95–102, May 1995.

[15] S. R. Nassif, “Modeling and analysis of manufacturing variations,” in
Proc. Intl. Conf. Custom Integrated Circuits, Sept. 2001, pp. 223 – 228.

[16] D. S. Boning and S. Nassif, “Models of process variations in device and
interconnect,” in Design of High Performance Microprocessor Circuits.
IEEE Press, 2000.

[17] X. Li, “Finding deterministic solution from underdetermined equation:
large-scale performance modeling of analog/RF circuits,” IEEE Trans.

Computer-Aided Design of Integrated Circuits and Systems, vol. 29,
no. 11, pp. 1661–1668, Nov 2011.

[18] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, S. Narayan,
D. K. Beece, J. Piaget, N. Venkateswaran, and J. G. Hemmett, “First-
order incremental block-based statistical timing analysis,” IEEE Trans.

Computer-Aided Design of Integrated Circuits and Systems, vol. 25,
no. 10, pp. 2170 – 2180, Oct 2006,.

[19] W. Zhang, X. Li, F. Liu, E. Acar, R. Rutenbar, and R. Blanton, “Virtual
probe: a statistical framework for low-cost silicon characterization of
nanoscale integrated circuits,” IEEE Trans. CAD of Integrated Circuits

and Systems, vol. 30, no. 12, pp. 1814–1827, Dec 2011.

[20] P. W. Tuinenga, Spice: A Guide to Circuit Simulation and Analysis Using

PSpice, 3rd ed. Upper Saddle River, NJ: Prentice Hall PTR, 1995.

[21] http://www.cadence.com.

[22] http://www.synopsys.com/Tools/Verification.

[23] N. Metropolis and S. Ulam, “The Monte Carlo method,” Journal of the

American Statistical Association, vol. 44, no. 247, pp. 335–341, 1949.

[24] R. Kanj, R. Joshi, and S. Nassif, “Mixture importance sampling and
its application to the analysis of SRAM designs in the presence of rare
failure events,” in Proc. Design Automation Conf. San Francisco, CA,
Jun 2006, pp. 69–72.

[25] A. Singhee and R. A. Rutenbar, “Statistical blockade: Very fast statistical
simulation and modeling of rare circuit events and its application to
memory design,” IEEE Trans. on CAD of Integrated Circuits and

systems, vol. 28, no. 8, pp. 1176–1189, Aug. 2009.

[26] ——, “Why Quasi-Monte Carlo is better than Monte Carlo or latin
hypercube sampling for statistical circuit analysis,” IEEE Trans. CAD

Integrated Circuits and Systems, vol. 29, no. 11, pp. 1763–1776, Nov.
2010.

[27] J. Tao, X. Zeng, W. Cai, Y. Su, D. Zhou, and C. Chiang, “Stochas-
tic sparse-grid collocation algorithm (SSCA) for periodic steady-state
analysis of nonlinear system with process variations,” in Porc. Asia and

South Pacific Design Automation Conf., 2007, pp. 474–479.

[28] K. Strunz and Q. Su, “Stochastic formulation of SPICE-type electronic
circuit simulation with polynomial chaos,” ACM Trans. Modeling and

Computer Simulation, vol. 18, no. 4, Sep. 2008.

[29] N. Wiener, “The homogeneous chaos,” American Journal of Mathemat-

ics, vol. 60, no. 4, p. 897936, Oct 1938.

[30] R. Ghanem and P. Spanos, Stochastic finite elements: a spectral ap-

proach. Springer-Verlag, 1991.

[31] D. Xiu and J. S. Hesthaven, “High-order collocation methods for
differential equations with random inputs,” SIAM Journal on Scientific

Computing, vol. 27, no. 3, pp. 1118–1139, Mar 2005.

[32] D. Xiu and G. E. Karniadakis, “The Wiener-Askey polynomial chaos for
stochastic differential equations,” SIAM Journal on Scientific Computing,
vol. 24, no. 2, pp. 619–644, Feb 2002.

[33] ——, “Modeling uncertainty in flow simulations via generalized poly-
nomial chaos,” Journal of Computational Physics, vol. 187, no. 1, pp.
137–167, May 2003.

[34] D. Xiu, “Fast numerical methods for stochastic computations: A review,”
Communications in Computational Physics, vol. 5, no. 2-4, pp. 242–272,
Feb. 2009.

[35] A. Sandu, C. Sandu, and M. Ahmadian, “Modeling multibody systems
with uncertainties. part I: Theoretical and computational aspects,” Multi-

body Syst. Dyn., vol. 15, pp. 373–395, Sept. 2006.

[36] A. Narayan and D. Xiu, “Stochastic collocation methods on unstructured
grids in high dimensions via interpolation,” SIAM J. Scientific Comput-

ing, vol. 34, no. 3, pp. 1729–1752, Mar 2012.

[37] ——, “Stochastic collocation with least orthogonal interpolant Leja
sequences,” in SIAM Conf. Computational Science and Engineering,
Feb.-Mar. 2013.

[38] R. Pulch, “Stochastic collocation and stochastic Galerkin
methods for linear differential algebraic equations,” available at

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, XX 2013 13

http://www.imacm.uni-wuppertal.de/fileadmin/
imacm/preprints/2012/imacm_12_31.pdf.

[39] J. Bäck, F. Nobile, L. Tamellini, and R. Tempone, “Stochastic spectral
Galerkin and collocation methods for PDEs with random coefficients:
A numerical comparison,” Spectral and High Order Methods for Partial

Differential Equations, Lecture Notes in Computational Science and

Engineering, vol. 76, pp. 43–62, 2011.
[40] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral

Method Approach. Princeton University Press, 2010.
[41] P. Sumant, H. Wu, A. Cangellaris, and N. R. Aluru, “Reduced-order

models of finite element approximations of electromagnetic devices ex-
hibiting statistical variability,” IEEE Trans. Antennas and Propagation,
vol. 60, no. 1, pp. 301–309, Jan. 2012.

[42] O. Le Maitre and O. Knio, Spectral methods for uncertainty quantifi-

cation: with application to computational fluid dynamics. Springer,
2010.

[43] C.-W. Ho, A. Ruehli, and P. Brennan, “The modified nodal approach
to network analysis,” IEEE Trans. Circuits and Systems, vol. CAS-22,
no. 6, pp. 504–509, Jun. 1975.

[44] C. Soize and R. Ghanem, “Physical systems with random uncertainties:
Chaos representations with arbitrary probability measure,” SIAM Journal

on Scientific Computing, vol. 26, no. 2, p. 395410, Feb 2004.
[45] K. Nabors and J. White, “FastCap: a multipole accelerated 3-D capaci-

tance extraction program,” IEEE Trans. CAD of Integrated Circuits and

Systems, vol. 10, no. 11, pp. 1447–1459, Nov. 1991.
[46] K. S. Kundert, The Designers Guide to SPICE and Spectre. Boston,

MA: Kluwer Academic Publishers, 1995.
[47] D. Calvetti and L. Reichel, “Fast inversion of Vandermonde-like matrices

involving orthogonal polynomials,” BIT Numerical Mathematics, vol. 33,
no. 3, pp. 473–484, 1994.

[48] S. Weinzierl, “Introduction to Monte Carlo methods,” NIKHEF, Theory
Group, Amsterdam, The Netherlands, Tech. Rep. NIKHEF-00-012,
2000.

[49] “Star-HSPICE users manual,” avant! Corporation, Sunnyvale, CA, Feb.
1996.

[50] http://www.mosis.com/files/test_data/t14y_tsmc_
025_level3.txt.

[51] H.-J. Bungartz and M. Griebel, “Sparse grids,” Acta Numerica, vol. 13,
pp. 147–269, 2004.

Zheng Zhang (S’09) received his B.Eng. degree
from Huazhong University of Science and Technol-
ogy, China, in 2008, and M.Phil. degree from the
University of Hong Kong, Hong Kong, in 2010.
He is a Ph.D student in Electrical Engineering at
the Massachusetts Institute of Technology (MIT),
Cambridge, MA. His research interests include un-
certainty quantification, numerical methods for the
computer-aided design (CAD) of integrated circuits
and microelectromechanical systems (MEMS), and
model order reduction.

In 2009, Mr. Zhang was a visiting scholar with the University of California,
San Diego (UCSD), La Jolla, CA. In 2011, he collaborated with Coventor Inc.,
working on CAD tools for MEMS design. He was recipient of the Li Ka Shing
Prize (university best M.Phil/Ph.D thesis award) from the University of Hong
Kong, in 2011, and the Mathworks Fellowship from MIT, in 2010.

Tarek El-Moselhy received the B.Sc. degree in
electrical engineering in 2000 and a diploma in
mathematics in 2002, then the M.Sc. degree in
mathematical engineering, in 2005, all from Cairo
University, Cairo, Egypt. He received the Ph.D.
degree in electrical engineering from Massachusetts
Institute of Technology, Cambridge, in 2010.

He is a postdoctoral associate in the Department
of Aeronautics and Astronautics at Massachusetts
Institute of Technology (MIT). His research inter-
ests include fast algorithms for deterministic and

stochastic electromagnetic simulations, stochastic algorithms for uncertainty
quantification in high dimensional systems, and stochastic inverse problems
with emphasis on Bayesian inference. Dr. El-Moselhy received the Jin Au
Kong Award for Outstanding PhD Thesis in Electrical Engineering from MIT
in 2011, and the IBM Ph.D Fellowship in 2008.

Ibrahim (Abe) M. Elfadel (SM’-02) received his
Ph.D. from Massachusetts Institute of Technology
(MIT) in 1993 and is currently Professor and Head
of Microsystems Engineering at the Masdar Institute
of Science and Technology, Abu Dhabi, UAE.

He has 15 years of industrial experience with
IBM in the research, development and deploy-
ment of advanced computer-aided design (CAD)
tools and methodologies for deep-submicron, high-
performance digital designs. His groups research is
concerned with several aspects of energy-efficient

digital system design and includes CAD for variation-aware, low-power
nano-electronics, power and thermal management of multicore processors,
embedded DSP for mmWave wireless systems, modeling and simulation of
micro power sources, and 3D integration for energy-efficeint VLSI design. Dr.
Elfadel is the Director of the TwinLab/Abu Dhabi Center for 3D IC Design,
a joint R & D program with the Technical University of Dresden, Germany.

Dr. Elfadel is the recipient of six Invention Achievement Awards, an
Outstanding Technical Achievement Award and a Research Division Award,
all from IBM, for his contributions in the area of VLSI CAD. He is currently
serving as an Associate Editor for the IEEE Transactions on Computer-Aided
Design for Integrated Circuits and Systems and the IEEE Transactions on
Very-Large-Scale Integration.

Luca Daniel (S’98-M’03) received the Laurea de-
gree (summa cum laude) in electronic engineering
from the Universita di Padova, Italy, in 1996, and
the Ph.D. degree in electrical engineering from the
University of California, Berkeley, in 2003.

He is an Associate Professor in the Electrical
Engineering and Computer Science Department of
the Massachusetts Institute of Technology (MIT),
Cambridge. His research interests include accel-
erated integral equation solvers and parameterized
stable compact dynamical modeling of linear and

nonlinear dynamical systems with applications in mixed-signal/RF/mm-wave
circuits, power electronics, MEMs, and the human cardiovascular system.

Dr. Daniel received the 1999 IEEE TRANSACTIONS ON POWER ELEC-
TRONICS best paper award, the 2003 ACM Outstanding Ph.D. Dissertation
Award in Electronic Design Automation, five best paper awards in interna-
tional conferences, the 2009 IBM Corporation Faculty Award, and 2010 Early
Career Award from the IEEE Council on Electronic Design Automation

