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Stochastic Theory of Continuous-Time
State-Space Identification

Rolf Johansson, Michel Verhaegen, and Chun Tung Chou

Abstract— This paper presents theory, algorithms, and vali-
dation results for system identification of continuous-time state-
space models from finite input–output sequences. The algorithms
developed are methods of subspace model identification and
stochastic realization adapted to the continuous-time context.
The resulting model can be decomposed into an input–output
model and a stochastic innovations model. Using the Riccati
equation, we have designed a procedure to provide a reduced-
order stochastic model that is minimal with respect to system
order as well as the number of stochastic inputs, thereby avoiding
several problems appearing in standard application of stochastic
realization to the model validation problem.

Index Terms— Continuous time, state-space system, system
identification.

I. INTRODUCTION

T
HE LAST FEW years have witnessed a strong interest in

system identification using realization-based algorithms.

The use of Markov parameters as suggested by Ho and

Kalman [13], Akaike [1], and Kung [20] of a system can be

effectively applied to the problem of state-space identification;

see Verhaegen et al. [30], [31], van Overschee and de Moor

[28], Juang and Pappa [19], Moonen et al. [26], and Bayard

[3], [4], [23], [24]. Suitable background for the discrete-time

theory supporting stochastic subspace model identification is

to be found in [1], [10], and [28]. As for model structures and

realization theory, see the important contributions in [8] and

[22]. As these subspace-mode identification algorithms deal

with the case of fitting a discrete-time model, it remains as an

open problem how to extend these methods for continuous-

time systems. A great deal of modeling in natural sciences and

technology is made by means of continuous-time models and

such models require suitable methods of system identification

[14]. To this end, a theoretical framework of continuous-time

identification and statistical model validation is needed. In
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particular, as experimental data are usually provided as time

series, it is relevant to provide continuous-time theory and

algorithms that permit application to discrete-time data.

This paper treats the problem of continuous-time system

identification based on discrete-time data and provides a

framework with algorithms presented in preliminary forms in

[11], [16], and [17]. The approach adopted is that of subspace-

model identification [18], [28], [30], and [31], although ele-

ments of continuous-time identification are similar to those

previously presented for the prediction-error identification

[15], [14].

A. The Continuous-Time System Identification Problem

Consider a continuous-time time-invariant system

with the state-space equations

(1)

with input , output , state vector , and

zero-mean disturbance stochastic processes

acting on the state dynamics and the output, respectively.

The continuous-time system identification problem is to find

estimates of system matrices from finite sequences

and of input-output data.

B. Discrete-Time Measurements

Assume periodic sampling to be made with period at a

time sequence , with and the correspond-

ing discrete-time input-output data and

sampled from the continuous-time dynamic system of (1).

Alternatively, data may be assumed generated by the time-

invariant discrete-time state-space system

(2)

(3)

with equivalent input–output behavior to that of (1) at the

sampling-time sequence. The underlying discretized state

sequence and discrete-time stochastic processes

correspond to disturbance processes

1053–587X/99$10.00  1999 IEEE
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Fig. 1. Autocorrelation functions (upper diagram) and autospectra (diagram below) of a continuous-time (solid line stochastic variable w(t) and a discrete-time
(‘o’) sample sequence fwkg. The continuous-time process is bandwidth-limited to the Nyquist frequency !N = �=2 rad/s of a sampling process with sampling
frequency 1 Hz. Properties of the sampled sequence fwkg confirm that the sampled sequence is an uncorrelated stochastic process with a uniform autospectrum.

and , which can be represented by the components

(4)

(5)

with the covariance

rank (6)

Consider a discrete-time time-invariant system

with the state-space equations with input ,

output , state vector , and noise sequences

acting on the state dynamics and the

output, respectively.

Remark: As computation and statistical tests deal with

discrete-time data, we assume the original sampled stochastic

disturbance sequences to be uncorrelated with a uniform spec-

trum up to the Nyquist frequency. The underlying continuous-

time stochastic processes will have an autocorrelation function

according to Fig. 1, thereby avoiding the mathematical prob-

lems associated with the stochastic processes of Brownian

motion.

C. Continuous-Time State-Space Linear System

From the set of first-order linear differential equations of

(1), we find the Laplace transform

(7)

(8)

Introduction of the complex variable transform

(9)

corresponding to a stable, causal operator permits an algebraic

transformation of the model

(10)

(11)

Reformulation while ignoring the initial conditions to linear

system equations gives

(12)

(13)

the mapping between and being bijective.

Provided that a standard positive semi-definiteness condition

of is fulfilled so that the Riccati equation has a solution,

it is possible to replace the linear model of (13) with the

innovations model

(14)
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By recursion, it is found that

(15)

(16)

...

(17)

As to the purpose of subspace model identification, it is

straightforward to formulate extended linear models for the

original models and its innovations form

(18)

(19)

with input–output and state variables

...
... (20)

and stochastic processes of disturbance

...
...

...

(21)

and parameter matrices of state variables and input–output

behavior

...
(22)

. . .
...

...
...

. . .
(23)

and for stochastic input–output behavior

. . .
...

...
...

...
. . .

(24)

and

. . .
...

...
...

. . .
...

. . .

(25)

It is clear that of (22) represents the extended observability

matrix, as known from linear system theory and subspace

model identification [28], [30], [31].

II. SYSTEM IDENTIFICATION ALGORITHMS

The theory provided permits formulation of a variety of

algorithms with the same algebraic properties as the original

discrete-time version though with application to continuous-

time modeling and identification. Below, we present one

realization-based algorithm (Alg. 1) and two subspace-based

algorithms (Algs. 2 and 3) with application to time-domain

data and frequency-domain data, respectively. Theoretical jus-

tification for each one of these algorithms follows separate

from the algorithms.

Algorithm 1—System Realization ad modum Ho–Kalman

[3], [13], [16], [19]:

1) Use least-squares identification to find a multivariable

transfer function

(26)

where are polynomial matrices obtained

by means of some identification method such as linear

regression with

(27)

(28)

(29)

(30)

2) Solving for the transformed Markov parameters gives

(31)

(32)

3) For suitable numbers such that , arrange

the Markov parameters in the Hankel matrix

...
...

. . .
...

(33)
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4) Determine rank and resultant system matrices

(singular value decomposition) (34)

(35)

(36)

(37)

matrix of first columns of (38)

matrix of first columns of (39)

(40)

(41)

(42)

(43)

which yields the th-order state-space realization

(44)

Algorithm 2—Subspace Model Identification (MOESP) [30],

[31]:

1) Arrange data matrices by using the following

notation for sampled filtered data:

etc. (45)

where

...
...

...

(46)

and a similar construction for .

2) Make a QR-factorization such that

(47)

3) Make a SVD of the matrix approximating

the column space of

(48)

4) Determine estimates of system matrices from

equations

rows through of (49)

rows through of (50)

(51)

rows through of (52)

5) Determine estimate of system matrices from

relationship

(53)

An algorithmic modification to accommodate frequency-

domain data can be made by replacing Step 1 of Algorithm

2 by the following.

1 ) Arrange data matrices using the filtered

fequency-domain data

(54)

evaluated for

(55)

and arrange a matrix equation of frequency-sampled

data as

...
...

...

(56)

with similar construction for , and proceed as from

Step 2 of Algorithm 2.

Algorithm 3 (Subspace Correlation Method): Along with

the data matrices of Algorithm 2, introduce the

correlation variable

...
...

...

(57)

for chosen sufficiently large. Proceed as from

Step 2 of Algorithm 2 with application of QR factorization

to the matrix

(58)

Theoretical Remarks on the Algorithms: In this section, we

provide some theoretical justification for the algorithms sug-

gested:

Algorithm 1—Continuous-Time State-Space Realization:

After operator reformulation and a least-squares transfer

function estimate, the algorithm follows the Ho–Kalman

algorithm step by step.

1) The first step aims toward system identification. The

(high-order) least-squares identification serves to find a

nonminimal input–output model with good prediction-

error accuracy as the first priority.

2) Step 2 serves to provide transformed Markov parameter

where the

(59)

The recursion to obtain may be replaced by a

linear equation.
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3) Organization of the Markov parameter in the Hankel

matrices of block row dimension and block

column dimension , respectively, permits

(60)

where

...

(61)

Thus, for , the rank of and

cannot exceed , which justifies the determination of

model order from a rank test of .

4) The last algorithmic step involves a singular value

decomposition that accomplishes the factorization into

the extended observability matrix and extended control-

lability matrix, which permits rank evaluation of

and, hence, estimation of system order . From the

full-rank matrix factors estimates of

and are found. The final transformation to

parameter matrices in the -domain provides the state-

space realization.

Algorithm 2—Continuous-Time Subspace Model Identifica-

tion: This algorithm is similar to the MOESP algorithm of

discrete-time subspace model identification.

1) The arrangement of input–output data matrices

of sampled data serves to express data the form of (19)

so that

(62)

where is the disturbance sample matrix (not avail-

able to measurement), and

(63)

2) The QR-factorization serves to retrieve the matrix prod-

uct , which is found as the column space of

in the case of disturbance-free data.

3) The singular value factorization of the matrix serves

to find the left factor of rank corresponding to

(up to a similarity transformation). The rank condition

is evaluated by means of the nonzero singular values of

.

4) As the estimate contains products of the -

matrix and powers of , it is straightforward to find an

estimate of from the first rows. Next, an estimate

is found. Subsequent transformation of to the

-domain is required.

5) Given , then can be found to fit the in-

put–output relationship provided by .

Algorithm 2 and its frequency-domain modification are

very closely related as their data matrices with different

interpretation obey the relationship

(64)

By definition, the discrete-time Fourier transform is formulated

as the linear transformation

...
...

...
...

...
(65)

For the standard FFT set of frequency points

, we have

so that of Algorithm 2 and its frequency-domain

version only differ by a right invertible factor as found

from

...
...

...
... (66)

The right factor does not affect the observability subspace,

which is always extracted from a left matrix factor and is the

quantity of primary interest in subspace model identification.

Algorithm 3—Subspace Correlation Method: The subspace

correlation method is similar to Algorithm 2 but differs in the

linear dependences

(67)

The left matrix factor extracted in estimation of observability

subspace is not affected by the right multiplication of .

However, the algorithm output is not identical to that of

Algorithm 2 due to the change of relative magnitude of the

disturbance term as a result of the right multiplication. Another

property is the reduction of the matrix column dimension of

the data matrix applied QR-factorization.

When input and disturbance are uncorrelated, this algo-

rithm serves to reduce disturbance-related bias in parameter

estimates. Statistical properties are analyzed in greater detail

below.

Example: The algorithms were applied to

samples of input–output data generated by simulation of the

linear system

(68)

(69)
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Fig. 2. Input–output data (upper two graphs) and filter data used for identification with sampling period h = 0:01, filter order i = 5, and operator
time constant � = 0:05.

with input of variance and a zero-mean stochastic

disturbance of variance ; see input–output data (Fig. 2).

A third-order model was identified with very good accuracy

for purely deterministic data and with good accuracy

for ; see transfer-function properties (Fig. 3) and

prediction performance (Fig. 4). The influence of the choices

of algorithmic parameters (number of block rows or

and operator time constant ) on relative prediction error

and parameter error as measured by gap metric

are found in Fig. 5. The identification was considered to be

failing for a relative prediction error norm of value larger than

one. Fig. 5 has been drawn accordingly without representing

relative error larger than one, thus showing the effective

range of the choice of and . This figure also serves to

illustrate sensitivity to stochastic disturbance and sensitivity

to the choice of the free algorithm parameters (operator time

constant and number of block rows or ). The level surfaces

indicate that may be chosen in a suitable range over, perhaps,

two orders of magnitude for Algs. 2 and 3 and one order of

magnitude for Alg. 1; see Fig. 5, which includes contours of

level surfaces, the central part corresponding to 1% error with

degradation for inappropriate values of and .

Another application of the realization algorithm (Alg. 1)

to experimental impulse-response data obtained as ultrasonic

echo data for object identification detection in robotic envi-

ronments has proved successful; see [16].

III. STATISTICAL MODEL VALIDATION

Statistical model validation accompanies parameter estima-

tion to provide confidence in a model obtained. An important

aspect of statistical model validation is evaluation of the

mismatch between input–output properties of a model and

data. Statistical hypothesis tests applied to the autocorrelation

of residuals as well as cross correlation between residuals

and input are instrumental in such model validation, partially

relying on the algorithmic property of that

(70)

(71)

where by construction, i.e., by the projection

property of the QR-factorization of (47), whereas statistical

properties of are more difficult to evaluate also

under assumptions of uncorrelated disturbances and control

inputs. In the case of uncorrelated disturbance and input, mul-

tiplication of the right factor before the QR-factorization

in Algorithm 3 serves to reduce the disturbance-related bias

of parameter estimates as

(72)
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Fig. 3. Transfer function (solid) and estimate (dashed) using a third-order model with sampling period h = 0:01, filter order i = 5, and operator time
constant � = 0:05 for N = 1000 samples of data with �

2

v
= 0:01.

Fig. 4. Output data (solid) and estimate (dashed) using Alg. 2 and a third-order model with sampling period h = 0:01, filter order i = 5, and operator time
constant � = 0:05 for N = 1000 samples of data with �

2

v
= 0:01.
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Fig. 5. Relative prediction error norm k"k2=kyk2 and parameter error norm as measured versus choices of the number of block columns block and
operator time constant for Algorithm 1 (left), Algorithm 2 (middle), and Algorithm 3 (right). Level surfaces (diagram below) and magnitude plot (upper
diagram) using a third-order model with sampling period h = 0:01 for N = 1000 samples of data with �2

v
= 0:01 illustrate algorithm robustness

and degradation properties for inappropriate � and i.

By the correlation properties of input and disturbance, the

last term tends to be small similar to the spectrum analysis

and the instrumental-variable method of identification.

Consistency properties of this algorithm will be analyzed

in detail in future work.

Model Misfit Evaluation: Identification according to Algo-

rithms 1–3 gives the model

(73)
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A reconstruction of the state for some matrix such

that is stable, i.e., , can be done as

(74)

Model-error dynamics of and

(75)

The stochastic realization problem can be approached by

Kalman filter theory and covariance-matrix factorization

(“spectral factorization”) [2], [6], and provided that a

continuous-time Riccati equation can be solved to find an

optimal , we find that the model mismatch can be expressed

by either of the spectral factors

(76)

(77)

where and are the Laplace trans-

forms of the residuals, disturbance, and innovations processes,

respectively. The discrete-time counterpart is

(78)

(79)

To solve for identification residuals, it is suitable to use the

transfer operator inverses

(80)

(81)

(82)

For nominal system parameter matrices and a

solution and from the Riccati equation of

the Kalman filter, we would have

(83)

so that the output reproduce of , except for a transient

arising from the initial condition of . However, as no

covariance data are a priori known and as the system identifi-

cation including its validation procedure is assumed to utilize

discrete-time data, it is generally necessary to resort to the

residual realization algorithm

(84)

Reformulation of the Riccati equation (see [9]) is

(85)

where the full-rank matrices arise from the factorization

(86)

and where (85) represents factorization of the covariance

matrix of the variables

(87)

(88)

Then, use of the full-rank matrices of (85) suggests that

the stochastic state-space model be provided as

(89)

with a matrix chosen as the pseudo-inverse of and with

(90)

An innovations-like model pseudoinverse is provided as

(91)

where are discrete-time versions of and , respec-

tively, and with for rank-deficient covariance matrices

replacing the of the standard Kalman filter. Then,

the output reproduces the rank-deficient innovations

sequence.

IV. DISCUSSION

This paper has treated the problem of continuous-time

system identification based on discrete-time data and provides

a framework with algorithms presented in preliminary forms

in [11] and [16], thereby extending subspace model identi-

fication to continuous-time models. We have provided both

subspace-based algorithms and realization-based algorithms

with application both in the time domain and in the frequency

domain. To our knowledge, the time-domain algorithms are

the first algorithms of its kind whereas frequency-domain

algorithms have previously been presented [23], [25]. Several

issues remain open issues, and we cannot claim to have any

complete treatment. The accuracy of estimates, effects of sto-

chastic disturbance, performance comparison and robustness

of algorithms, i.e., algorithmic effects and behavior when data

cannot be generated by a model in the model class, need

further attention; see [28] for discussion on these issues for

the discrete-time case.

A relevant question is, of course, how general is the choice

and if it can, for instance, be replaced by some other bijective

mapping

(92)
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with the Laplace-transformed linear model

(93)

and by the operator transformation shown at the top of the

page. Obviously, such an operator transformation entails a

nonlinear parameter transformation with an inverse

(94)

which, of course, may be error prone or otherwise sensitive

due to singularities or poor numerical properties of the matrix

inverse. By comparison, a model transformation using is

linear, simple, and does not exhibit such parameter-matrix sin-

gularities: a circumstance that motivates the attention given the

favorable properties of this transformation. Actually, further

studies to cover other linear fractional transformations are in

progress [11], including advice on the choice of the additional

parameters involved.

We have considered the problem of finding appropriate

stochastic realization to accompany estimated input–output

models in the case of multi-input multioutput subspace model

identification. The case considered includes the problem of

rank-deficient residual covariance matrices: a case that is en-

countered in applications with mixed stochastic-deterministic

input–output properties as well as for cases where outputs are

linearly dependent [28]. The inverse of output covariance ma-

trix is generally needed both for formulation of an innovations

model and for a Kalman filter [18], [27], [29]. Our approach

has been the formulation of an innovations model for the

rank-deficient model output that generalizes previously used

methods of stochastic realization [5], [7], [21], [22].

The modified pseudoinverse of (91) provides the means

to evaluate a residual sequence from the mismatch between

an identified continuous-time model and discrete-time data

in such a way that standard statistical validation test can be

applied [14]. Such statistical tests include the following:

• autocorrelation test of residual sequence ;

• cross correlation test of input and residual sequence

;

• test of normal distribution (zero crossings, distribution,

skewness, kurtosis, etc.).

V. CONCLUSION

This paper has treated the problem of continuous-time

system identification based on discrete-time data and provides

a framework with algorithms presented in preliminary forms

in [11] and [16]. The methodology involves a continuous-

time operator translation [14], [15], permitting an algebraic

reformulation and the use of subspace and realization algo-

rithms. We have provided subspace-based algorithms as well

as realization-based algorithms with application both to time

domain and to frequency-domain data. Thus, the algorithms

and the theory presented here provide extensions both of

the continuous-time identification and of subspace model

identification.

A favorable property is the following. Whereas the model

obtained is a continuous-time model, statistical tests can

proceed in a manner that is standard for discrete-time models

[14]. Conversely, as validation data are generally available

as discrete-time data, it is desirable to provide means for

validation of continuous-time models to available data.
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