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Abstract. A probabilistic method for tracking 3D articulated human
figures in monocular image sequences is presented. Within a Bayesian
framework, we define a generative model of image appearance, a robust
likelihood function based on image graylevel differences, and a prior pro-
bability distribution over pose and joint angles that models how humans
move. The posterior probability distribution over model parameters is
represented using a discrete set of samples and is propagated over time
using particle filtering. The approach extends previous work on para-
meterized optical flow estimation to exploit a complex 3D articulated
motion model. It also extends previous work on human motion tracking
by including a perspective camera model, by modeling limb self occlusion,
and by recovering 3D motion from a monocular sequence. The explicit
posterior probability distribution represents ambiguities due to image
matching, model singularities, and perspective projection. The method
relies only on a frame-to-frame assumption of brightness constancy and
hence is able to track people under changing viewpoints, in grayscale
image sequences, and with complex unknown backgrounds.

1 Introduction

We present a Bayesian approach to tracking 3D articulated human figures in mo-
nocular video sequences. The human body is represented by articulated cylinders
viewed under perspective projection. A generative model is defined in terms of
the shape, appearance, and motion of the body, and a model of noise in the pixel
intensities. This leads to a likelihood function that specifies the probability of
observing an image given the model parameters. A prior probability distribution
over model parameters depends on the temporal dynamics of the body and the
history of body shapes and motions. With this likelihood function and temporal
prior, we formulate the posterior distribution over model parameters at each
time instant, given the observation history.

The estimation of 3D human motion from a monocular sequence of 2D ima-
ges is challenging for a variety of reasons. These include the non-linear dynamics
of the limbs, ambiguities in the mapping from the 2D image to the 3D model, the
similarity of the appearance of different limbs, self occlusions, kinematic singula-
rities, and image noise. One consequence of these difficulties is that, in general,
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we expect the posterior probability distribution over model parameters to be
multi-modal. Also, we cannot expect to find an analytic, closed-form, expression
for the likelihood function over model parameters. For these two reasons, we
represent the posterior distribution non-parametrically using a discrete set of
samples (i.e., states), where each sample corresponds to some hypothesized set
of model parameters. Figure 1(a) illustrates this by showing a few samples from
such a distribution over 3D model parameters projected into an image. This
distribution is propagated in time using a particle filter [11,13].

The detection and tracking of human motion in video has wide potential for
application in domains as diverse as animation and human-computer interaction.
For this reason there has been a remarkable growth in research on this problem.
The majority of proposed methods rely on sources of information such as skin
color or known backgrounds which may not always be available. Such cues,
while useful, are not intrinsic to 3D human motion. We focus, instead, on the
3D motion of the figure and its projection into the image plane of the camera.
This formulation, in terms of image motion, gives the tracker some measure of
independence with respect to clothing, background clutter, and ambient lighting.
Additionally, the approach does not require color images, nor does it require
multiple cameras with different viewpoints. As a consequence, it may be used
with archival movie footage and inexpensive video surveillance equipment. The
use of perspective projection allows the model to handle significant changes in
depth. Finally, unlike template tracking methods [6], the use of image motion
allows tracking under changing viewpoint. These properties are illustrated with
examples that include tracking people walking in cluttered images while their
depth and orientation with respect to the camera changes significantly.

2 Related Work

Estimation of human motion is an active and growing research area [8]. We briefly
review previous work on image cues, body representations, temporal models, and
estimation techniques.

Image Cues. Methods for full body tracking typically use simple cues such as
background difference images [4], color [22] or edges [7,9,10,15]. However robust,
these cues provide sparse information about the features in the image. Image
motion (optical flow) [5,14,24] provides a dense cue but, since it only exploits
relative motion between frames, it is sensitive to the accumulation of errors over
multiple frames. The result is that these techniques are prone to “drift” from
the correct solution over time. The use of image templates [6] can avoid this
problem, but such approaches are sensitive to changes in view and illumination.
Some of the most interesting work to date has combined multiple cues such as
edges and optical flow [21]. The Bayesian approach we describe may provide a
framework for the principled combination of such cues.

The approach here focuses on the estimation of 3D articulated motion from
2D image changes. In so doing we exploit recent work on the probabilistic esti-
mation of optical flow using particle filtering [1,2]. The method has been applied
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to non-linear spatial and temporal models of optical flow, and is extended here
to model the motion of articulated 3D objects.

Body and Camera Models. Models of the human body vary widely in their
level of detail. At one extreme are methods that crudely model the body as
a collection of articulated planar patches [14,24]. At the other extreme are 3D
models in which the limb shapes are deformable [9,15]. Additionally, assumptions
about the viewing conditions vary from scaled orthographic projection [5] to full
perspective [21,25]. To account for large variations in depth, we model the body
in terms of articulated 3D cylinders [12] viewed under perspective projection.

Temporal Models. Temporal models of body limb or joint motion also vary in
complexity; they include smooth motion [7], linear dynamical models [18], non-
linear models learned from training data using dimensionality reduction [3,16,23],
and probabilistic Hidden Markov Models (HMM’s) (e.g., [4]). In many of these
methods, image measurements are first computed and then the temporal models
are applied to either smooth or interpret the results. For example, Leventon and
Freeman [16] proposed a Bayesian framework for recovering 3D human motion
from the motion of a 2D stick figure. They learned a prior distribution over
human motions using vector quantization. Given the 2D motion of a set of joints,
the most plausible 3D motion could be found. They required a pre-processing
step to determine the 2D stick figure motion and did not tie the 3D motion
directly to the image. Their Bayesian framework did not represent multi-modal
distributions and therefore did not maintain multiple interpretations.

Brand [4] learned a more sophisticated HMM from the same 3D training
data used in [16]. Brand’s method used binary silhouette images to compute a
feature vector of image moments. The hidden states of the HMM represented 3D
body configurations and the method could recover 3D models from a sequence
of feature vectors. These weak image cues meant that the tracking results were
heavily dependent on the prior temporal model.

Unlike the above methods, we explore the use of complex non-linear tempo-
ral models early in the process to constrain the estimation of low-level image
measurements. In related work Yacoob and Davis [24] used a learned “eigen-
curve” model of image motion [23] to constrain estimation of a 2D articulated
model. Black [1] used similar non-linear temporal models within a probabilistic
framework to constrain the estimation of optical flow.

Estimation. Problems with articulated 3D tracking arise due to kinematic sin-
gularities [17], depth ambiguities, and occlusion. Multiple camera views, special
clothing, and simplified backgrounds have been used to ameliorate some of these
problems [5,9,15]. In the case of monocular tracking, body parts with low visi-
bility (e.g. one arm and one leg) are often excluded from the tracking to avoid
occlusion effects and also to lower the dimensionality of the model [5]. Cham
and Rehg [6] avoid kinematic singularities and depth ambiguities by using a 2D
model with limb foreshortening [17]. They also employ a multi-modal tracking
approach related to particle filtering.
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Bregler and Malik [5] assumed scaled orthographic projection and posed the
articulated motion problem as a linear estimation problem. Yamamoto et al. [25]
also formulated a linear estimation problem and relied on multiple camera views.
These approaches elegantly modeled the image motion but did not account for
imaging ambiguities and multiple matches.

Recently, Deutscher et al. [7] showed promising results in 3D tracking of
body parts using a particle filtering method (the Condensation [13] algorithm).
They successfully tracked an arm through kinematic singularities. We address
the singularity problems in the same way but focus on image motion rather
than edge tracking. We also employ learned temporal models to compensate for
depth ambiguities and occlusion effects, and we show tracking results with more
complex full-body motions.

3 Generative Model

A Bayesian approach to human motion estimation requires that we formulate a
generative model of image appearance and motion. This model defines the state
space representation for humans and their motion and specifies the probabilistic
relationship between these states and observations. The generative model of
human appearance described below has three main components, namely, shape,
appearance, and motion. The human body is modeled as an articulated object,
parameterized by a set of joint angles and an appearance function for each of
the rigid parts. Given the camera parameters and the position and orientation
of the body in the scene, we can render images of how the body is likely to
appear. The probabilistic formulation of the generative model provides the basis
for evaluating the likelihood of observing image measurements, It at time t, given
the model parameters.

3.1 Shape: Human Body Model

As shown in Figure 1, the body is modeled as a configuration of 9 cylinders and
3 spheres, numbered for ease of identification. All cylinders are right-circular,
except for the torso which has an elliptical cross-section. More sophisticated
tapered cylinders [7,21] or superquadrics [8] could be employed. Each part is
defined in a part-centric coordinate frame with the origin at the base of the
cylinder (or sphere). Each part is connected to others at joints, the angles of
which are represented as Euler angles. The origin in each part’s coordinate frame
corresponds to the center of rotation (the joint position).

Rigid transformations, T, are used to specify relative positions and orientati-
ons of parts and to change coordinate frames. We express them as a homogeneous
transformation matrices:

T =
[
RzRyRx t

0 1

]
(1)

where Rx, Ry and Rz denote 3×3 rotation matrices about the coordinate axes,
with angles θx, θy and θz, and t = [τx, τy, τz]T denotes the translation.
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Fig. 1. (a) A few samples from a probability distribution over 3D model parameters
projected into the image coordinate system. (b) Human body model. Each limb, i, has
a local coordinate system with the Zi axis directed along the limb. Joints have up to
3 angular DOF, expressed as rotations (θx, θy, θz).

A kinematic tree, with the torso at its root, is used to order the transforma-
tions between the coordinate frames of different limbs. For example, in Figure
1b, the point P1 in the local coordinate system of limb 1 (the right thigh) can
be transformed to the corresponding point Pg in the global coordinate system
as Pg = T0,gT1,0P1. The global translation and rotation of the torso are repre-
sented by T0,g, while the translation and rotation of the right thigh with respect
to the torso are represented by T1,0.

With these definitions, as shown in Figure 1b, the entire pose and shape of
the body is given by 25 parameters, that is, angles at the shoulders, elbows, hips
and knees, and the position and orientation of the torso in the scene. Let φ be
the vector containing these 25 parameters.
Camera Model. The geometrical optics are modeled as a pinhole camera,
with a transformation matrix Tc defining the 3D orientation and position of
a 3D camera-centered coordinate system with a focal length f and an image
center c = [xc, yc]T . The matrix maps points in scene coordinates to points in
camera coordinates. Finally, points in 3D camera coordinates are projected onto
the image at locations, x = [x, y]T , given by x = c − f [ Zc

Xc
, Yc

Xc
]T .

3.2 Appearance Model

For generality, we assume that each limb is textured mapped with an appea-
rance model, R. There are many ways in which one might specify such a model,
including the use of low-dimensional linear subspaces [20]. Moreover, it is desi-
rable, in general, to estimate the appearance parameters through time to reflect
the changing appearance of the object in the image. Here we use a particularly
simple approach in which the appearance function at time t is taken to be the
mapping, M(·), of the image at time t− 1 onto the 3D shape given by the shape
parameters at time t− 1:

Rt =M(It−1,φt−1) .
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In probabilistic terms, this means that the probability distribution over ap-
pearance functions at time t, conditioned on past shapes φ̄t−1 = [φt−1, . . . ,φ0],
past image observations, Īt−1 = [It−1, . . . , I0], and past appearance functions
R̄t−1 = [Rt−1, . . . ,R0], is given by

p(Rt | Īt−1, φ̄t−1, R̄t−1) = p(Rt | It−1,φt−1) = δ(Rt −M(It−1,φt−1)) , (2)

where δ(·) is a Dirac delta function.
Our generative model of the image, It, at time t is then the projection of the

human model (shape and appearance) corrupted by noise:

It(xj) =M−1(Rt,φt,xj) + η (3)

where M−1(Rt,φt,xj) maps the 3D model of limb j to image location xj and
It(xj) is the image brightness at pixel location xj . To account for “outliers”, the
noise, η, is taken to be a mixture of a Gaussian and a uniform distribution

pη(η;xj ,φt) = (1− ε)G(σ(α(xj ,φt))) + ε c,

where 0 ≤ ε ≤ 1 and c = 1/256. The uniform noise is bounded over a finite inter-
val of intensity values while G(·) is zero-mean normal distribution the variance
of which may change with spatial position. In general, the variance is sufficiently
small that the area of the Gaussian outside the bounded interval may be ignored.

The prediction of image structure, It, given an appearance model, Rt, esti-
mated from the image at time t − 1 will be less reliable in limbs, or regions
of limbs, that are viewed obliquely compared with those that are nearly fronto-
parallel. In these regions, the image structure can change greatly from one frame
to the next due to perspective distortions and self occlusion. This is captured
by allowing the variance to depend on the orientation of the model surface.

Let α(xj ,φt) be a function that takes an image location, xj , and projects
it onto a 3D limb position P and returns the angle between the surface normal
at the point P and the vector from P to the focal point of the camera. The
variance of the Gaussian component of the noise is then defined with respect to
the expected image noise, σI , which is assumed constant, and α(xj ,φt):

σ2(α(xj ,φt)) = (σI/ cos(α(xj ,φt)))
2 . (4)

3.3 Temporal Dynamics

Finally we must specify the temporal dynamics as part the generative model.
Towards this end we parameterize the motion of the shape in terms of a vector
of velocities, Vt, whose elements correspond to temporal derivatives of the shape
and pose parameters in φ. Furthermore, we assume a first-order Markov model
on shape and velocity. Let the entire history of the shape and motion parameters
up to time t be denoted by φ̄t = [φt, . . . ,φ0] and V̄t = [Vt, . . . ,V0]. Then, the
temporal dynamics of the model are given by

p(φt | φ̄t−1, V̄t−1) = p(φt |φt−1,Vt−1) , (5)
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p(Vt | φ̄t−1, V̄t−1) = p(Vt |Vt−1) . (6)

Humans move is a variety of complex ways, depending on the activity or ge-
stures being made. Despite this complexity, the movements are often predictable.
In Section 6, we explore two specific models of human motion. The first is a sim-
ple, general model of constant angular velocity. The second is an activity-specific
model of walking.

4 Bayesian Formulation

The goal of tracking a human figure can now be formulated as the computation
of the posterior probability distribution over the parameters of the generative
model at time t, given a sequence of images, Īt; i.e., p(φt,Vt,Rt | Īt). This can
be expressed as a marginalization of the joint posterior over all states up to time
t given all images up to time t:

p(φt,Vt,Rt | Īt) =
∫
p(φ̄t, V̄t, R̄t | Īt)dφ̄t−1dV̄t−1dR̄t−1 . (7)

Using Bayes’ rule and the Markov assumptions above, it can be shown that
the dependence on states at times before time t− 1 can be removed, to give

p(φt,Vt,Rt | Īt) =

κ p(It |φt,Vt,Rt)
∫ [
p(φt,Vt,Rt |φt−1,Vt−1,Rt−1, It−1)

p(φt−1,Vt−1,Rt−1 | Īt−1)
]
dφt−1dVt−1dRt−1 (8)

where κ is a normalizing constant that does not depend on the state variables.
Here, p(It |φt,Vt,Rt), which we refer to as the “likelihood,” is the probability of
observing the image at time t, given the shape, motion and appearance states at
time t. The integral in (8) is referred to as a temporal prior, or a prediction, as it
is equivalent to the probability over states at time t given the image measurement
history; i.e., p(φt,Vt,Rt | Īt−1). It is useful to understand the integrand as the
product of two terms; these are the posterior probability distribution over states
at the previous time, p(φt−1,Vt−1,Rt−1 | Īt−1), and the dynamical process that
propagates this distribution over states from time t− 1 to time t.

Before turning to the computation of the posterior in (8), it is useful to sim-
plify it using the generative model described above. For example, the likelihood
of observing the image at time t does not depend on the velocity Vt, and the-
refore p(It |φt,Vt,Rt) = p(It |φt,Rt). Also, the probability distribution over
the state variables at time t, conditioned on those at time t− 1, can be factored
further. This is based on the generative model, and the assumption that the evo-
lution of velocity and shape from time t− 1 to t is independent of the evolution
of appearance. This produces the following factorization

p(φt,Vt,Rt |φt−1,Vt−1,Rt−1, It−1) =
p(φt |φt−1,Vt−1)p(Vt |Vt−1)p(Rt | It−1,φt−1) .
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Finally, these simplifications, taken together, produce the posterior distribu-
tion

p(φt,Vt,Rt | Īt) =

κ p(It |φt,Rt)
∫ [
p(φt |φt−1,Vt−1)p(Vt |Vt−1)p(Rt | It−1,φt−1)

p(φt−1,Vt−1,Rt−1 | Īt−1)
]
dφt−1dVt−1dRt−1 . (9)

4.1 Stochastic Optimization

Computation of the posterior distribution is difficult due to the nonlinearity of
the likelihood function over model parameters. This is a consequence of self-
occlusions, viewpoint singularities, and matching ambiguities. While we cannot
derive an analytic expression for the likelihood function over the parameters of
the entire state space, we can evaluate the likelihood of observing the image given
a particular state (φs

t ,V
s
t ,R

s
t ); the computation of this likelihood is described

in Section 5.
Representation of the posterior is further complicated by the use of a non-

linear dynamical model of the state evolution as embodied by the temporal prior.
While we cannot assume that the posterior distribution will be Gaussian, or
even unimodal, robust tracking requires that we maintain a representation of the
entire distribution and propagate it through time. For these reasons we represent
the posterior as a weighted set of state samples, which are propagated using a
particle filter with sequential importance sampling. Here we briefly describe the
method (for foundations see [11,13], and for applications to 2D image tracking
with non-linear temporal models see [1,2]).

Each state, st, is represented by a vector of parameter assignments, st =
[φs

t ,V
s
t ]. Note that in the current formulation we can drop the appearance mo-

del Rs
t from the state as it is completely determined by the shape parameters

and the images. The posterior at time t − 1 is represented by N state samples
(N ≈ 104 in our experiments). To compute the posterior (9) at time t we first
draw N samples according to the posterior probability distribution at time t−1.
For each state sample from time t − 1, we compute Rt given the generative
model. We propagate the angular velocities forward in time by sampling from
the prior p(Vt |Vt−1). Similarly, the shape parameters are propagated by sam-
pling from p(φt |φt−1,Vt−1). At this point we have new values of φt and Rt

which can be used to compute the likelihood p(It |φt,Rt). The N likelihoods
are normalized to sum to one and the resulting set of samples approximates the
posterior distribution p(φt,Vt,Rt | Īt) at time t.

5 Likelihood Computation

The likelihood p(It |φt,Rt) is the probability of observing image It given that
the human model has configuration φt and appearance Rt at time t. To compare
the image, It, with the generative model, the model must be projected into the
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ApproximationExact

Fig. 2. Planar approximation of limbs improves efficiency.

image plane of the camera as described in Section 3. To reduce the influence of
camera noise on the matching, the images, It, are smoothed by a Gaussian filter
with a standard deviation of

√
2. This has the effect of smoothing the likelihood

function over model parameters and hence the posterior distribution.

Projection. The projection of limb surface points into the image plane and vice
versa is computationally expensive. Given the stochastic sampling framework,
this operation is performed many times and hence we seek a efficient approxima-
tion. To simplify the projection onto the image, we first project the the visible
portion of the cylindrical surface onto a planar patch that bisects the cylinder,
as shown in Figure 2. The projection of the appearance of a planar patch into
the image can be performed by first projecting the corners of the patch via per-
spective projection. The projection of other limb points is given by interpolation.
This approximation speeds up the likelihood computation significantly.

Recall that the variance in the generative model (3) depends on the angle,
α(xj ,φt), between of the surface normal and the optical axis of the camera.
With the planar approximation, αj becomes the angle between the image plane
and the Z axis of limb j.

Likelihood Model. Given the generative model we define the likelihood of each
limb j independently. We sample, with replacement, i = 1 . . . n pixel locations,
xj,i, uniformly from the projected region of limb j. According to (3), the grayva-
lue differences between points on the appearance model and the corresponding
image values are independent and are modeled as a mixture of a zero-mean
normal distribution and a uniform outlier distribution. We expect outliers, or
unmatched pixels, to result from occlusion, shadowing, and wrinkled clothing.

The image likelihood of limb j is then expressed as:

pimage =
ε

256
+

1− ε√
2πσ(αj)

exp(−
n∑

i=1

(It(xj,i)− Ît(xj,i))2

2σ2(αj)
) (10)

where Ît(xj,i) =M−1(M(It−1,φt−1),φt,xj,i).
The likelihood must also account for occlusion which results from the depth

ordering of the limbs or from the surface orientation. To model occluded regions
we introduce the constant probability, poccluded , that a limb is occluded. poccluded
is currently determined empirically.

To determine self occlusion in the model configuration φt, the limbs are
ordered according to the shortest distance from the limb surface to the image
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plane, using the camera parameters and φt. Limbs that are totally or partly
covered by other limbs with lower depth are defined as occluded. This occlusion
detection is sub-optimal and could be refined so that portions of limbs can be
defined as occluded (cf. [21]).

Similarly as the limb is viewed at narrow angles (all visible surface normals
are roughly perpendicular to the viewing direction) the linearized limb shape
formulation makes the appearance pattern highly distorted. In this case, the
limb can be thought of as occluding itself.

We then express the likelihood as a mixture between pimage and the constant
probability of occlusion, poccluded . The visibility q, (i.e. the influence of the actual
image measurement), decreases with the increase of the angle αj between the
limb j principal axis and the image plane. When the limb is exactly perpendicular
to the image plane, it is by this definition considered occluded. The expression
for the image likelihood of limb j is defined as:

pj = q(αj)pimage + (1− q(αj))poccluded (11)

where q(αj) = cos(αj) if limb j is non-occluded, or 0 if limb j is occluded.
According to the generative model, the appearance of the limbs are indepen-

dent and the likelihood of observing the image given a particular body pose is
given by the product of the limb likelihoods:

p(It |φt,Rt) =
∏
j

pj . (12)

6 Temporal Model

The temporal model encodes information about the dynamics of the human
body. Here it is formulated as a prior probability distribution and is used to
constrain the sampling to portions of the parameter space that are likely to cor-
respond to human motions. General models such as constant acceleration can
account for arbitrary motions but do not constrain the parameter space greatly.
For a constrained activity such as walking or running we can construct a tempo-
ral model with many fewer degrees of freedom which makes the computational
problem more tractable. Both types of models are explored below.

6.1 Generic Model: Smooth Motion

The smooth motion model assumes that the angular velocity of the joints and the
velocity of the body are constant over time. Recall that the shape parameters
are given by φt = [τ g

t ,θ
g
t ,θ

l
t] where τ g

t and θg
t represent the translation and

rotation that map the body into the world coordinate system and θl
t represents

the relative angles between all pairs of connected limbs. Let Vt = [τ̇ g
t , θ̇

g

t , θ̇
l

t]
represent the corresponding velocities. The physical limits of human movement
are modeled as hard constraints on the individual quantities such that φt ∈
[φmin,φmax].
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Fig. 3. Learning a walking model. (a) Joint angles of different people walking were
acquired with a motion capture system. Curves are segmented into walking cycles
manually and an eigenmodel of the cycle is constructed. (b) Mean angle of left knee as
a function of time. (c) First three eigenmodes of the left knee Bj , j ∈ [1, 3], scaled by
their respective variance λj . (1 = solid , 2 = −−, 3 = · · ·.)

Our smooth motion model assumes that all elements φk,t ∈ φt and Vq,t ∈ Vt

are independent. The dynamics are represented by

p(φi,t |φi,t−1, Vi,t−1) =
{
G(φi,t − (φi,t−1 + Vi,t−1), σ

φ
i ) if φi,t ∈ [φi,min, φi,max]

0 otherwise

p(Vi,t |Vi,t−1) = G(Vi,t − Vi,t−1, σ
V
i ),

where G(x, σ) denotes a Gaussian distribution with zero mean and standard
deviation σ, evaluated at x. The standard deviations σφ

i and σV
i are empiri-

cally determined. The joint angles of heavy limbs typically have lower standard
deviations than those in lighter limbs.

This model works well for tracking individual body parts that are relatively
low dimensional. This is demonstrated in Section 7 for tracking arm motion
(cf. [7]). This is a relatively weak model for constraining the motion of the
entire body given the current sampling framework and limited computational
resources. In general, one needs a variety of models of human motion and a
principled mechanism for choosing among them.

6.2 Action Specific Model: Walking

In order to build stronger models, we can take advantage of the fact that many
human activities are highly constrained and the body is often moved in symme-
tric and repetitive patterns. In what follows we consider the example of walking
motion.

Training data corresponding to the 3D model parameters was acquired with
a commercial motion capture system. Some of the data are illustrated in Figure
3. From the data, m = 13 example walking cycles from 4 different subjects
(professional dancers) were segmented manually and scaled to the same length.
These cycles are then used to train a walking model using Multivariate Principal
Component Analysis (MPCA) [3,19,23]. In addition to the joint angles, we model
the speed, vi of the torso in the direction of the walking motion i. This speed, vi,µ,
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at time step µ in the cycle is vi,µ = ‖τ g
i,µ+1−τ g

i,µ‖. The curves corresponding to
the speed of the torso and the relative angles of the limbs, φl

i, are concatenated
forming column vectors Ai for each training example i = 1 . . .m. The mean
vector Â is subtracted from all examples: Ai = Ai − Â. Since the walking speed
[m/frame] and the joint angles [radians] have approximately the same scales they
need not be rescaled before applying MPCA.

The eigenvalues λj and eigenvectors Bj , j ∈ [1,m] of the matrix A =
[A1, · · · ,Am] are now computed from A = BΣDT using Singular Value De-
composition (SVD) where B = [B1, · · · ,Bm] and Σ is a diagonal matrix with
λj along the diagonal. The eigenvectors represent the principal modes of varia-
tion in the training set, while the eigenvalues reflect the variance of the training
set in the direction of the corresponding eigenvector. The eigenvectors Bj can be
viewed as a number of eigencurves, one for each joint, stacked together. Figure
3c shows three eigencurves corresponding to the left knee walking cycle.

The smallest number d of eigenvectors Bj such that
∑d

j=1 λ
2
j > 0.95 is sel-

ected; in our case d = 5. With B̃ = [B1, · · · ,Bd] we can, with d parameters
c = [c1, · · · , cd]T , approximate a synthetic walking cycle A∗ as:

A∗ = Â+ B̃c. (13)

The set of independent parameters is now {ct, µt, τ
g
t ,θ

g
t } where µt denotes

the current position (or phase) in the walking cycle. Thus, this model reduces
the original 25-dimensional parameter space, φ, to a 12-dimensional space.

Recall that the global translation and rotation, τ g
t , θg

t , can be expressed as
a homogeneous transformation matrix T. We also define vt−1 to be the learned
walking speed at time t− 1. The parameters are propagated in time as:

p(ct | ct−1) = G(ct − ct−1,σ
cId) (14)

p(µt |µt−1) = G(µt − µt−1, σ
µ) (15)

p(τ g
t |Tt−1, ct−1) = G([τ

g
t , 1]

T − T−1
t−1[vt−1 0 0 1]T ,στ I3) (16)

p(θg
t |θt−1) = G(θt − θt−1,σ

θI3) (17)

where σµ, στ and σθ represent the empirically determined standard deviations,
In is an n × n identity matrix, and σc = ελ where ε is a small scalar with
λ = [λ1, · · · , λd]T . ε is expected to be small since we expect the c parameters to
vary little throughout the walking cycle for each individual

From a particular choice of {µt, ct}, the relative joint angles are θl
t = A∗(µt) =

Â(µt)+(B̃c)(µt), where A∗(µt) indicates the interpolated value of each joint cy-
cle,A∗

i , at phase µ. The angular velocities, θ̇
l

t = A∗(µt+1)−A∗(µt), are not esti-
mated independently and the velocities τ̇ g

t , θ̇
g

t are propagated as in the smooth
motion case above. The Gaussian distribution over µt and ct implies a Gaussian
distribution over joint angles which defines the distribution p(φt | φt−1,Vt−1)
used in the Bayesian model.
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Fig. 4. Tracking of one arm (2000 samples). Upper rows: frames 0, 10, 20, 30, 40 and
50 with the projection of the expected value of model the model parameters overlaid.
Frame 0 corresponds to the manual initialization. Lower row: distributions of the shoul-
der angles θx, θy and θz as function of frame number. Brightness values denote the log
posterior distribution in each frame.

7 Experiments

We present examples of tracking people or their limbs in cluttered images. On
an Ultra 1 Sparcstation the C++ implementation takes approximately 5 minu-
tes/frame for experiments with 10,000 state samples. At frame 0, the posterior
distribution is derived from a hand-initialized 3D model. To visualize the poster-
ior distribution we display the projection of the 3D model corresponding to the
expected value of the model parameters: 1

N

∑N
i=1 piφi where pi is the normalized

likelihood of state sample φi.

Arm Tracking. The smooth motion prior is used for tracking relatively low
dimensional models such as a single arm as illustrated in Figure 4. The model
has 8 parameters corresponding to the orientation and velocity of the 3 shoulder
angles and the elbow angle.

The twist of the upper arm θz is ambiguous when the arm is straight since
the only information about the change in θz in that situation is the rotation
of the texture pattern on the upper arm. If the upper arm texture is of low
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Fig. 5. Tracking a human walking in a straight line (5000 samples, no rotation). Upper
rows: projection of the expected model configuration at frames 0, 10, 20, 30, 40 and 50.
Lower row: 3D configuration for the expected model parameters in the same frames.

contrast (as in Figure 4) this will provide a very weak cue. This ambiguity is
easily represented in a particle filtering framework. In our case, θz is assigned
a uniform starting distribution. Some frames later (around frame 20), the arm
bends slightly, and the distribution over θz concentrates near the true value. The
rotation of a straight arm is an example of a kinematic singularity [7,17].

Tracking Walking People. The walking model described in Section 6.2 is used
to track a person walking on a straight path parallel to the camera plane over 50
frames (Figure 5). The global rotation of the torso was held constant, lowering
the number of parameters to 9: the 5 eigencoefficients, c, phase, µ, and global
3D position, τ g. All parameters were initialized manually with a Gaussian prior
at time t = 0 (Figure 5, frame 0). As shown in Figure 5 the model successfully
tracks the person although some parts of the body (often the arms) are poorly
estimated. This in part reflects the limited variation present in the training set.

The next experiment involves tracking a person walking in a circular path
and thus changing both depth and orientation with respect to the camera. Fi-
gure 6 shows the tracking results for frames from 0 to 50. In frame 50 notice that
the model starts to drift off the person since the rotation is poorly estimated.
Such drift is common with optical flow-based tracking methods that rely solely
on the the relative motion between frames. This argues for a more persistent
model of object appearance. Note that, while a constant appearance model (i.e.
a template) would not suffer the same sort of drift it would be unable to cope
with changes in view, illumination, and depth. Note also that the training data
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Fig. 6. Person walking in a circle (15000 samples). Upper rows: frames 0, 10, 20, 30,
40, 50 with the projection of the expected model configuration overlaid. Lower row:
expected 3D configuration in the same frames.

only contained examples of people walking in a straight line. While the circu-
lar walking motion here differs significantly, the temporal model is sufficiently
general that it can approximate this new motion.

How significant is the temporal walking prior model? Figure 7 illustrates
the effect of repeating the above experiment with a uniform likelihood function,
so that the evolution of the parameters is determined entirely by the temporal
model. While the prior is useful for constraining the model parameters to valid
walking motions, it does not unduly affect the tracking.

8 Conclusion

This paper has presented a Bayesian formulation for tracking of articulated hu-
man figures in 3D using monocular image motion information. The approach
employs a generative model of image appearance that extends the idea of para-
meterized optical flow estimation to 3D articulated figures. Kinematic singulari-
ties, depth ambiguities, occlusion, and ambiguous image information result in a
multi-modal posterior probability distribution over model parameters. A particle
filtering approach is used to represent and propagate the posterior distribution
over time, thus tracking multiple hypotheses in parallel. To constrain the distri-
bution to valid 3D human motions we define prior probability distributions over
the dynamics of the human body. Such priors help compensate for missing or
noisy visual information and enable stable tracking of occluded limbs. Results
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Fig. 7. How strong is the walking prior? Tracking results for frames 0, 10, 20, 30, 40
and 50, when no image information is taken into account.

were shown for a general smooth motion model as well as for an action-specific
walking model.

A number of outstanding issues remain and are the focus of our research.
The current model is initialized by hand and will eventually lose track of the
object. Within a Bayesian framework we are developing a fully automatic system
that samples from a mixture of initialization and temporal priors. We are also
developing new temporal models of human motion that allow more variation than
the eigencurve model yet are more constrained than the smooth motion prior.
We are extending the likelihood model to better use information at multiple
scales and to incorporate additional generative models for image features such
as edges. Additionally, the likelihood computation is being extended to model the
partial occlusion of limbs as in [21]. Beyond this, one might replace the cylindrical
limbs with tapered superquadrics [9,15] and model the prior distribution over
these additional shape parameters. Finally, we are exploring the representation
of the posterior as a mixture of Gaussians [6]. This provides a more compact
representation of the distribution and interpolates between samples to provide
a measure of the posterior in areas not covered by discrete samples.
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