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Abstract—In this work, the stochastic traffic engineering problem in multihop cognitive wireless mesh networks is addressed. The

challenges induced by the random behaviors of the primary users are investigated in a stochastic network utility maximization

framework. For the convex stochastic traffic engineering problem, we propose a fully distributed algorithmic solution which provably

converges to the global optimum with probability one. We next extend our framework to the cognitive wireless mesh networks with

nonconvex utility functions, where a decentralized algorithmic solution, based on learning automata techniques, is proposed. We show

that the decentralized solution converges to the global optimum solution asymptotically.

Index Terms—Cognitive networks, network utility maximization, learning algorithms.

Ç

1 INTRODUCTION

THE past decade has witnessed the emergence of new
wireless services in daily life. One of the promising

techniques is the metropolitan wireless mesh networks
(WMN), which are envisioned as a technology which
advances toward the goal of ubiquitous network connection.
Fig. 1 illustrates an example of wireless mesh network. The
wireless mesh network consists of edge routers, intermedi-
ate relay routers as well as the gateway node. Edge routers
are the access points which provide the network access for
the clients. The relay routers deliver the traffic aggregated at
the edge routers to the gateway node, which is connected to
the Internet, in a multihop fashion.

While the current deployed wireless mesh networks
provide flexible and convenient services to the clients, the
performance of a mesh network is still constrained by
several limitations. The first barrier is due to the multihop
nature of the wireless mesh network, where the nodes in
geographic proximity generate severe mutual interference
among each other and thus the network performance is
devastated. To address this problem, several scheduling
schemes have been proposed in the literature [1]. Recently,
a novel coding-based scheme which may produce an
interference-free wireless mesh network, is proposed [2].
Another example of the interference-free network is the
CDMA-based wireless mesh networks [3] where by assign-
ing orthogonal codes for each link, the network throughput
is remarkably improved.

The second hindrance for the network performance is the
limited usable frequency resource. In current wireless mesh

networks, the unlicensed ISM bands are most commonly
adopted for backbone communications. Not surprisingly,
the wireless mesh network is largely affected by all other
devices in this ISM band, e.g., nearby WLANs and Blue-
tooth devices. Moreover, the limited bandwidth of the
unlicensed band cannot satisfy the increasing demand for
the bandwidth due to the evolving network applications.
Ironically, as shown by a variety of empirical studies [4], the
current allocated spectrum is drastically underutilized. As a
consequence, the urge to explore the unused white space of
the spectrum, which can significantly enhance the perfor-
mance of the wireless mesh networks, attracts tremendous
attention in the community [5], [6], [7], [8], [9].

Cognitive radios are proposed as a viable solution to the
frequency reuse problem [1]. The cognitive devices are
capable of sensing the environment and adjusting the
configuration parameters automatically. If the primary
user, i.e., the legitimate user, is not using the primary
band currently, the cognitive devices, namely, secondary
users, will utilize this white space of the spectrum.
Incorporating with the established interference-free techni-
ques such as [2] and [10], the throughput of the wireless
mesh network can be dramatically enhanced. The protocol
design for cognitive wireless mesh networks (CWMN), or
more generally, multihop cognitive radio networks, is an
innovative and promising topic in the community [11] and
has been less studied in the literature. In this paper, we
consider a cognitive wireless mesh network where the
unlicensed band, e.g., ISM band, is utilized by the mesh
routers for the backbone transmission. Moreover, each
router is a cognitive device and hence is capable of sensing
and exploiting the unused primary bands for transmissions
whenever the primary users are absent.

In this paper, we investigate an important yet unex-
plored issue in the cognitive wireless mesh networks,
namely, the stochastic traffic engineering (STE) problem.
More specifically, we are particularly interested in how the
traffic in the multihop cognitive radio networks should be
steered, under the influence of random behaviors of
primary users. It is worth noting that given a routing
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strategy, the corresponding network’s performance, e.g., the
average queuing delay encountered, is a random variable.
The reason is that the available bandwidth for a particular
link depends on the appearance of all the affecting primary
users. If all the primary users are vacant, a link can utilize
all available frequency trunks collectively by utilizing
advanced physical layer techniques, e.g., OFDMA. How-
ever, if all the primary users are present, the only available
frequency space is the unlicensed ISM band and thus the
traffic on this link will experience longer delay than the
previous case. In other words, the performance of a traffic
engineering solution hinges intensely on the unpredictable
random behaviors of the primary users. We emphasize that
in multihop cognitive radio networks, this distinguishing
feature of randomness, induced by the random behaviors of
primary users, must be taken into account in protocol
designs. Due to the location discrepancy, it is possible that
some node is affected by many primary users while others
are not. As a consequence, if we route the traffic via this
particular node, the transmissions are more likely to be
corrupted by the returns of the primary users. Apparently, a
favorable solution is more inclined to steer the traffic from
those “severely affected area,” to the paths which are less
affected by the primary users. We will make this intuitive
approach precise and rigorous in this paper. To our best
knowledge, this paper is the first work on the traffic
engineering problem in multihop cognitive radio networks,
with a special focus on the impact of random behaviors
from the primary users.

The rest of this paper is organized as follows: The related
work is reviewed in Section 2, and Section 3 provides the
system model of our work. The stochastic traffic engineer-
ing problem with convexity is investigated in Section 4. In
Section 5, we extend our framework to the nonconvex
stochastic traffic engineering problem. Performance evalua-
tion is provided in Section 6, followed by concluding
remarks in Section 7.

2 RELATED WORK

Traditional traffic engineering (TE) algorithms are proposed
as the solution to the traffic management of the network in a
cost-efficient manner. Different from the traditional quality
of service (QoS) routing, the traffic engineering solution not
only guarantees a certain QoS level for each flow, but also

optimizes a global performance metric over the whole
network, by splitting the ingress traffic optimally among
several available paths. The multipath routing is usually
supported by the Multiprotocol Label Switching (MPLS)
techniques where the explicit routing path for a packet is
predetermined rather than being computed in a hop-by-hop
fashion. For a pair of source and destination nodes, the set
of available paths, a.k.a., label switched paths (LSP), are
established and managed by signaling protocols such as
RSVP-TE [12] and CR-LDP [13] or manual configuration.
The traditional traffic engineering solution evolves to the
STE solution when uncertainty exists in the network, e.g.,
the random returns of the primary users in our scenario. TE
solutions require consistent route changes which are
unfavorable in that the network will be overwhelmed by
the oscillations induced by the unpredictable behaviors of
the primary users. In light of this stability concern, STE
solution alternatively pursues an optimum multipath
routing strategy such that the expected utility of the
network is maximized. The stochastic traffic engineering
with uncertainties are discussed in the literature such as in
[14] and [15]. However, the previous works usually assume
a probability distribution of the uncertainty, while in our
scenario, the behaviors of the primary users are completely
unpredictable from the mesh network’s point of view.
Distinguishing from the previous works, we propose an
algorithmic solution which requires no prior knowledge
about the distribution of the uncertainty, in a stochastic
network utility maximization framework. It is worth noting
that our work differs from the traditional state-dependent
traffic engineering solution as well. For example, in [16], a
state-dependent traffic engineering solution is proposed.
However, the authors assume that the system state, i.e., the
current value of uncertainty, is fully observable. In our
approach, we do not assume that the ingress node has the
perfect knowledge of the current appearance of the net-
work. We will discuss this issue in detail in Section 4.

Recently, CWMN have attracted great attention in the
literature. In [5], the channel assignment is discussed in a
CWMN. In [6], a cluster-based cognitive wireless mesh
network framework is proposed. The infrastructure-based
cognitive network is discussed in [7] with a focus on the
cooperative mobility and the channel selection schemes.
The spectrum sensing and channel selection are jointly
considered in a unified framework in [8]. In addition, the
IEEE 802.16h is in the process of incorporating the cognitive
radios into the WiMAX mesh networks [9]. However, none
of the previous works considers the stochastic traffic
engineering problem. Therefore, a systematic study of the
impacts of the random returns from the primary users, on
the network routing performance is lacking in the existing
literature. In [17], the joint congestion control and traffic
engineering problem is considered. He et al. propose a
distributed algorithm to balance the user’s utility and the
system’s objective. However, the authors assume the
environment is fixed and does not consider the randomness
which is the distinguishing yet usually overlooked feature
in cognitive radio networks. Wang and Zheng [18] and Xin
et al. [19] discuss the routing issue in cognitive radio
networks yet the impact of random returns of primary users
is not investigated. Hou et al. [20], [21], [22], [23] formulate
the joint routing, power and subband allocation problem in

306 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 3, MARCH 2010

Fig. 1. Architecture of wireless mesh networks.



cognitive radio networks as a mixed-integer programming.
However, the channels’ bandwidths are assumed to be
fixed, i.e., the random behaviors of primary users are still
neglected. Our work is partially inspired by Lee et al. [24].
However, our paper differs from theirs in three crucial
aspects. First, by targeting the stochastic traffic engineering
problem, our model differs from the joint power scheduling
and rate control work in [25]. Second, in [24], [25], Lee et al.
only consider a single-path scenario while our work extends
to a multipath routing network where the network traffic
can be steered. Third and most importantly, Lee et al. [24],
[25] require that the current system state is fully observable
at the decision maker. To achieve this, the authors assume a
centralized mechanism which knows all the channel states
of all the links over the network. However, our work differs
from [24], [25] significantly in that we do not require that
the current system’s state is known, which is of great
practical interest since in multihop cognitive wireless mesh
networks, the decision makers, i.e., the edge routers in our
scenario, cannot be aware of the appearance of all primary
users in the whole network as a priori. Moreover, our
schemes enjoy a decentralized implementation, in contrast
to centralized mechanisms in [24], [25] by utilizing the
feedback signals and local information only. In our previous
work of [26], we proposed a routing optimization scheme to
combat with the randomness of instantaneous traffic in
noncognitive wireless mesh networks. With respect to [26],
this paper differs in the following ways: First, in the
wireless mesh networks considered in [26], the capacity of
each wireless link is assumed to be fixed, i.e., time invariant.
However, in cognitive wireless mesh networks, due to the
unpredictable appearance of primary users, the bandwidth
of each wireless link is random. Second, in [26], the QoS
requirement is not considered. Nevertheless, in this paper,
we particularly address the QoS concern of each user, e.g.,
the expected accumulated delay on the paths cannot exceed
a user-specific delay tolerance, as will be elaborated in
Section 4. Third and most importantly, the analysis in [26]
was based upon the assumption that all the users have
convex utility functions. In this paper, we extend the
techniques to address the scenarios with nonconvex utility
functions. We will discuss the aforementioned issues
further in the following sections.

3 SYSTEM MODEL

We consider a multihop wireless mesh network illustrated
in Fig. 1 where an uplink traffic model is considered, i.e., all
edge routers aggregate the traffic from clients and deliver to
the gateway node via the intermediate relay routers. To
ensure connectivity, we utilize the ISM 2.4G band as the
underlying common channel for the wireless mesh net-
work. In addition, each link can utilize the opportunistic
channels, i.e., secondary bands to increase the link’s
achievable data rate whenever the primary user is vacant.
We assume that there exists1 jMMj primary users. Each
primary user possesses a licensed frequency channel and
each mesh router is a cognitive node which has the
capability of sensing the current wireless environment.
We model the multihop cognitive wireless mesh network as
a directional graph G where the vertices are the nodes. We

also denote link ði; jÞ as link e; e 2 IE where tðeÞ ¼ i and
rðeÞ ¼ j represent the transmitter and the receiver of link e.

We first consider a particular link denoted by ðm;nÞ. The
instantaneous available frequency bands, at time t, for a
node i is denoted by IiðtÞ, which is determined by the
current presence of the primary users. Besides the under-
lying ISM band, the communication between m and n can
further utilize all secondary bands within ImðtÞ

T
InðtÞ, if

available. The current cognitive radio devices benefit largely
from the software-defined radio (SDR) techniques with
advanced coding/modulation capabilities. For example, by
utilizing the multicarrier modulation, e.g., OFDMA, a
cognitive radio device can utilize all the disjoint available
frequency band simultaneously [20], [21], [27], [28], [29]. At
the transmitter, a software-based radio combines wave-
forms for different subbands and thus transmit signal at
these subbands simultaneously. While at the receiver, a
software-based radio decomposes the combined waveforms
and thus receives signal at these subbands simultaneously
[22], [23], [28], [29]. In this paper, we assume a spectrum
sensing scheme available that each node can sense the
presence of the primary users in range, such as [1], [30],
although the time of random returns cannot be predicted. A
link will utilize all the available vacant bands and that the
cognitive radios are full-duplex and can transmit at different
bands concurrently [22], [23], [28], [29]. We further assume
that some scheduling mechanism is in place or some
physical layer mechanisms are utilized such that the nodes
cannot interfere with each other during the transmissions.
For example, in a multichannel multiradio wireless mesh
network, the channels can be assigned properly that the
transmissions do not interfere with the neighboring nodes
[2], [31]. Other examples are the OFDMA/CDMA-based
wireless mesh networks [3], [32] where the interference
among nodes can be eliminated by assigning orthogonal
subcarriers/codes. We emphasize that this assumption is
only for the sake of modeling simplicity and does not incur
any loss of generality, as will be clarified shortly.

It is worth noting that the available bandwidth of each

link in the cognitive wireless mesh network is a random

variable. For example, at time instance t1, node m has three

secondary bands available, i.e., Imðt1Þ ¼ fI0; I1; I2; I3g and

Inðt1Þ ¼ fI0; I2; I3; I4; I5g due to the location discrepancy,

where band 0 is the underlying unlicensed ISM band and

1; 2; 3; 4; 5 are the licensed bands of primary users. The

current bandwidth of link ðm;nÞ is represented by

Wm;nðt1Þ ¼ BW0 þBW2 þBW3 where BWi is the band-

width of band i. At another time instance t2, the primary

user 2 returns and the bandwidth of link ðm;nÞ becomes

Wm;nðt2Þ ¼ BW0 þBW3. In other words, the bandwidth of

links are random variables which are determined by the

unpredictable appearance of the primary users. We model

this randomness induced by the primary users as a

stationary random process with arbitrary distribution. The

system is assumed to be time slotted. In each time slot n, the

system state is assumed to be independent and is denoted

by a state vector s ¼ f�1; . . . ; �jMMjg; s 2 SS, where �i ¼ 1

denotes the absence of the ith primary user and 0 otherwise.

We denote the stationary probability distribution of state s
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as �s. For the ease of exposition, we assume that the

primary users are static. However, we emphasize that our

model can be extended to mobile primary users scenarios

straightforwardly. For example, if a primary user is moving

following a Markovian walk model with well-defined

steady-state distribution, the following analysis still applies.

Without loss of generality, we express the link capacity in

the form of CDMA-based networks, i.e., the capacity of a

wireless link e 2 IE, given the system state s, is denoted by

cse, which is given by Chiang [33] and Chiang et al. [34]

cse ¼W s
e

1
T log2ð1þK�seÞ, where W s

e is the bandwidth of link

e in state s and �se is the current SINR value of link e. The

constant T is the symbol period and will be assumed to be

one unit without loss of generality [34]. The constant K ¼
��1

logð�2BERÞ
where �1 and �2 are constants depending on the

modulation scheme and BER denotes the bit error rate. We

will assume K ¼ 1 in this paper for simplicity [33]. Note

that our network model can be incorporated into other

types of networks such as MIMO, OFDM with TDMA, or

CSMA/CA-based MAC protocols by modifying the form of

the capacity accordingly, which represents the achievable

data rate in general. For example, if we consider a

scheduling-based MAC protocol where each link obtains a

time share of the channel access, the achievable data rate is

given by cse ¼ ecse �  e where  e is the fraction of time that

the link is active following the scheduling scheme and ecse is
the nominal Shannon capacity of the link.

There are jILj unicast sessions in the network, denoted by
set IL, where each session l has a traffic demand dl. We
associate each session with a unique user. Therefore, we
will use session l and user l interchangeably. For each session
l 2 IL, we denote the source node and destination node as
SðlÞ and DðlÞ, respectively. Recall that we assume an uplink
traffic model and thus all the source nodes are edge routers
and the destination node is the gateway. Furthermore, to
improve the reliability and dependability, we allow multi-
path routing schemes. We denote the available2 set of
acyclic paths from SðlÞ to DðlÞ by IPl and the kth path is
represented by P k

l . We introduce a parameter rkl as the flow
allocated in the kth path of session l. The overall flow of
user l, represented by xl, is given as

xl ¼
XjIPlj

k¼1

rkl

" #dl

0

; ð1Þ

where ½x�ba denotes maxfminfb; xg; ag. Define an jIEj-by-jIPlj
matrix HHl where the element H l

e;k ¼ 1 if link e is on the
kth path of IPl and 0 otherwise. Hence, HH ¼ fHH1; . . . ;HHjLjg
represents the network topology. Note that the traffic
splitting and the source routing are executed on the source
node SðlÞ.

For each link e 2 IE, there is an associated cost function,

denoted by lseðfe; c
s
eÞ where fe is the accumulated flow on

link e. We assume the function lse is an increasing,

differentiable, and convex function of fe for a fixed cse. For

example, if we assume lseðfe; c
s
eÞ ¼

1
cse�fe

when cse � fe,

the cost essentially represents the delay for a unit flow on

link e under the M=M=1 assumption. Note that in our

scenario, even the accumulated flow fe is fixed, the value of

cost function is random due to the state-dependent

variable cse. From the network’s perspective, the stochastic

traffic engineering solution will distribute the aggregated

flow among multiple paths optimally, in the sense that the

overall network utility is maximized. In next section, we

will formulate the stochastic traffic engineering problem in

a stochastic network utility maximization framework [34]

and provide a distributed solution which requires no prior

information about the underlying probability distribution,

i.e., �s, of the system states.

4 STOCHASTIC TRAFFIC ENGINEERING WITH

CONVEXITY

4.1 Formulation

In the standard network utility maximization framework,

each user has a utility function UlðxlÞ, which reflects the

degree of satisfaction of user l by transmitting at a rate of xl,

e.g., UlðxlÞ ¼ logðxlÞ. In this section, we assume the utility

functions to be concave and differentiable. The nonconvex

utility functions are considered in Section 5. Note that the

fairness issue can be embodied in the utility functions [34].

For example, in the seminal paper [35], the log-utility

functions are adopted to achieve the proportional fairness

among different flows.

Define a feasible stochastic traffic engineering solution

as r¼½r1; . . . ; rjILj� where rl ¼
4
½r1l ; . . . ; r

jIPlj
l �. We can formu-

late the stochastic traffic engineering problem as
P1 :

max
r�0

X

l2IL

Ul
X

k2IPl

rkl

 !

s:t:X

k2IPl

rkl � dl 8l 2 IL,

ð2Þ

X

s2SS

�s
X

k2IPl

rkl
X

e2P k
l

lse
�
fe; c

s
e

�
0
@

1
A � bl 8l 2 IL, ð3Þ

fe �
X

s2SS

�sc
s
e 8e 2 IE, ð4Þ

fe ¼
X

l2IL

X

k2IPl

H l
e;kr

k
l 8e 2 IE, ð5Þ

cse ¼W s
e

1

T
log2

�
1þK�se

�
8e 2 IE, ð6Þ

where e 2 P k
l represents the links along the kth path of

user l. The variable in P1 is the vector of r. The first set of
constraints reflect that the overall data rates of all paths
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cannot exceed the traffic demand dl. The second set of

constraints indicate that for each user l, the expected cost

has to be no more than a predefined constraint bl. The third

set of constraints represent that the aggregated flow on link

e cannot exceed the average link capacity. Apparently, if the

underlying probability distribution of each state �s is

known as a priori, P1 is a deterministic convex optimization

problem and thus easy to solve. However, in practice, the

accurate measurement of probability distribution is a

nontrivial task. In [26], we utilized a stochastic approxima-

tion-based approach to circumvent the difficulty of estimat-

ing the probability distribution. In the following, we will

extend this technique and develop a tailored distributed

algorithm to address the issues of time-varying link

capacities as well as the user-specific QoS requirements,

which are of particular interest in multihop cognitive

wireless mesh networks.
First, define the Lagrangian function of P1 as

Lðr; �; �;vÞ

¼
X

l2IL

Ul
X

k2IPl

rkl

 !
þ
X

l2IL

�l dl �
X

k2IPl

rkl

 !

þ
X

l2IL

vl bl �
X

s2SS

�s
X

k2IPl

rkl
X

e2P k
l

lse
�
fe; c

s
e

�
0
@

1
A

0
@

1
A

�
X

e2IE

�e fe �
X

s2SS

�sc
s
e

 !

¼
X

l2IL

Ul
X

k2IPl

rkl

 !
þ �l dl �

X

k2IPl

rkl

 !
þ vlbl

(

� vl
X

s2SS

�s
X

k2IPl

rkl
X

e2P k
l

lse
�
fe; c

s
e

�
0
@

1
A
9
=
;

�
X

e2IE

�e fe �
X

s2SS

�sc
s
e

 !

¼
X

s2SS

�s
X

l2IL

Ul
X

k2IPl

rkl

 !
þ �l dl �

X

k2IPl

rkl

 !
þ vlbl

 (

�
X

k2IPl

rkl
X

e2P k
l

ðvll
s
e

�
fe; c

s
e

�
þ �eÞ

0
@

1
A
1
Aþ

X

e2IE

�ec
s
e

)
:

Define

Msð�; �; vÞ

¼ sup
r�0

X

l2IL

Ul
X

k2IPl

rkl

 !
þ �l dl �

X

k2IPl

rkl

 !
þ vlbl

 (

�
X

k2IPl

rkl
X

e2P k
l

�
vll

s
e

�
fe; c

s
e

�
þ �e

�
0
@

1
A
1
Aþ

X

e2IE

�ec
s
e

)
:

ð7Þ

Let ~r be the optimum solution of (7). We will discuss how to

obtain ~r shortly. The dual function of P1 is obtained by

gð�; �; vÞ ¼
X

s2SS

�sM
sð�; �; vÞ: ð8Þ

Thus, the dual problem of P1 is given by

P2 :

min
�;�;v�0

gð�; �;vÞ: ð9Þ

4.2 Distributed Algorithmic Solution with the
Stochastic Primal-Dual Approach

In this section, we propose a distributed algorithmic
solution of P1, or equivalently P2, based on the stochastic
primal-dual method. In order to reach the stochastic
optimum solution, the dual variables �, �, and v are
updated according to the following dynamics

�lðnþ 1Þ ¼ ½�lðnÞ � �lðnÞ�lðnÞ�
þ 8l 2 IL, ð10Þ

�eðnþ 1Þ ¼ ½�eðnÞ � �eðnÞ	eðnÞ�
þ 8e 2 IE, ð11Þ

vlðnþ 1Þ ¼ ½vlðnÞ � �bðnÞ
lðnÞ�
þ 8l 2 IL, ð12Þ

where ½x�þ denotes maxð0; xÞ and n is the iteration number.
�lðnÞ, �eðnÞ, and �bðnÞ are the current step sizes while �lðnÞ,
	eðnÞ, and 
lðnÞ are random variables. More precisely, they
are named as the stochastic subgradient of the dual function
gð�; �Þ and the following requirements need to be satisfied

Ef�lðnÞj�ð1Þ; . . . ; �ðnÞg ¼ @�lgð�; �;vÞ 8l 2 IL, ð13Þ

Ef	eðnÞj�ð1Þ; . . . ; �ðnÞg ¼ @�egð�; �;vÞ 8e 2 IE, ð14Þ

Ef
lðnÞjvð1Þ; . . . ;vðnÞg ¼ @vlgð�; �;vÞ 8l 2 IL, ð15Þ

where Eð:Þ is the expectation operator and �ð1Þ; . . . ; �ðnÞ,
�ð1Þ; . . . ; �ðnÞ, and vð1Þ; . . . ;vðnÞ denote the sequences of
solutions generated by (10), (11), and (12), respectively. By
Danskin’s Theorem [36], we can obtain the subgradients as

�lðnÞ ¼ dl �
X

k2IPl

~rkl ðnÞ 8l 2 IL, ð16Þ

	eðnÞ ¼ cseðnÞ �
~feðnÞ 8e 2 IE, ð17Þ


lðnÞ ¼ bl �
X

k2IPl

~rkl ðnÞ
X

e2P k
l

lseð
~feðnÞ; c

s
eðnÞÞ 8l 2 IL, ð18Þ

where ~rkl is the optimum solution of (7). Note that cseðnÞ
denotes the instantaneous channel capacity on link e at
iteration n.

We next show how to calculate Msð�; �;vÞ in (7), i.e.,
finding the optimum solution, denoted by ~r, which
maximizes

X

l2IL

Ul
X

k2IPl

rkl

 !
þ �l dl �

X

k2IPl

rkl

 !
þ vlbl

 

�
X

k2IPl

rkl
X

e2P k
l

�
vll

s
eðfe; c

s
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ð19Þ

Note that when updating the primal variable, i.e., r, the link
costs are deterministic which are obtained via the feedback
signal, e.g., ACK messages. Therefore, by utilizing the same
stochastic subgradient approach, we have

rkl ðnþ 1Þ ¼ rkl ðnÞ þ �rðnÞ�ðnÞ
� �dl

0
; ð20Þ
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where

�ðnÞ ¼
@Ul

@
P

k2IPl
rkl ðnÞ

� �l �
X

e2P k
l

�
�e þ vlle

�
fe; c

s
e

��
ð21Þ

is the stochastic subgradient measured at time n.

Theorem 1. The proposed algorithm converges to the global
optimum of P1 with probability one, if the following
constraints of step sizes are satisfied: 1) �ðnÞ > 0,
2)
P1

n¼0 �ðnÞ ¼ 1, and 3)
P1

n¼0ð�ðnÞÞ
2 <1, 8l 2 IL and

e 2 IE, where � represents �e, �l, �b, and �r generally.

Proof. First, let us revisit the updating equations of (10)-(12).

Note that in the stochastic subgradient approach, the

measured values of �lðnÞ, 	eðnÞ, and 
lðnÞ are considered

as the instantaneous observation of the real gradients,

denoted by �lðnÞ, 	eðnÞ, and 
lðnÞ, respectively. We

consider the relationship of �lðnÞ and �lðnÞ for instance.

The observation value, i.e., �lðnÞ, can be rewritten as

�lðnÞ ¼ �lðnÞ � Eð�lðnÞÞ þ Eð�lðnÞÞ � �lðnÞ þ �lðnÞ

¼ �lðnÞ þ Eð�lðnÞÞ � �lðnÞ þ �lðnÞ � Eð�lðnÞÞ

¼ �lðnÞ þ g�lðnÞ þ d�lðnÞ;
ð22Þ

where E is the expectation operator and

g�lðnÞ ¼ Eð�lðnÞÞ � �lðnÞ; ð23Þ

d�lðnÞ ¼ �lðnÞ � Eð�lðnÞÞ: ð24Þ

Note that g�lðnÞ is the difference between the expectation
of the observations and the real gradient. Hence, it is the
biased estimation error term. Next, we examine that

Eð d�lðnÞj d�lðn� 1Þ; . . . ; d�lð0ÞÞ ¼ 0 8n: ð25Þ

Therefore, the series of d�lðnÞ is a martingale difference

sequence [37]. The relationship of (22) indicates that the

observation value is the real gradient disturbed by a

biased estimation error as well as a martingale difference

noise. We next investigate the convergence conditions of

the stochastic primal-dual approach. For g�lðnÞ, the

following requirement

X1

n¼0

�eðnÞjEð�lðnÞÞ � �lðnÞj <1 ð26Þ

is satisfied due to the stationary assumption. Similarly,

Eð d�lðnÞ2Þ ¼ Eðð�lðnÞ � Eð�lðnÞÞÞ
2Þ ð27Þ

is bounded as well. The similar analysis can be extended
to 	eðnÞ, 
lðnÞ, and �ðnÞ in (11), (12), and (20) straight-
forwardly. Therefore, the standard conditions are satis-
fied and the convergence result of Theorem 1 follows the
recent work of [38]. tu

It is worth noting that the aforementioned distributed
algorithm enjoys the merit of distributed implementation
from an engineering perspective. With the current values of
dual variables, each source node SðlÞ optimizes (19)
according to (21) and (20). The information needed is either

locally attainable or acquirable by the feedback along the
paths. For example, the channel states of the intermediate
nodes along paths can be piggybacked by the end-to-end
acknowledgement messages from the destination node, i.e.,
the gateway node in our scenario. The source node updates
the �l and vl according to (10) and (12) where the needed
information is calculated by (16) and (18), respectively. For
each link e, the current status of (17) is measured. Next, the
value of �e is updated following (11). The iteration
continues until an equilibrium point is reached. Note that
our framework can incorporate the wireless lossy network
scenarios by replacing the flow rate with the effective flow
rate in the leaky-pipe flow model [39].

5 STOCHASTIC TRAFFIC ENGINEERING WITHOUT

CONVEXITY

Thus far, we have considered the scenarios where all the
users have concave utility functions. However, in practice,
several network applications may possess a nonconcave
utility function. For example, in a data streaming applica-
tion, the user is satisfied if the achieved data rate exceeds a
threshold, where the utility function is a step function and
thus the convexity does not preserve. Therefore, the
proposed stochastic primal-dual approach in Section 4
cannot be applied here. It is worth noting that we can still
formulate the stochastic traffic engineering problem as in P1

except that the optimization problem is a stochastic
nonconvex programming, which is NP-hard in general,
and computationally prohibitive to solve even in a
centralized fashion [40]. In the following section, we will
propose an algorithmic solution to the nonconvex stochastic
traffic engineering problem, based on the learning automata
techniques. Moreover, we analytically show that the
proposed algorithm will converge to the global optimum
solution asymptotically, in a decentralized fashion.

5.1 Decentralized Algorithmic Solution with the
Learning Automata Techniques

We first convert the compact strategy space of each user
into a discretized set denoted by IR. More specifically, each
user, say l, maintains a probability vector pl;k for each path
k 2 IPl. The segment of ½0; rm� is quantized into Q sections
where rm is the maximum allowed transmission rate on any
path. In other words, the continuous variable rkl is
transformed into a discrete random variable, rql;k, within a
discretized set IR with Qþ 1 elements. The data rate is
randomly selected from IR according to the probability
vector of pl;k where the qth element, pql;k, q ¼ 0; . . . ; Q,
denotes the probability that the lth user transmits with a
rate of rql;k ¼ q � rm

Q on the kth path of IPl. Associated with
each probability vector pl;k, there is a weighting vector wl;k

with the same dimension of 1� ðQþ 1Þ. The probability
vector pl;k is uniquely determined by the weighting vector
wl;k by the softmax function [41],

pql;k ¼
ew

q
l;k

PQ
q¼0 e

wq
l;k

8l; k; q; ð28Þ

where wql;k is the qth element of wl;k, q ¼ 0; . . . ; Q.
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Next, we formulate an identical interest game where the
players are the jILj source nodes and the common objective
function is the overall network utility, i.e., the summation of
the utility functions. In addition, for each source node, a
team of learning automata [42] is constructed. At each time
step, every source node picks the data rates on its own
paths according to the probability vectors, which are
determined by the weighting vectors. Based on the feedback
signal �, which will be defined shortly, each source node
adjusts the weighting vectors and the iteration continues.
The executed algorithm on every source node, say l, is
provided as follows:

Algorithm.
Repeat:

- For every path, say k, randomly selects a transmis-
sion rate rjl;k from IR, according to the current
probability vector pl;kðnÞ where n denotes the
current time slot.

- After receiving the feedback signal �ðnÞ from the
gateway node, if the cost constraint is satisfied, the
weighting vector wl;k is updated as

wql;kðnþ 1Þ ¼ wql;kðnÞ þ �ðnÞ�ðnÞ 1�
ew

q
l;k

PQ
q¼0 e

wq
l;k

 !"

þ
ffiffiffiffiffiffiffiffiffiffi
�ðnÞ

p
&ql;kðnÞ

iL
0
; for q ¼ j;

wql;kðnþ 1Þ ¼ wql;kðnÞ þ
ffiffiffiffiffiffiffiffiffiffi
�ðnÞ

p
&ql;kðnÞ

h iL
0
; for q 6¼ j:

ð29Þ

Otherwise, the weighting vector remains the
same.

- The probability vector pl;k is then updated, following
(28).

Until:

- maxðpl;kðnþ 1ÞÞ > B where B is a predefined con-
vergence threshold.

In the algorithm, �ðnÞ is the learning parameter of the
algorithm satisfying 0 < �ðnÞ < 1. L is a sufficiently large
yet finite number which keeps the weighting vector
bounded. The sequence of &ql;kðnÞ is a set of i.i.d. random
variables with zero mean and a variance of 2ðnÞ. The
global feedback signal �ðnÞ is calculated by the gateway
node and sent back to all source nodes, as

�ðnÞ ¼

P
l2LðUlð

P
k2IPl

rkl ÞÞ

J
; ð30Þ

where J is a number to normalize the feedback signal. For
example, we can set J to the maximum value of overall
utility till n and update this value on the fly. Therefore, the
value of �ðnÞ lies within ½0; 1�. Ul is the nonconvex utility
function for the lth user. Note that the utility functions of all
users are assumed to be truly acquired by the gateway node
[43]. In practice, the value of �ðnÞ can be circulated
efficiently by established multicast algorithms such as
[44]. Based on the feedback, the learning automata team
adjusts the weighting vector in a decentralized fashion. In
addition, note that B is the predefined convergence thresh-
old, e.g., B ¼ 0:999, which provides a tradeoff between the
performance of the algorithm and its convergence speed.

Before analyzing the steady-state behavior of the
proposed algorithm, we first discuss the following concepts:

Definition 1. Denote the maximum network utility of the
original traffic engineering problem, i.e., P1, as O

�. Next, we
define the final outcome of the proposed algorithm as O0. We
say that the algorithm provides an �-accurate solution, if for
any arbitrarily small � > 0, there exists a Q0 such that

jO� �O0j < � 8Q > Q0: ð31Þ

Definition 2. A potential game [45] is defined as a game where
there exists a potential function V such that

V ða0; a�lÞ � V ða00; a�lÞ ¼ Ulða
0; a�lÞ � Ulða

00; a�lÞ 8l; a
0; a00;

ð32Þ

where Ul is the utility function for player l and a0; a00 are two
arbitrary strategies in its strategy space. The notation of a�l
denotes the vector of choices made by all players other than l.

Definition 3. A weighted potential game [45] is defined as a
game where there exists a potential function V such that

ðV ða0; a�lÞ � V ða00; a�lÞÞ � hi ¼ Ulða
0; a�lÞ � Ulða

00; a�lÞ;

ð33Þ

for all l; a0; a00 where hi > 0.

According to the definitions, it is apparent that the
formulated identical interest game is a special case of
weighted potential games. In the following theorem, we
will provide the convergence behavior of a more general
setting for weighted potential games, and hence the result
applies to our specific scenario naturally:

Theorem 2. For an N-person weighted potential game where each
person represents a team of learning automata, the proposed
algorithm can converge to the global optimum solution
asymptotically, which is an �-accurate solution to the original
stochastic traffic engineering problem, for sufficient small
value of � and .

Proof. We defer the proof of Theorem 2 to Appendix. tu

Note that Theorem 2 establishes the convergence
behavior of the aforementioned algorithm with no addi-
tional requirement for the problem structure. In contrast,
we propose a stochastic primal-dual approach in Section 4,
which requires the underlying problem to be a stochastic
convex programming. The stochastic primal-dual approach
cannot be applied efficiently otherwise. However, the
aforementioned learning-based algorithm is suitable for
almost every aspect such as stochastic nonconvex program-
ming and stochastic mixed-integer programming. The
asymptotically convergence result still holds. Therefore, in
this paper, the proposed algorithms provide two different
exemplifying methods for protocol designs under the
stochastic environment. However, it is worth noting that
for the latter approach, the tradeoff for general applicability
is the convergence speed. In other words, in order to
achieve an accurate result, i.e., when � is small, the
convergence speed may be slow. The actual convergence
speed depends on the values of �, Q, � ,  as well as the
inherent structure of the problem and hence is difficult to
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quantify. Fortunately, in practical applications, achieving a
“good enough” result is sometimes satisfactory. This trade-
off can be achieved by utilizing diminishing values of � and
, as demonstrated in the simulated annealing literature
[46] and a recent work of [47]. To sum up, if the stochastic
traffic engineering problem possesses a nice property of
convexity, the algorithm based on the stochastic primal-
dual approach in Section 4 is recommended due to its nice
decomposed structure and computationally efficient solu-
tion. However, if the problem is nonconvex in nature, the
learning automata-based algorithm can be utilized to
achieve an approximate solution. The tradeoff between
the accuracy and convergence speed can be tuned by
adjusting the values of � and .

6 PERFORMANCE EVALUATION

In this section, we present a simple yet illustrative example
to demonstrate the theoretical results.

We consider a cognitive wireless mesh network3 de-
picted in Fig. 2. There are three edge routers as the source
nodes, denoted by A, B, and C, which transmit to the
gateway node GW via the relay routers X, Y , and Z.
Among all feasible paths, we select the following available
paths for edge routers, as summarized in Table 1.

There are five primary users in the area, denoted by 1-5
where each one has a primary band of 10 MHz. The
common ISM band is assumed to be 10 MHz. The return
probability of the primary users is given as $ ¼ ½0:2; 0:3;
0:4; 0:3; 0:3�. The transmitting power of each node is fixed as
100 mW, and the noise power is assumed to be 3 mW. We
consider a model where the received power is inversely
proportional to the square of the distance. Note that the
transmitting power is uniformly spread on all available
bands. In addition, we explicitly specify the affecting
primary users for a particular node. We use fi; j; k; . . .g to
represent that a particular node is affected by primary user
i; j; k; . . . . For example, node X is labeled with f1; 2g which
indicates that the transmission of node X will devastate the
transmissions of primary user 1 and 2 if the corresponding
primary band is utilized. Note that the central node,
namely, Y , is most severely affected by all primary users.
Intuitively, to achieve an expected optimum solution, the

stochastic traffic engineering algorithms are inclined to
steer the traffic away from Y . We will demonstrate this
detour effect next.

We first consider the cognitive wireless mesh network
with convexity, e.g., UlðxlÞ ¼ logxl to achieve a proportional
fairness among the flows [33]. The link cost is assumed to be
in the form of lseðfe; c

s
eÞ ¼

1
cse�fe

, which reflects the delay
experienced for a unit flow on link e under the M=M=1
assumption [48]. Note that if fe � ce, the cost is þ1. We set
the traffic demand of all edge routers as dl ¼ 30 Mbps while
the cost budget is bl ¼ 5. The step sizes are chosen as � ¼
1=n where n is the current iteration step. Fig. 3a illustrates
the trajectories of the rate variables, and Fig. 3b shows the
convergence of the network overall utility as well as the
individual utility functions.4 We observe that while the rate
variables converge as the iterations go, the overall objective,
i.e., the sum of the individual utilities, approaches to the
global optimum indicated by the dashed line, which is
attained by calculating the steady-state distribution follow-
ing the return probability $.

In addition, Table 2 provides the rate on each path after
convergence for a sample run of the algorithm. For compar-
ison, we provide the convergence rates when node Y is
switched from themost affectednode to the least affectednode,
i.e., node Y can utilize all five primary bands all the time, in
Table 3. From Tables 2 and 3, it is interesting to note that, in
the first scenario, each user allocates a relatively small
amount of flow on the paths which traverse through node
Y . On the contrary, when node Y is less affected, all the flows
allocate noticeably larger data rates on paths that traverse
through Y despite the fact that node Y is the central node
which is least favorable by traditional traffic engineering
solutions. Therefore, our proposed stochastic traffic engi-
neering algorithm is of particular interest for multihop
cognitive wireless mesh networks due to the capability of
steering the traffic away from the severely affected areas
automatically, without a prior knowledge of the underlying
probabilistic structure, in a distributed fashion.

We next consider a cognitive wireless mesh network
with nonconvex utility functions. Specifically, we consider
the utility function as

UlðxlÞ ¼
1; if xl � 2Mbps;
0; if xl < 2Mbps:

�
ð34Þ
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Fig. 2. Example of cognitive wireless mesh network.

TABLE 1
Available Paths for Edge Routers

3. Fig. 2 only shows the links on the available paths obtained by the
signaling mechanisms or manual configurations. The actual physical
topology of the network can be potentially larger.

4. Note that Fig. 3b also reflects the evolution of the throughput of each
edge router logarithmically.



while other settings are the same as in the previous scenario.
Additionally, we utilize diminishing values of � and  as
� ¼ 1=n and  ¼ 1=n, where n is the iteration step.5 Without
the loss of generality, we set L ¼ 100 and the quantization
level Q ¼ 20. The maximum allowed rate rm is assumed to
be 10. Therefore, the discretized data rate set is given by
IR ¼ ½0:5; 1:0; 1:5; . . . ; 9:0; 9:5; 10:0�. Fig. 4 illustrates the
evolution of the probability vector of pA;1. Note that as the
iterations evolve, the probability of p20A;1, i.e., the probability

that router A chooses the 20th data rate (rm in this case),
excels others and approaches to 1 asymptotically. We plot
the evolutions of the probability vectors of other paths in
Fig. 5 collectively. For each path, the probability of selecting
one particular data rate soon excels others. We observe that
router A selects the twentieth, the first, and the fourth date
rate on its three paths asymptotically. Meanwhile, router B
inclines to choose the eighth, the second, the first, the fourth,
and the twentieth data rate on its paths. The steady-state
data rates for router C is the twentieth, the first, and the first
element in IR, as depicted in Fig. 5. It is interesting to notice
that all the routers automatically detour the traffic from the
severely affected node Y by allocating more data rate on
other paths.

7 CONCLUSIONS

In this paper, we investigate the STE problem in cognitive
wireless mesh networks. To harness the randomness
induced by the unpredictable behaviors of primary users,
we formulate the STE problem in a stochastic network
utility maximization framework. For the cases where
convexity holds, we derive a distributed algorithmic
solution via the stochastic primal-dual approach, which
provably converges to the global optimum solution. For the
scenarios where convexity is not attainable, we propose an
alternative decentralized algorithmic solution based on the
learning automata techniques. We show that the algorithm
converges to the global optimum solution asymptotically,
under certain conditions.

In our work, we restrict ourself in a single gateway
scenario. The extension to the multiple gateway scenario
seems interesting and needs further investigation. In addi-
tion, in this paper, we consider a cooperative case where all
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TABLE 2
Convergence Rates when Y Is

Affected by All Five Primary Users

TABLE 3
Convergence Rates when Y Is Not

Affected by Any of the Primary Users

Fig. 4. Trajectory of the probability vector of router A’s first path.

Fig. 3. Cognitive wireless mesh networks with convexity. (a) Trajectories
of rate variables. (b) Trajectories of utility functions.

5. By utilizing diminishing parameters, a tradeoff between the
performance and the convergence speed can be achieved by tuning the
decreasing speed [46].



the edge routers attempt to maximize the overall network
performance. In the cases where the edge routers are
noncooperative, each player is interested in its own utility
rather than the social welfare. Stochastic game theory
provides a feasible tool to address the noncooperative case,
which remains as future research. We also assume a
negligible delay for the feedback signal while in a more
general case, the impact of feedback delay needs further
investigation. One feasible solution is to utilize the distrib-
uted robust optimization framework [49] where the worst
case performance is maximized given that the feedback
delay/error iswithin a reasonable range.Ourwork initiates a
first step to investigate the impact of unpredictable returns of
primary users, on the stochastic traffic engineering problem
in cognitive wireless mesh networks.

APPENDIX

PROOF OF THEOREM 2

The proof follows similar lines as in [42]. However, we
extend the result to a more general setting where the
underlying N-person stochastic game is a weighted poten-
tial game. Therefore, the proof in [42] can be viewed as a
special case. Define V as the potential function of the game.
Note that the selected rate is determined by the probability
vector which is generated uniquely by the weighting vector.
Therefore, we can view the weighting vector as the variable
in this case and the objective function is given by

z ¼ EðV jwÞ. In the updating procedure of (29), signal � is

replaced by V . We first verify that
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Next, it is straightforward to verify that the standard

conditions in [50, Chapter 6, Theorem 7] are satisfied. We

omit the verifications since they are the similar procedures

as in [42]. Thus, we conclude that the above dynamic

weakly converges to the following SDE [50], [51]:

dw ¼ rzþ dW; ð35Þ

for a sufficiently small � ! 0 where  is the standard

deviation of the i.i.d. random variables &ql;k and W is a

standard Wiener Process. Note that the SDE (35) falls into

the category of Langevin equation [52] which is well known

that the probability measure concentrates on the global

maximum solution of z for a sufficiently small  [42], [52].

Therefore, we conclude that in the weighted potential game

scenario, the proposed algorithm will converge to the global

optimum of the objective function, for the quantized data

rate setting. The association of the �-accurate solution to the

original stochastic traffic engineering problem of P1 follows

the result of [53].
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