
Stochastic Training of Graph Convolutional Networks with Variance Reduction

Jianfei Chen 1 Jun Zhu 1 Le Song 2 3

Abstract

Graph convolutional networks (GCNs) are power-

ful deep neural networks for graph-structured data.

However, GCN computes the representation of a

node recursively from its neighbors, making the

receptive field size grow exponentially with the

number of layers. Previous attempts on reducing

the receptive field size by subsampling neighbors

do not have convergence guarantee, and their re-

ceptive field size per node is still in the order of

hundreds. In this paper, we develop control vari-

ate based algorithms with new theoretical guar-

antee to converge to a local optimum of GCN

regardless of the neighbor sampling size. Empiri-

cal results show that our algorithms enjoy similar

convergence rate and model quality with the exact

algorithm using only two neighbors per node. The

running time of our algorithms on a large Reddit

dataset is only one seventh of previous neighbor

sampling algorithms.

1. Introduction

Graph convolution networks (GCNs) (Kipf & Welling,

2017) generalize convolutional neural networks (CNNs) (Le-

Cun et al., 1995) to graph structured data. The “graph

convolution” operation applies same linear transformation

to all the neighbors of a node, followed by mean pooling

and nonlinearity. By stacking multiple graph convolution

layers, GCNs can learn node representations by utilizing

information from distant neighbors. GCNs and their vari-

ants (Hamilton et al., 2017a; Veličković et al., 2018) have

been applied to semi-supervised node classification (Kipf &

Welling, 2017), inductive node embedding (Hamilton et al.,

2017a), link prediction (Kipf & Welling, 2016; Berg et al.,

2017) and knowledge graphs (Schlichtkrull et al., 2017),

outperforming multi-layer perceptron (MLP) models that

1Dept. of Comp. Sci. & Tech., BNRist Center, State Key Lab
for Intell. Tech. & Sys., THBI Lab, Tsinghua University, Beijing,
100084, China 2Georgia Institute of Technology 3Ant Financial.
Correspondence to: Jun Zhu <dcszj@mail.tsinghua.edu.cn>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

do not use the graph structure, and graph embedding ap-

proaches (Perozzi et al., 2014; Tang et al., 2015; Grover &

Leskovec, 2016) that do not use node features.

However, the graph convolution operation makes GCNs

difficult to be trained efficiently. The representation of a

node at layer L is computed recursively by the represen-

tations of all its neighbors at layer L − 1. Therefore, the

receptive field of a single node grows exponentially with

respect to the number of layers, as illustrated in Fig. 1(a), so

exactly computing the stochastic gradient is expensive even

for a single node. Due to the large receptive field size, Kipf

& Welling (2017) propose to train GCN by a batch algo-

rithm, which computes the representations of all the nodes

altogether. However, batch algorithms cannot handle large-

scale datasets because of their slow convergence and the

requirement to fit the entire dataset in GPU memory.

Hamilton et al. (2017a) make an initial attempt to develop

stochastic training algorithms for GCNs via a scheme of

neighbor sampling (NS). Instead of considering all the neigh-

bors, they randomly subsample D(l) neighbors at the l-th
layer. Therefore, they reduce the receptive field size to
∏

l D
(l), as shown in Fig. 1(b). They find that for two-layer

GCNs, keeping D(1) = 10 and D(2) = 25 neighbors can

achieve comparable performance with the original model.

However, there is no theoretical guarantee on the conver-

gence of the stochastic training algorithm with NS. More-

over, the time complexity of NS is still D(1)D(2) = 250
times larger than training an MLP, which is unsatisfactory.

In this paper, we develop novel control variate-based

stochastic approximation algorithms for GCN by utilizing

the historical activations of nodes as a control variate. Our

algorithms have new theoretical results on (1) variance re-

duction from the magnitude of the activation to the magni-

tude of the difference between current-and-historical activa-

tions; (2) exact (zero-variance) predictions at testing time;

(3) convergence to a local optimum of GCN during train-

ing regardless of the neighbor sampling size D(l), with an

asymptotically unbiased stochastic gradient. The theoretical

properties allow us to significantly reduce the time com-

plexity of stochastic training by sampling only D(l) = 2
neighbors per node, yet still retain the quality of the model.

We empirically test our algorithms on six graph datasets, and

the results match with the theory. Comparing with NS, our

Stochastic Training of Graph Convolutional Networks with Variance Reduction

Input

Layer 1

Layer 2

(a) Exact

Input

Layer 1

Layer 2

(b) Neighbour sampling

Input

Layer 1

Layer 2

(c) Control variate

Latest activation

Historical activation

Input

GraphConv

Dropout

Dropout

GraphConv

(1)H

(2)H

GraphConv

GraphConv

(1)

(2)

(d) CVD network

Figure 1. Two-layer graph convolutional networks, and the receptive field of a single vertex.

Dataset V E Degree Degree 2

Citeseer 3,327 12,431 4 15
Cora 2,708 13,264 5 37

PubMed 19,717 108,365 6 60
NELL 65,755 318,135 5 1,597

PPI 14,755 458,973 31 970
Reddit 232,965 23,446,803 101 10,858

Table 1. Number of vertexes, edges, and average number of 1-hop

and 2-hop neighbors per node for each dataset. Undirected edges

are counted twice and self-loops are counted once.

algorithms significantly reduce the bias and variance of the

gradient. Comparing with the exact algorithm which con-

siders all the neighbors, our algorithms with only D(l) = 2
neighbors still get the same accuracy at testing time, and

achieve similar predictive performance during training in

a comparable number of epochs, with a much lower time

complexity, while these results are not achievable by NS.

On the largest Reddit dataset, the training time of our al-

gorithm is 7 times shorter than that of the best-performing

competitor among exact, neighbor sampling and importance

sampling (Chen et al., 2018) algorithms.

2. Backgrounds

We briefly review graph convolutional networks (GCNs),

stochastic training, neighbor sampling, and importance sam-

pling in this section.

2.1. Graph Convolutional Networks

We present our algorithm with a GCN for semi-supervised

node classification (Kipf & Welling, 2017). However, the

algorithm is neither limited to the task nor the model.

Our algorithm is applicable to other models including

GraphSAGE-mean (Hamilton et al., 2017a) and graph at-

tention networks (GAT) (Veličković et al., 2018), and other

tasks (Kipf & Welling, 2016; Berg et al., 2017; Schlichtkrull

et al., 2017; Hamilton et al., 2017b), as long as the model

aggregates neighbor activations by averaging.

In the node classification task, we have an undirected graph

G = (V, E) with V = |V| vertices and E = |E| edges,

where each vertex v consists of a feature vector xv and a

label yv. We observe the labels for some vertices VL. The

goal is to predict the labels for the rest vertices VU := V\VL.

The edges are represented as a symmetric V × V adjacency

matrix A, where Auv is the weight of the edge between u
and v, and the propagation matrix P is a normalized version

of A: Ã = A+ I , D̃uu =
∑

v Ãuv, and P = D̃− 1
2 ÃD̃− 1

2 .

A graph convolution layer is defined as

Z(l+1) = PH(l)W (l), H(l+1) = σ(Zl+1), (1)

where H(l) is the activation matrix in the l-th layer, whose

each row is the activation of a graph node. H(0) = X is the

input feature matrix, W (l) is a trainable weight matrix, and

σ(·) is an activation function. Denote |·| as the cardinality

of a set. The training loss is defined as

L =
1

|VL|
∑

v∈VL

f(yv, z
(L)
v), (2)

where f(·, ·) is a loss function. A graph convolution layer

propagates information to nodes from their neighbors by

computing the neighbor averaging PH(l). Let n(u) be

the set of neighbors of node u, and n(u) be its cardi-

nality. The neighbor averaging of node u, (PH(l))u =
∑V

v=1 Puvh
(l)
v =

∑

v∈n(u) Puvh
(l)
v , is a weighted sum of

neighbors’ activations. Then, a fully-connected layer is ap-

plied on all the nodes, with a shared weight matrix W (l)

across all the nodes.

We denote the receptive field of a node u as all the acti-

vations h
(l)
v on layer l needed for computing z

(L)
u . If the

layer l is not explicitly mentioned, it is the input layer 0.

Intuitively, the receptive field of node u is just all its L-hop

neighbors, i.e., nodes that are reachable from u within L
hops, as illustrated in Fig. 1(a). When P = I , GCN reduces

to a multi-layer perceptron (MLP) model which does not

use the graph structure. For MLP, the receptive field of a

node u is just the node itself.

2.2. Stochastic Training

It is generally expensive to compute the batch gradient

∇L = 1
|VL|

∑

v∈VL
∇f(yv, z

(L)
v), which involves iterat-

Stochastic Training of Graph Convolutional Networks with Variance Reduction

ing over the entire labeled set of nodes. A possible solution

is to approximate the batch gradient by a stochastic gradient

1

|VB|
∑

v∈VB

∇f(yv, z
(L)
v), (3)

where VB ⊂ VL is a minibatch of labeled nodes. However,

this gradient is still expensive to compute, due to the large

receptive field size. For instance, as shown in Table 1,

the number of 2-hop neighbors on the NELL dataset is

averagely 1,597, which means in a 2-layer GCN, computing

the gradient even for a single node needs 1, 597/65, 755 ≈
2.4% nodes of the entire graph.

In subsequent sections, two other stochasticity will be intro-

duced besides the random selection of the minibatch: the

random sampling of neighbors (Sec. 2.3) and the random

dropout of features (Sec. 5).

2.3. Neighbor Sampling

To reduce the receptive field size, Hamilton et al. (2017a)

propose a neighbor sampling (NS) algorithm. NS randomly

chooses D(l) neighbors for each node at layer l and devel-

ops an estimator NS(l)
u of (PH(l))u based on Monte-Carlo

approximation:

(PH(l))u ≈ NS(l)
u :=

n(u)

D(l)

∑

v∈n̂
(l)(u)

Puvh
(l)
v ,

where n̂
(l)(u) ⊂ n(u) is a subset of D(l) random neigh-

bors. Therefore, NS reduces the receptive field size from all

the L-hop neighbors to the number of sampled neighbors,
∏L

l=1 D
(l). We refer NS(l)

u as the NS estimator of (PH(l))u,

and (PH(l))u itself as the exact estimator.

Neighbor sampling can also be written in a matrix form as

Z(l+1) = P̂ (l)H(l)W (l), H(l+1) = σ(Z(l+1)), (4)

where the propagation matrix P is replaced by a sparser

unbiased estimator P̂ (l), i.e., EP̂ (l) = P , where P̂
(l)
uv =

n(u)
D(l) Puv if v ∈ n̂

(l)(u), and P̂
(l)
uv = 0 otherwise. Hamilton

et al. (2017a) propose to perform an approximate forward

propagation as Eq. (4), and do stochastic gradient descent

(SGD) with the auto-differentiation gradient. The approxi-

mated gradient has two sources of randomness: the random

selection of minibatch VB ⊂ VL, and the random selection

of neighbors.

Though P̂ (l) is an unbiased estimator of P ,

σ(P̂ (l)H(l)W (l)) is not an unbiased estimator of

σ(PH(l)W (l)), due to the non-linearity of σ(·). In the

sequel, both the prediction Z(L) and gradient ∇f(yv, z
(L)
v)

obtained by NS are biased, and the convergence of SGD

is not guaranteed, unless the sample size D(l) goes to

infinity. Because of the biased gradient, the sample

size D(l) needs to be large for NS, to keep comparable

predictive performance with the exact algorithm. Hamilton

et al. (2017a) choose D(1) = 10 and D(2) = 25, and the

receptive field size D(1) ×D(2) = 250 is much larger than

one, so the training is still expensive.

2.4. Importance Sampling

FastGCN (Chen et al., 2018) is another sampling-based

algorithm similar as NS. Instead of sampling neighbors

for each node, FastGCN directly subsample the receptive

field for each layer altogether. Formally, it approximates

(PH(l))u with S samples v1, . . . , vS ∈ V as

(PH(l))u = V

V
∑

v=1

1

V
Puvh

(l)
v ≈ V

S

∑

vs∼q(v)

Puvh
(l)
vs
/q(vs),

where they define the importance distribution q(v) ∝
∑V

u=1 P
2
uv . According to the definition of P in Sec. 2.1, we

have q(v) ∝ 1
n(v)

∑

(u,v)∈E
1

n(u) . We refer to this estimator

as importance sampling (IS). Chen et al. (2018) show that

IS performs better than using a uniform sample distribu-

tion q(v) ∝ 1. NS can be viewed as an IS estimator with

the importance distribution q(v) ∝ ∑

(u,v)∈E
1

n(u) , because

each node u has probability 1
n(u) to choose the neighbor

v. Though IS may have a smaller variance than NS, it still

only guarantees the convergence as the sample size S goes

to infinity. Empirically, we find IS to work even worse than

NS because sometimes it can select many neighbors for

one node, and no neighbor for another, in which case the

activation of the latter node is just meaningless zero.

3. Control Variate Based Algorithm

We present a novel control variate based algorithm that uti-

lizes historical activations to reduce the estimator variance.

3.1. Control Variate Based Estimator

While computing the neighbor average
∑

v∈n(u) Puvh
(l)
v ,

we cannot afford to evaluate all the h
(l)
v terms because they

need to be computed recursively, i.e., we again need the

activations h
(l−1)
w of all of v’s neighbors w.

Our idea is to maintain the history h̄
(l)
v for each h

(l)
v as an

affordable approximation. Each time when h
(l)
v is computed,

we update h̄
(l)
v with h

(l)
v . We expect h̄

(l)
v and h

(l)
v to be simi-

lar if the model weights do not change too fast during the

training. Formally, let ∆h
(l)
v = h

(l)
v − h̄

(l)
v , we approximate

(PH(l))u =
∑

v∈n(u)

Puv∆h(l)
v +

∑

v∈n(u)

Puvh̄
(l)
v ≈ CV(l)

u

:=
n(u)

D(l)

∑

v∈n̂
(l)(u)

Puv∆h(l)
v +

∑

v∈n(u)

Puvh̄
(l)
v , (5)

where we represent h
(l)
v as the sum of ∆h

(l)
v and h̄

(l)
v , and

Stochastic Training of Graph Convolutional Networks with Variance Reduction

we only apply Monte-Carlo approximation on the ∆h
(l)
v

term. Averaging over all the h̄
(l)
v terms is still affordable

because they do not need to be computed recursively. Since

we expect h
(l)
v and h̄

(l)
v to be close, ∆hv will be small and

CV(l)
u should have a smaller variance than NS(l)

u . Particu-

larly, if the model weight is kept fixed, h̄
(l)
v should eventually

equal with h
(l)
v , so that CV(l)

u = 0 +
∑

v∈n(u) Puvh̄
(l)
v =

∑

v∈n(u) Puvh
(l)
v = (PH(l))u, i.e., the estimator has zero

variance. This estimator is referred as CV. We will com-

pare the variance of NS and CV estimators in Sec. 3.2 and

show that the variance of CV will be eventually zero dur-

ing the training in Sec. 4. The term CV(l)
u − NS(l)

u =
∑

v∈n(u) Puvh̄
(l)
u − n(u)

D(l)

∑

v∈n̂
(l)(u) Puvh̄

(l)
u is a control

variate (Ripley, 2009, Chapter 5) added to the neighbor

sampling estimator NS(l)
u , to reduce its variance.

In matrix form, let H̄(l) be the matrix formed by stacking

h̄
(l)
v , then CV can be written as

Z(l+1) =
(

P̂ (l)(H(l) − H̄(l)) + PH̄(l)
)

W (l). (6)

3.2. Variance Analysis

We analyze the variance of the estimators assuming all the

features are 1-dimensional. The analysis can be extended to

multiple dimensions by treating each dimension separately.

We further assume that n̂
(l)(u) is created by sampling D(l)

neighbors without replacement from n(u). The following

proposition is proven in Appendix A:

Proposition 1. If n̂
(l)(u) contains D(l) samples from n(u)

without replacement, then Var
n̂

(l)(u)

[

n(u)
D(l)

∑

v∈n̂
(l)(u) xv

]

=
C(l)

u

2D(l)

∑

v1∈n(u)

∑

v2∈n(u) (xv1
− xv2)

2, where C
(l)
u =

1− (D(l) − 1)/(n(u)− 1).

By Proposition 1, we have Var
n̂

(l)(u)

[

NS
(l)
u

]

=
C(l)

u

2D(l)

∑

v1∈n(u)

∑

v2∈n(u) (Puv1h
(l)
v1 − Puv2

h
(l)
v2)

2, in contrast,

the variance of the CV estimator is Var
n̂

(l)(u)

[

CV
(l)
u

]

=

C(l)
u

2D(l)

∑

v1∈n(u)

∑

v2∈n(u)(Puv1∆h
(l)
v1 − Puv2∆h

(l)
v2)

2,

which replaces h
(l)
v by ∆h

(l)
v . Since ∆h

(l)
v is usually much

smaller than h
(l)
v , the CV estimator enjoys much smaller

variance than the NS estimator. Furthermore, as we will

show in Sec. 4.2, ∆h
(l)
v converges to zero during training,

so we achieve not only variance reduction but variance

elimination, as the variance vanishes eventually.

3.3. Implementation Details

Training with the CV estimator is similar as with the NS es-

timator (Hamilton et al., 2017a). Particularly, each iteration

of the algorithm involves the following steps:

Stochastic GCN with Variance Reduction

1. Randomly select a minibatch VB ⊂ VL of nodes;

2. Build a computation graph that only contains the acti-

vations h
(l)
v and h̄

(l)
v needed for the current minibatch;

3. Get the predictions by forward propagation as Eq. (6);

4. Get the gradients by backward propagation, and up-

date the parameters by SGD;

5. Update the historical activations.

Step 3 and 4 are handled automatically by frameworks such

as TensorFlow (Abadi et al., 2016). The computational

graph at Step 2 is defined by the receptive field r
(l) and

the propagation matrices P̂ (l) at each layer. The recep-

tive field r
(l) specifies the activations h

(l)
v of which nodes

should be computed for the current minibatch, according to

Eq. (6). We can construct r(l) and P̂ (l) from top to bottom,

by randomly adding D(l) neighbors for each node in r
(l+1),

starting with r
(L) = VB. We assume h

(l)
v is always needed

to compute h
(l+1)
v , i.e., v is always selected as a neighbor of

itself. The receptive fields are illustrated in Fig. 1(c), where

red nodes are in receptive fields, whose activations h
(l)
v are

needed, and the histories h̄
(l)
v of blue nodes are also needed.

Finally, in Step 5, we update h̄
(l)
v with h

(l)
v for each v ∈ r

(l).

We have the pseudocode for the training in Appendix D.

3.4. Time and Space Complexity

GCN has two main types of computation, namely, the sparse-

dense matrix multiplication (SPMM) such as PH(l), and the

dense-dense matrix multiplication (GEMM) such as UW (l).

We assume that the input node feature is K-dimensional

and the first hidden layer is A-dimensional.

For batch GCN, the time complexity is O(EK) for SPMM

and O(V KA) for GEMM. For our stochastic training al-

gorithm with control variates, the dominant SPMM com-

putation is the average of neighbor history PH̄(0) for the

nodes in r
(1), whose size is O(|VB |

∏L

l=2 D
(l)), and each

node costs O(DK), where D is the average node degree.

Therefore, the time complexity of SPMM is approximately

O(EK
∏L

l=2 D
(l)) per epoch. The dominant GEMM com-

putation is the first fully-connected layer on all the nodes

in r
(1), whose time complexity is O(V KA

∏L

l=2 D
(l)) per

epoch. Both time complexities are
∏L

l=2 D
(l) times higher

than batch GCN, where
∏L

l=2 D
(l) = 2 if we sample 2

neighbors per node and there are 2 GCN layers.

Our algorithm requires an additional O(V LA) space to

store historical activations. However, as implemented in our

code, the history can be stored in main memory along with

the data, which should be larger.

Stochastic Training of Graph Convolutional Networks with Variance Reduction

4. Theoretical Results

Besides smaller variance, CV also has stronger theoretical

guarantees than NS. In this section, we present two theo-

rems. The first states that if the model parameters are fixed,

e.g., during testing, CV produces exact predictions after L
epochs; and the second establishes the convergence towards

a local optimum regardless of the neighbor sampling size.

In this section, we assume that the algorithm is run by

epochs, where each epoch contains I iterations, and in

each iteration we want to compute the stochastic gradi-

ent w.r.t. nodes in Vi. We ensure that the activations of

all nodes are computed at least one in each epoch, so that

the staleness of the history is bounded. We use the sub-

script i for iteration number and CV to distinguish CV

from the exact algorithm, i.e., Z
(l)
i and H

(l)
i , Wi, and

gi(Wi) := 1
|Vi|

∑

v∈Vi
∇f(yv, z

(L)
i,v) are the activations,

model weights, and stochastic gradients obtained by the

exact algorithm; and Z
(l)
CV,i, H

(l)
CV,i, and gCV,i(Wi) are their

CV counterparts. ∇L(Wi) = 1
|VL|

∑

v∈VL
∇f(yv, z

(L)
v)

is the deterministic batch gradient computed by the exact

algorithm. The subscript i may be omitted for the exact algo-

rithm if Wi is a constant sequence. We let [L] = {0, . . . , L}
and [L]+ = {1, . . . , L}.

4.1. Exact Testing

The following theorem reveals the connection between the

exact predictions and the approximate predictions by CV.

The proof can be found in Appendix B.

Theorem 1. For a constant sequence of Wi = W and any

i > LI (i.e., after L epochs), the activations computed

by CV are exact, i.e., Z
(l)
CV,i = Z(l) for each l ∈ [L] and

H
(l)
CV,i = H(l) for each l ∈ [L− 1].

Theorem 1 shows that at testing time, we can run forward

propagation with CV for L epoches and get exact predic-

tion. This outperforms NS, which cannot recover the exact

prediction unless the neighbor sample size goes to infinity.

Comparing with directly making exact predictions by an

exact batch algorithm, CV is more scalable because it does

not need to load the entire graph into memory.

4.2. Convergence Guarantee

The following theorem shows that SGD training with the

approximated gradients gCV,i(Wi) still converges to a local

optimum, regardless of the neighbor sampling size D(l).

Theorem 2. Assume that (1) the activation σ(·) is ρ-

Lipschitz, (2) the gradient of the cost function ∇zf(y, z)
is ρ-Lipschitz and bounded, (3) ‖gCV,V(W)‖∞, ‖g(W)‖∞,

and ‖∇L(W)‖∞ are all bounded by G > 0 for all P̂ ,V and

W . (4) The loss L(W) is ρ-smooth, i.e., |L(W2)−L(W1)−

〈∇L(W1),W2−W1〉| ≤ ρ
2 ‖W2 −W1‖2F ∀W1,W2, where

〈A,B〉 = tr(A⊤B) is the inner product of matrix A and

matrix B. (5) The loss L(W) ≥ L∗ is bounded below.

Then, there exists K > 0, s.t., ∀N > LI , if we run SGD for

R ≤ N iterations, where R is chosen uniformly from [N]+,

we have

ER ‖∇L(WR)‖2F ≤ 2
L(W1)− L∗ +K + ρK√

N
,

for the updates Wi+1 = Wi−γgCV,i(Wi) and the step size

γ = min{ 1
ρ
, 1√

N
}.

Particularly, limN→∞ ER ‖∇L(WR)‖2 = 0. Therefore,

our algorithm converges to a local optimum W where the

batch gradient ∇L(W) = 0. The full proof is in Ap-

pendix C. For short, we show that gCV,i(Wi) is unbiased as

i → ∞, and then show that SGD with such asymptotically

unbiased gradients converges to a local optimum.

Theorem 2 generalizes to graph attention networks

(GAT) (Veličković et al., 2018). We leave the variance

reduced stochastic estimators for GAT, and discussions on

the convergence of GAT and other models in Appendix C.5.

5. Handling Dropout of Features

In this section, we consider introducing a third source of

randomness, the random dropout of features (Srivastava

et al., 2014), which is adopted in various GCN models as

a regularization (Kipf & Welling, 2017; Veličković et al.,

2018). With dropout, the GCN layer becomes Z(l+1) = M◦
(PH(l))W (l), where Mij ∼ Bern(p) are i.i.d. Bernoulli

random variables, and ◦ is the element-wise product. Let

EM be the expectation over dropout masks.

With dropout, all the activations h
(l)
v are random vari-

ables whose randomness comes from dropout, even in

the exact algorithm Eq. (1). We want to design a

cheap estimator for the random variable (PH(l))u =
∑

v∈n(u) Puvh
(l)
v , based on a stochastic neighborhood

n̂
(l)(u). An ideal estimator should have the same dis-

tribution with (PH(l))u. However, such an estimator

is difficult to design. Instead, we develop an estimator

CVD(l)
u that eventually has the same mean and variance

with (PH(l))u, i.e., E
n̂

(l)(u)EMCVD(l)
u = EM (PH(l))u

and Var
n̂

(l)(u)VarMCVD(l)
u = VarM (PH(l))u.

5.1. Control Variate for Dropout

With dropout, ∆h
(l)
v = h

(l)
v − h̄

(l)
v is not necessarily small

even if h̄
(l)
v and h

(l)
v have the same distribution. We develop

another stochastic approximation algorithm, control variate

for dropout (CVD), that works well with dropout.

Stochastic Training of Graph Convolutional Networks with Variance Reduction

Estimator VNS VD

Exact 0 S
(l)
u

NS
C(l)

u

2D(l)

∑

v1,v2∈n(u)(Puv1µ
(l)
v1 − Puv2µ

(l)
v2)

2 n(u)
D(l) S

(l)
u

CV
C(l)

u

2D(l)

∑

v1,v2∈n(u)(Puv1
∆µ

(l)
v1 − Puv2∆µ

(l)
v2)

2
(

3 + n(u)
D(l)

)

S
(l)
u

CVD
C(l)

u

2D(l)

∑

v1,v2∈n(u)(Puv1
∆µ

(l)
v1 − Puv2∆µ

(l)
v2)

2 S
(l)
u

Table 2. Variance from neighbor sampling (VNS) and variance from dropout (ND) of different estimators.

Our method is based on the weight scaling procedure (Sri-

vastava et al., 2014) to approximately compute the mean

µ
(l)
v := EM

[

h
(l)
v

]

. That is, along with the dropout model,

we can run a copy of the model without dropout to obtain the

mean µ
(l)
v , as illustrated in Fig. 1(d). We obtain a stochastic

approximation by separating the mean and variance

(PH(l))u =
∑

v∈n(u)

Puv (̊h
(l)
v +∆µ(l)

v + µ̄(l)
v) ≈ CVD(l)

u

:=
√
R
∑

v∈n̂

Puvh̊
(l)
v +R

∑

v∈n̂

Puv∆µ(l)
v +

∑

v∈n(u)

Puvµ̄
(l)
v ,

where we define n = n̂
(l)(u), R = n(u)/D(l) for short,

h̊
(l)
v = h

(l)
v − µ

(l)
v , µ̄

(l)
v is the historical mean activation,

obtained by storing µ
(l)
v instead of h

(l)
v , and ∆µ

(l)
v = µ

(l)
v −

µ̄
(l)
v . We separate h

(l)
v as three terms, the latter two terms

on µ
(l)
v do not have the randomness from dropout, and µ

(l)
v

are treated as if h
(l)
v for the CV estimator. The first term

has zero mean w.r.t. dropout, i.e., EM h̊
(l)
v = 0. We have

E
n̂

(l)(u)EMCVD(l)
u = 0 +

∑

v∈n(u) Puv(∆µ
(l)
v + µ̄

(l)
v) =

EM (PH(l))u, i.e., the estimator is unbiased, and we shall

see that the estimator eventually has the correct variance if

h
(l)
v ’s are uncorrelated in Sec. 5.2.

5.2. Variance Analysis

We analyze the variance under the assumption that the

node activations are uncorrelated, i.e., CovM

[

h
(l)
v1 , h

(l)
v2

]

=

0, ∀v1 6= v2. We report the correlation between nodes em-

pirically in Appendix G. To facilitate the analysis of the vari-

ance, we introduce two propositions proven in Appendix A .

The first helps the derivation of the dropout variance; and

the second implies that we can treat the variance introduced

by neighbor sampling and by dropout separately.

Proposition 2. If n̂
(l)(u) contains D(l) samples from the

set n(u) without replacement, x1, . . . , xV are random

variables, ∀v,E [xv] = 0 and ∀v1 6= v2,Cov [xv1
, xv2

] =

0, then VarX,n̂(l)(u)

[

n(u)
D(l)

∑

v∈n̂
(l)(u) xv

]

=

n(u)
D(l)

∑

v∈n(u) Var [xv] .

Proposition 3. X and Y are two random variables, and

f(X,Y) and g(Y) are two functions. If EXf(X,Y) =
0, then VarX,Y [f(X,Y) + g(Y)] = VarX,Y f(X,Y) +
VarY g(Y).

By Proposition 3, Varn̂VarMCVD(l)
u can be writ-

ten as the sum of Varn̂VarM

[√
R
∑

v∈n̂
Puvh̊

(l)
v

]

and

Varn̂

[

R
∑

v∈n̂
Puv∆µ

(l)
v +

∑

v∈n(u) Puvµ̄
(l)
v

]

. We refer

the first term as the variance from dropout (VD) and the

second term as the variance from neighbor sampling (VNS).

Ideally, VD should equal to the variance of (PH(l))u and

VNS should be zero. VNS can be derived by replicating the

analysis in Sec. 3.2, and replacing h with µ. Let s
(l)
v =

VarMh
(l)
v = VarM h̊

(l)
v , and S

(l)
u = VarM (PH(l))u =

∑

v∈n(u) P
2
uvs

(l)
v , By Proposition 2, VD of CVD(l)

u is
∑

v∈n(u) P
2
uvVar

[

h̊
(l)
v

]

= S
(l)
u , wich equals with the VD

of the exact estimator as desired.

We summarize the estimators and their variances in Table 2,

where the derivations are in Appendix A. As in Sec. 3.2,

VNS of CV and CVD depends on ∆µv , which converges to

zero as the training progresses, while VNS of NS depends

on the non-zero µv. On the other hand, CVD is the only

estimator except the exact one that gives correct VD.

5.3. Preprocessing Strategy

There are two possible models adopting dropout, Z(l+1) =
P (M ◦ H(l))W (l) or Z(l+1) = M ◦ (PH(l))W (l). The

difference is whether the dropout layer is before or after

neighbor averaging. Kipf & Welling (2017) adopt the for-

mer one, and we adopt the latter one, while the two models

perform similarly in practice, as we shall see in Sec. 6.1.

The advantage of the latter model is that we can preprocess

U (0) = PH(0) = PX and takes U (0) as the new input. In

this way, the actual number of graph convolution layers is

reduced by one — the first layer is merely a fully-connected

layer instead of a graph convolution one. Since most GCNs

only have two graph convolution layers (Kipf & Welling,

2017; Hamilton et al., 2017a), this gives a significant reduc-

tion of the receptive field size and speeds up the computation.

We refer this optimization as the preprocessing strategy.

Stochastic Training of Graph Convolutional Networks with Variance Reduction

Dataset M0 M1 M1+PP

Citeseer 70.8± .1 70.9± .2 70.9± .2
Cora 81.7± .5 82.0± .8 81.9± .7

PubMed 79.0± .4 78.7± .3 78.9± .5
NELL - 64.9± 1.7 64.2± 4.6

PPI 97.9± .04 97.8± .05 97.6± .09
Reddit 96.2± .04 96.3± .07 96.3± .04

Table 3. Testing accuracy of different algorithms and models after

fixed number of epochs. Our implementation does not support M0

on NELL so the result is not reported.

0 50 100 150 2000.4

0.6

0.8

1.0
citeseer

0 50 100 150 2000.2

0.4

0.6

0.8

1.0
cora

0 50 100 150 200
0.2

0.4

0.6

0.8
pubmed

0 100 200 300 400

0.5

1.0

1.5
nell

0 10 20 30 40 500.000

0.025

0.050

0.075

0.100
reddit

0 20 40 60 80 1000.00

0.02

0.04

ppi

M1+PP NS NS+PP IS+PP CV+PP

Figure 2. Comparison of training loss with respect to number of

epochs without dropout. The CV+PP curve overlaps with the Exact

curve in the first four datasets. The training loss of NS and IS+PP

are not shown on some datasets because they are too high.

6. Experiments

We examine the variance and convergence of our algo-

rithms empirically on six datasets, including Citeseer, Cora,

PubMed and NELL from Kipf & Welling (2017) and Red-

dit, PPI from Hamilton et al. (2017a), with the same train /

validation / test splits, as summarized in Table 1. To mea-

sure the predictive performance, we report Micro-F1 for

the multi-label PPI dataset, and accuracy for all the other

multi-class datasets. The model is GCN for the former 4

datasets and GraphSAGE-mean (Hamilton et al., 2017a) for

the latter 2 datasets, see Appendix E for the details on the

architectures. We repeat the convergence experiments 10

times on Citeseer, Cora, PubMed and NELL, and 5 times

on Reddit and PPI. The experiments are done on a Titan X

(Maxwell) GPU.

6.1. Impact of Preprocessing

We first examine the impact of switching the order of

dropout and computing neighbor averaging in Sec. 5.3. Let

M0 be the Z(l+1) = P (M ◦H(l))W (l) model by (Kipf &

Welling, 2017), and M1 be our Z(l+1) = M ◦ (PH(l))W (l)

0 50 100 150 2000.69

0.70

0.71

0.72
citeseer

0 50 100 150 2000.77

0.78

0.79

0.80
cora

0 50 100 150 200

0.78

0.80

pubmed

0 100 200 300 4000.600

0.625

0.650

0.675
nell

0 10 20 30 40 500.950

0.955

0.960

0.965

reddit

0 20 40 60 80 1000.90

0.92

0.94

0.96

ppi

M1+PP NS NS+PP IS+PP CV+PP CVD+PP

Figure 3. Comparison of validation accuracy with respect to num-

ber of epochs. NS converges to 0.94 on the Reddit dataset and 0.6

on the PPI dataset.

model, we compare three settings: M0 and M1 are exact

algorithms without any neighbor sampling, and M1+PP

samples a large number of D(l) = 20 neighbors and prepro-

cesses PH(0) so that the first neighbor averaging is exact.

In Table 3 we can see that all the three settings performs

similarly, i.e., switching the order does not affect the predic-

tive performance. Therefore, we use the fastest M1+PP as

the exact baseline in following convergence experiments.

6.2. Convergence Results

Having the M1+PP algorithm as an exact baseline, the next

goal is reducing the time complexity per epoch to make it

comparable with the time complexity of MLP, by setting

D(l) = 2. We cannot set D(l) = 1 because GraphSAGE

explicitly need the activation of a node itself besides the

average of its neighbors. Four approximate algorithms are

included for comparison: (1) NS, which adopts the NS es-

timator with no preprocessing. (2) NS+PP, which is same

with NS but uses preprocessing. (3) CV+PP, which adopts

the CV estimator and preprocessing. (4) CVD+PP, which

uses the CVD estimator. All the four algorithms have sim-

ilar low time complexity per epoch with D(l) = 2, while

M1+PP takes D(l) = 20. We study how much convergence

speed per epoch and model quality do these approximate

algorithms sacrifice comparing with the M1+PP baseline.

We set the dropout rate as zero and plot the training loss

with respect to number of epochs as Fig. 2. We can see that

CV+PP can always reach the same training loss with M1+PP,

while NS, NS+PP and IS+PP have higher training losses

because of their biased gradients. CVD+PP is not included

because it is the same with CV+PP when the dropout rate

is zero. The results matches the conclusion of Theorem 2,

which states that training with the CV estimator converges

Stochastic Training of Graph Convolutional Networks with Variance Reduction

Alg. Valid. acc. Epochs Time (s)

M1+PP 96.0 4.8± .7 252± 37
NS 94.4± .01 100 445± 14

NS+PP 96.0 39.8± 11 161± 47
IS+PP 95.8± .1 50 251± 6

CV+PP 96.0 7.6± 1.6 39± 8
CVD+PP 96.0 6.8± 1.3 37± 7

Table 4. Time complexity comparison of different algorithms on

the Reddit dataset.

cora pubmed nell citeseer ppi reddit
Dataset

0.0

0.5

1.0

Te
st

in
g

ac
cu

ra
cy

Algorithm
NS
NS+PP
CV
Exact

Figure 4. Comparison of the accuracy of different testing algo-

rithms. The y-axis is Micro-F1 for PPI and accuracy otherwise.

to a local optimum of Exact, regardless of D(l).

Next, we turn dropout on and compare the validating accu-

racy obtained by the model trained with different algorithms

at each epoch. Regardless of the training algorithm, the

exact algorithm is used for computing predictions on the

validating set. The result is shown in Fig. 3. We find that

when dropout is present, CVD+PP is the only algorithm

that can reach comparable validation accuracy with the ex-

act algorithm on all datasets. Furthermore, its convergence

speed with respect to the number of epochs is comparable

with M1+PP, implying almost no loss of the convergence

speed despite its D(l) is 10 times smaller. This is already the

best we can expect - comparable time complexity with MLP,

yet similar model quality with GCN. CVD+PP performs

much better than M1+PP on the PubMed dataset, we sus-

pect it finds a better local optimum. Meanwhile, the simpler

CV+PP also reaches a comparable accuracy with M1+PP

for all datasets except PPI. IS+PP works worse than NS+PP

on the Reddit and PPI datasets, perhaps because sometimes

nodes can have no neighbor selected, as we mentioned in

Sec. 2.4. Our accuracy result for IS+PP can match the re-

sult reported by Chen et al. (2018), while their NS baseline,

GraphSAGE (Hamilton et al., 2017a), does not implement

the preprocessing technique in Sec. 5.3.

6.3. Further Analysis on Time Complexity, Testing

Accuracy and Variance

Table 4 reports the average number of epochs and time

to reach a given 96% validation accuracy on the largest

Reddit dataset. Sparse and dense computations are defined

in Sec. 3.4. We found that CVD+PP is about 7 times faster

than M1+PP due to the significantly reduced receptive field

size. Meanwhile, NS and IS+PP does not converge to the

given accuracy.

cora pubmed nell citeseer ppi reddit
Dataset

0.0

2.5

5.0

7.5

Gr
ad

ie
nt

 B
ia

s

Bias (w.o. dropout)

cora pubmed nell citeseer ppi reddit
Dataset

0

20

40

Gr
ad

ie
nt

 S
td

. D
ev

.

Std. dev. (w.o. dropout)

cora pubmed nell citeseer ppi reddit
Dataset

0

1

2

3

Gr
ad

ie
nt

 B
ia

s

Bias (w. dropout)

cora pubmed nell citeseer ppi reddit
Dataset

0

10

20
Gr

ad
ie

nt
 S

td
. D

ev
.

Std. dev. (w. dropout)

Figure 5. Bias and standard deviation of the gradient for different

algorithms during training.

We compare the quality of the predictions made by different

algorithms, using the same model trained with M1+PP in

Fig. 4. As Theorem 1 states, CV reaches the same test-

ing accuracy as the exact algorithm, while NS and NS+PP

perform much worse.

Finally, we compare the average bias and variance of the

gradients per dimension for first layer weights relative to

the magnitude of the weights in Fig. 5. For models without

dropout, the gradient of CV+PP is almost unbiased. For

models with dropout, the bias and variance of CV+PP and

CVD+PP are usually smaller than NS and NS+PP.

7. Conclusions

The large receptive field size of GCN hinders its fast stochas-

tic training. In this paper, we present control variate based

algorithms to reduce the receptive field size. Our algorithms

can achieve comparable convergence speed with the ex-

act algorithm even the neighbor sampling size D(l) = 2,

so that the per-epoch cost of training GCN is compara-

ble with training MLPs. We also present strong theoreti-

cal guarantees, including exact prediction and the conver-

gence to a local optimum. Our code is released at https:

//github.com/thu-ml/stochastic_gcn.

https://github.com/thu-ml/stochastic_gcn
https://github.com/thu-ml/stochastic_gcn

Stochastic Training of Graph Convolutional Networks with Variance Reduction

Acknowledgements

We thank Shuyu Cheng for his help in proofreading. This

work was supported by NSFC Projects (Nos. 61620106010,

61621136008, 61332007), Beijing NSF Project (No.

L172037), Tiangong Institute for Intelligent Computing,

NVIDIA NVAIL Program, Siemens and Intel. L.S. was

also supported in part by NSF IIS-1218749, NIH BIGDATA

1R01GM108341, NSF CAREER IIS-1350983, NSF IIS-

1639792 EAGER, NSF CNS-1704701, ONR N00014-15-1-

2340, Intel ISTC, NVIDIA and Amazon AWS.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.

Tensorflow: A system for large-scale machine learning.

In OSDI, volume 16, pp. 265–283, 2016.

Berg, R. v. d., Kipf, T. N., and Welling, M. Graph

convolutional matrix completion. arXiv preprint

arXiv:1706.02263, 2017.

Chen, J., Ma, T., and Xiao, C. Fastgcn: Fast learning with

graph convolutional networks via importance sampling.

In ICLR, 2018.

Grover, A. and Leskovec, J. node2vec: Scalable feature

learning for networks. In Proceedings of the 22nd ACM

SIGKDD international conference on Knowledge discov-

ery and data mining, pp. 855–864. ACM, 2016.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-

sentation learning on large graphs. In Advances in Neural

Information Processing Systems, pp. 1025–1035, 2017a.

Hamilton, W. L., Ying, R., and Leskovec, J. Representation

learning on graphs: Methods and applications. arXiv

preprint arXiv:1709.05584, 2017b.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.

arXiv preprint arXiv:1611.07308, 2016.

Kipf, T. N. and Welling, M. Semi-supervised classification

with graph convolutional networks. In ICLR, 2017.

LeCun, Y., Bengio, Y., et al. Convolutional networks for

images, speech, and time series. The handbook of brain

theory and neural networks, 3361(10):1995, 1995.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online

learning of social representations. In Proceedings of the

20th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pp. 701–710. ACM,

2014.

Ripley, B. D. Stochastic simulation, volume 316. John

Wiley & Sons, 2009.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Berg, R. v. d.,

Titov, I., and Welling, M. Modeling relational data

with graph convolutional networks. arXiv preprint

arXiv:1703.06103, 2017.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,

and Salakhutdinov, R. Dropout: a simple way to prevent

neural networks from overfitting. Journal of machine

learning research, 15(1):1929–1958, 2014.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei,

Q. Line: Large-scale information network embedding.

In Proceedings of the 24th International Conference on

World Wide Web, pp. 1067–1077. International World

Wide Web Conferences Steering Committee, 2015.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,

P., and Bengio, Y. Graph attention networks. In ICLR,

2018.

