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Stochastic Transportation-Inventory Network
Design Problem

Shu Jia, Chung-Piaw Teo and Zuo-Jun Max Shen

Abstract— In this paper, we study the stochastic
transportation-inventory network design problem involving
one supplier and multiple retailers. Each retailer faces some
uncertain demand. Due to this uncertainty, some amount
of safety stock must be maintained to achieve suitable ser-
vice levels. However, risk-pooling benefits may be achieved
by allowing some retailers to serve as distribution centers
(and therefore inventory storage locations) for other retail-
ers. The problem is to determine which retailers should
serve as distribution centers and how to allocate the other
retailers to the distribution centers. Shen et al. (2000)
and Daskin et al. (2001) formulated this problem as a set-
covering integer-programming model. The pricing subprob-
lem that arises from the column generation algorithm gives
rise to a new class of submodular function minimization
problem. They only provided efficient algorithms for two
special cases, and assort to ellipsoid method to solve the gen-
eral pricing problem, which run in O(n7log(n)) time, where
n is the number of retailers. In this paper, we show that
by exploiting the special structures of the pricing problem,
we can solve it in O(n2 log n) time. Our approach implicitly
utilizes the fact that the set of all lines in 2-D plane has low
VC-dimension. Computational results show that moderate
size transportation-inventory network design problem can
be solved efficiently via this approach.

I. Introduction

Managing inventory has become a major challenge for
companies as they simultaneously try to reduce costs and
improve service levels in today’s increasing competitive
market. Managing inventory consists of two critical tasks.
First, we must determine the optimum number and loca-
tion of distribution centers. Second, we must determine the
amount of inventory to maintain at each of the distribution
centers. Often these tasks are undertaken separately, re-
sulting in a degree of suboptimization.

We study the design of a stochastic distribution network
in which a single supplier ships products to a set of distribu-
tion centers (DCs). Each DC serves a pool of retailers with
uncertain customer demand. The number and locations of
DCs are not given a priori. They are chosen from the set
of retailers. After being chosen as a DC, this retailer-based
DC is served directly by the supplier and distributes prod-
ucts to some of the other retailers. The central issue in
the stochastic distribution network design problem is how
many and which retailers should be selected to be the DCs,
how to assign the other retailers to the DCs, and how to
manage the inventory at each distribution center.

The model we presented above was motivated by a study
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at a Chicago-based blood bank conducted by Shen et al.
(2000) and Daskin et. al. (2001). “The blood bank sup-
plied roughly 30 hospitals in the greater Chicago area. Its
focus was on the production and distribution of platelets,
the most expensive and most perishable of all blood prod-
ucts. If a unit of platelets is not used within 5 days of
the time it is produced from whole blood, it must be de-
stroyed. The demand for platelets is highly variable as
they are needed in only a limited number of medical con-
texts. When they are used, however, multiple units are
often needed. The hospitals supplied by the blood bank
collectively owned the blood bank and set prices. As a re-
sult they could return a unit of platelets up to the time it
becomes outdated and not be charged for it. Thus, there
was little incentive to manage inventories in an efficient
manner. Many of the larger hospitals ordered almost twice
the number of platelet units that they used each year re-
sulting in the need to destroy thousands of units of this
expensive blood product. Other hospitals ordered almost
all of their needed platelets on a STAT or emergency ba-
sis. The blood bank often had to ship the units to these
hospitals using a taxi or express courier at significant ex-
pense to the network system. Clearly an improved system
was needed. The idea was to establish regional centers at
which platelets would be stored at a collection of nearby
hospitals. By storing platelets at regional centers (located
at a subset of the hospitals) and distributing platelets to
nearby hospitals on an as-needed or daily basis, three ob-
jective were likely to be achievable. First, and the most
importantly, we could use risk-pooling principles to reduce
the necessary safety stock needed to protect against short-
ages. Second, the cost of emergency shipments could be
reduced since platelets would be stored closer to each of
the hospitals. Finally, the training for inventory managers
in an improved network system would be simpler and more
cost-effective since fewer individuals would be involved as
the inventory would be maintained at a small number of
regional distribution centers instead of being maintained at
each individual hospital.”

II. Literature Review

We need to consider both the strategic location costs
and the operational inventory and transportation related
costs in the integrated supply chain network design prob-
lem. Traditionally, the inventory theory research (see for
example, Graves et. al (1993), Nahmias (1997), and Zip-
kin (1997) for a review) treat the number and locations of
DCs as given. Actually, a lot of research in this field focus
on single location or two echelon system with a fixed sin-
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gle warehouse serving a number of retailers. The goal of
this stream of research is to develop and evaluate inventory
policies so as to minimize the inventory related costs while
meet some service level standards. On the other hand,
the literature on facility location theory (see for example,
Daskin (1995), Mirchandani and Francis (1990), Drezner
(1995), and Geoffrion and Power (1995) for a review) usu-
ally ignore or simplify inventory related costs while focus
on the fixed facility location costs and transportation costs.
The objective of location analysis is to decide the number
and location of the DCs and the DC-retailer assignments.

Eppen (1979) showed that significant inventory-cost sav-
ings can be achieved by grouping retailers, and thus capital-
izing on the so-called “risk pooling effects.” Location issue
is therefore an important factor in the overall performance
of inventory system. Barahona and Jensen (1996) studies a
version of the distribution network design problem for com-
puter spare parts. Their model takes into account the costs
of building the DCs and maintaining inventories at the var-
ious locations. To make the model tractable, they imposed
very restrictive assumptions on the inventory costs. Teo
et. al. (2001) studied the impact on inventory costs with
consolidation of distribution centers. They design an al-
gorithm that solves for a distribution system with the to-
tal fixed facility location cost and inventory costs within√

2 of the optimum. They ignore the transportation costs
in their model. Erlebacher and Meller (2000) formulate a
joint location-inventory model with highly non-linear in-
teger objective functions. Continuous approximation and
some other heuristics are used to solve the problem. For a
600-node problem, it took 117 hours on a Sun Ultra Sparc-
station.

Finally, Shen (2000), Shen et. al. (2000), and Daskin et
al. (2001) studied the model presented in the next section.
They were able to solve the pricing problem efficiently (in
time O(nlog(n)) for two special cases: when the variance of
the demand is proportional to the mean (as in the poisson
demand case) or when the demand is deterministic, using
the column generation framework. Although they prove
that the general pricing problem is a submodular func-
tion minimization problem, which can be solved in polyno-
mial time (for example, Grotschel et. al. (1981), Schrijver
(1999), and Iwata et. al. (1999)). Preliminary computa-
tional evidence shows that these algorithms (O(n7 log n))
are still not computationally efficient. We propose a much
faster algorithm (O(n2 log n)) to generate columns for the
general case, using ideas from Chakravarty et al. (1985)
and computational geometry.

Using an advance incremental algorithm for enumera-
tion of vertices over a zonotope (see Onn and Schulman
(2001), where the column generation problem in this paper
is a special case), the running time complexity can be fur-
ther slashed to O(n2). However, the reduction in running
time comes at the expense of more complicated data struc-
ture to implement the incremental algorithm. Instead, we
show that the variable fixing idea proposed by Daskin et
al. (2001) in their lagrangian approach can be extended to
the column generation framework. Using this approach, we

are able to slashed the running time by a factor of 10 and
solve a moderate size transportation-inventory network de-
sign problem (up to 120 retailers) in under 1 minute.

III. Model Formulation

For ease of exposition and for the completeness of this
section, we introduce the model proposed by Shen et al.
(2000) and Daskin et al. (2001) in this section. The read-
ers may want to refer to the original papers for detailed
derivation of the model.

Given a set I of retailers, there is a fixed cost fj of locat-
ing a DC at retailer j. Two different types of inventories
are kept at each DC: the working inventory, which is deter-
mined by the inventory ordering policy adopted, and the
safety stock, which is kept at each DC to protect against the
possibilities of running out of stocks during replenishment
leadtime. We assume each DC orders inventory from the
supplier using an economic order quantity model (EOQ).
To determine the optimal reorder interval and the order
quantity at each DC is not a straight forward task, since
the corresponding order frequency and order quantity are
determined by the mean demand served by the DC which
is a function of the assignment of retailers to the DC. Other
cost terms include the transportation costs from each DC
to the retailers it serves, which are also dependent on the
decisions of retailer assignments. The objective of this net-
work design problem is the following: for a given set I of re-
tailers, each facing independent uncertain demand, decide
how many distribution centers to set up, where to locate
them, which retailers to assign to each distribution center,
how often to reorder at the distribution centers and what
level of safety stock to maintain, to minimize the total facil-
ity location, shipment, working inventory and safety stock
inventory costs.

Following another assumption made in Shen et. al.
(2000), we assume that the non-DC retailers maintain only
a minimal amount of inventory, and we therefore ignore
this inventory in the model below.

To model this problem, we define the following notation:

Inputs and Parameters

• µi: mean (yearly) demand at retailer i, for each i ∈ I
• σ2

i : variance of (daily) demand at retailer i, for each i ∈ I
• fj : fixed (annual) cost of locating a regional distribution
center at retailer j, for each j ∈ I
• dij : cost per unit to ship from retailer j to retailer i, for
each i ∈ I and j ∈ I
• α: desired percentage of retailers orders satisfied (fill
rate)
• β: weight factor associated with the shipment cost
• θ: weight factor associated with the inventory cost
• zα: standard normal deviate such that P (z ≤ zα) = α
• h: inventory holding cost per unit of product per year
• Fj : fixed cost of placing an order at distribution center
j, for each j ∈ I
• L: lead time in days
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• gj : fixed shipment cost from external supplier to distri-
bution center j
• aj : per unit shipment cost from external supplier to dis-
tribution center j

Note that to simplify the notation, we have assumed that
all lead times are equal.

Decision Variables

• Xj = 1, if retailer j is selected as a distribution center
location, and 0, otherwise, for each j ∈ I
• Yij = 1, if retailer i is in served by a distribution center
based at retailer j, and 0, otherwise, for each i ∈ I and
each j ∈ I

The model can now be formulated as follows:

min
∑

j∈I

(
fjXj + [

∑
i∈I(βµidij + βajµi)Yij ]

+
√

2θh(Fj + βgj)
√∑

i∈I µiYij

+θhzα

√
L

√∑
i∈I σ2

i Yij

)

≡ ∑
j∈I

(
fjXj + (

∑
i∈I d̂ijYij)

+Kj

√∑
i∈I µiYij + q

√∑
i∈I σ2

i Yij

)

(1)

∑
j∈I

Yij = 1, for each i ∈ I (2)

Yij −Xj ≤ 0, for each i, j ∈ I (3)

Yij ∈ {0, 1}, for each i, j ∈ I (4)

Xj ∈ {0, 1}, for each j ∈ I (5)

where

d̂ij = βµi(dij + aj),

Kj =
√

2θh(Fj + βgj),

q = θhzα

√
L.

The objective function minimizes the weighted sum of
the following four cost components:
• The fixed cost of locating facilities, given by the term∑

j fjXj .
• The annual shipment cost from the distribution centers

to the non-DC retailers, given by the term β

(∑
i∈I(µidij +

ajµi)Yij

)
.

• The expected working inventory cost, given the solution
to the EOQ equation with ordering cost Fj + βgj , holding
cost θh and demand

∑
i∈I µiYij .

• The annual safety stock cost, given by
θhzα

√
L

√∑
i∈I σ2

i Yij .
The first two terms are structurally identical to those of

the uncapacitated facility model. The last two terms are

related to inventory costs, which are non-linear in the as-
signment variables. The constraints of the model are iden-
tical to those of the uncapacitated facility location problem,
thus the problem we are studying is more difficult than the
standard uncapacitated facility location problem, which is
already a notorious NP-hard problem. We next formu-
late our decision problem as a set-covering model, and we
present a column generation based approach to solve this
model.

Note that every feasible solution to our decision problem
consists of a partition of the set I of retailers into nonempty
subsets, R1, R2, . . . , Rn, together with one designated re-
tailer for each of these n sets.

Let R be the collection of all nonempty subsets of the
set I. For each set R ∈ R, and each member j ∈ R, let
cR,j be the total cost associated with set R with j as the
DC. That is,

cR,j = fj +
∑

i∈R

d̂ij + Kj

√∑

i∈R

µi + q

√∑

i∈R

σ2
i

By switching DC location from j to another retailer i ∈
R, i 6= j, we may get a different total cost associated with
set R. Now we define cR to be the lowest cost of having
one distribution center serve exactly the set R. That is,
cR = minj∈R cR,j .

Note that here we assume a distribution center always
serves itself. This may not be the case for the optimal solu-
tion to our decision problem. See Shen et. al. (2000) for an
example in which some retailer is chosen as a DC location
in the optimal solution but does not serve itself. However,
the method we propose can be modified in a straightfor-
ward way to allow for this possibility.

Let zR,j = 1 if retailer j is used to serve the set of retail-
ers in R. Note that R has to contain j by our assumption.
The set covering model for the network design problem can
now be formulated as:

min
∑

R∈R
∑

j∈R cR,jZR,j

subject to
∑

R∈R:i∈R

(∑
j∈R ZR,j

)
≥ 1, ∀i ∈ I,

ZR,j ∈ {0, 1}, ∀R ∈ R.

Note that in the above formulation, we can group the
variable

∑
j∈R ZR,j together and replaced by ZR, and re-

place the cost term
∑

j∈R cR,jZR,j by cRzR to obtain a
simplified model. The new set-covering model has one vari-
able for each set R ∈ R: ZR = 1 if set R is served together
in the solution, and 0, otherwise, for each R ∈ R.

Now the model, which we will callMR, can be expressed
as follows:

min
∑

R∈R cRZR

subject to
∑

R∈R:i∈R ZR ≥ 1, ∀i ∈ I,
ZR ∈ {0, 1}, ∀R ∈ R.

We begin each iteration by solving the linear relaxation
of the above set-covering model, obtaining an optimal so-
lution Z̄R, R ∈ R, and the corresponding optimal dual
solution π̄i, i ∈ I.
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We want to know, for each column R, whether the re-
duced cost

cR −
∑

i∈R

π̄i ≥ 0,

is non-negative for each R ∈ R. If the answer is yes, then
Z̄ is an optimal solution to MR. If, on the other hand, a
set R with negative reduced cost is found, then R is added
to R′, and the next iteration begins.

Finding R ⊂ R with negative reduced cost, or proving
that no such R exists, is called the pricing problem.

Thus, the pricing problem reduces to finding R∗j , for each
j ∈ I. To find R∗j we must solve the following integer
programming problem, Pj :

min fj +
∑

i∈I(d̂ij − π̄i)Yij

+Kj

√∑
i∈I µiYij + q

√∑
i∈I σ2

i Yij

subject to Yij ∈ {0, 1}, ∀i ∈ I
Yj,j = 1.

Given an optimal solution Y ∗ to Pj , the set R∗j is then
the set {i ∈ I : Y ∗

ij = 1}.
IV. The Pricing Problem

In this section we propose an algorithm to solve the pric-
ing problem Pj . To simplify the notation, we define

ai := d̂ij − π̄i,
bi := K2

j µi,
ci := q2σ2

i ,
zi := Yij ,

for each i ∈ I. Note that fj does not depend on Yij and
hence can be ignored for discussion here. We now have the
following problem Pj , for designated distribution center
j ∈ I:

min
∑

i∈I aizi +
√∑

i∈I bizi +
√∑

i∈I cizi

subject to zi ∈ {0, 1}, ∀i ∈ I
zj = 1.

For each j ∈ I, define set function gj on Ej ≡ I\{j} as
follows. For each S ⊆ Ej ,

gj(S) ≡ aj +
∑

i∈S

ai +
√

bj +
∑

i∈S

bi +
√

cj +
∑

i∈S

ci. (6)

A. Solving the Pricing Problem

Lemma 1: Given a retailer j ∈ I, and associated
minimum-reduced-cost set R∗j ⊂ I. For every i ∈ R∗j\{j},
ai < 0.

Hence we may restrict our search for R∗j to retailers in
I−, where I− ≡ {i ∈ I\{j} : ai < 0}. We next identify
a nice structural property of the set R∗j by extending an
argument in Chakravarty et al. (1985).

Let aS =
∑

i∈S ai, bS =
∑

i∈S bi and cS =
∑

i∈S ci.
Define a new function

hj(x, y, z) := (aj + x) +
√

bj + y +
√

cj + z. (7)

Note that h(x, y, z) is a separable concave function, and

minS⊆I− gj(S) = minS⊆I− hj(aS , bS , cS) (8)

Since the set of ordered pairs {(aS , bS , cS) : S ⊆ I−} is
finite, its convex hull, which will be denoted by H, is a
convex polyhedron. It now follows from (6) that

minS⊆I− gj(S) = minS⊆I− hj(aS , bS , cS)
≥ min(A,B,C)∈H hj(A,B,C).

Since the function hj(A,B, C) is concave in the variables
(A,B, C), the latter minimization problem attains a mini-
mum at an extreme point of H.

Let (A∗, B∗, C∗) be an extreme point of H. Since H is
a polyhedron, it is well known that there exists a linear
function f on H that attains its unique minimum over H
at (A∗, B∗, C∗). Since f is linear, it has a representation
f(A,B, C) = αA + βB + γC defined by real numbers α, β
and γ. The uniqueness of (A∗, B∗, C∗) as the minimizer of
f over H assures that we do not have α = β = γ = 0.

Since H is the convex hull of {(aS , bS , cS) : S ⊆ I−},
αA∗ + βB∗ + γC∗ = min(A,B,C)∈H αA + βB + γC

= minS⊆I− αaS + βbS + γcS

= minS⊆I−
∑

i∈S(αai + βbi + γci).

The set S∗ = {i : αai + βbi + γci < 0} is clearly optimal
for the last optimization problem. Hence, we conclude from
the uniqueness of (A∗, B∗, C∗) as the minimizer of f over
H, that (A∗, B∗, C∗) = (aS∗ , bS∗ , cS∗). Furthermore, R∗j =
S∗.

Note that S∗ = {i : αai +βbi +γci < 0} = {i : α+β bi

ai
+

γ ci

ai
> 0} = {i : βxi + γyi < α}, where xi = −bi/ai and

yi = −ci/ai. Note that xi, yi ≥ 0 for all i.
Although there are infinitely many choices for the param-

eters α, β and γ, it turns out that the number of distinct
partitions obtained by varying the parameters are limited.
This follows from a general result in the theory of VC-
dimension. To describe this result, we need to first intro-
duce some notations.

The VC dimension is defined for any set system S ⊂ 2X

on an arbitrary set X. It is the supremum of the sizes of
all shattered subsets A ⊂ X; here A is called shattered if
S|A = 2A , i.e. for any B ⊂ A there exists a set S ∈ S
such that B = A∩S. For example, if H denote the system
of all closed halfplanes in the plane, then it is not difficult
to check that the VC-dimension of the set system H is 3,
since no 4 points in the plane can be shattered by using
only halfplanes.

The following well-known result shows that the number
of possible candidates for S∗ are essentially small:

Lemma 2 (Vapnik and Chervonenkis (1971); Sauer (1972))
For any set system S of VC dimension at most d, we have∣∣∣∣S|X

∣∣∣∣ ≤ Φd(|X|), where Φd(m) =
(

m
0

)
+

(
m
1

)
+ . . .+

(
m
d

)
.

The above lemma suggests that we need to search among
at most O(n3) possible subsets to determine S∗.
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B. Solving the Pricing Problem: Dual Approach

Using point-line duality, we can cast the above algorithm
in a different way. To describe this dual approach, we first
observed that at the optimal set S∗, the parameters α, β, γ
satisfy the additional properties:
• α = 1,
• 1/(2

√
bj +

∑
i∈S bi) ≤ β ≤ 1/(2

√
bj), and

• 1/(2
√

cj +
∑

i∈S ci) ≤ γ ≤ 1/(2√cj).
The above follows from gradient conditions at the opti-

mal solution, since the concave objective function is of the
form h(x, y, z) = x +

√
y +

√
z and 0 ≤ zi ≤ 1 for all i.

We know S∗ = {i : αai + βbi + γci < 0} = {i : α +
β bi

ai
+ γ ci

ai
> 0} = {i : βxi + γyi < α} for some choice of

α, β and γ. Furthermore, the additional properties allow
us to restrict our search to finding β and γ such that S∗ =
{i : βxi + γyi < 1, β > 0, γ > 0}. The possible choices for
β and γ now lie in the positive orthant. Furthermore, the
inequality βxi +γyi < 1 denotes a half-space in this region.

For each pair of i, j, we solve the equation
{

βxi + γyi = 1
βxj + γyj = 1

This gives rise to solution (βij , γij). We can discard the
solution if any of the βij , γij is non-negative.

In the following we use a three retailer example to illus-
trate how to get the optimal set S∗ (cf. Figure 1).

β 

γ 

0 

1 

2 

3 
A 

B 
C 

β 1 β 
2 β 3 

Fig. 1. Illustration of the dual algorithm

First sort all the intersection points according to the
value of the β coordinates. For ease of exposition, we re-
labelled the points (βij , γij) as (βk, γk) so that βk ≤ βk+1

for all k, k = 1, 2, · · · ,m, and m ≤ n2.
Note that when β ∈ [0, β1), the changes of possible can-

didates for S∗ as γ varies follow an obvious pattern. In the
above example, the possible candidates are {1, 2, 3}, {1, 2},
and {1} (as γ increases). Similarly, the possible candi-
dates for S∗ are {2, 1, 3},{2, 1}, and {2} when β ∈ [β1, β2);
the possible candidates for S∗ are {2, 3, 1},{2, 3} and {2}

when β ∈ [β2, β3); the possible candidates for S∗ when
β ∈ [β3,∞) are {3, 2} and {3} respectively.

More formally, the algorithm can be described as follows:

0 Given points (βk, γk), k = 1, 2, . . . ,m, with β1 ≤ β2 ≤
. . . ≤ βm.
1 For each k in 0, 1, 2, . . ., m (define β0 = 0),
a For each line i, let Γi ≡ 1−βkxi

yi
. i.e., when the β value

is set at βk.
b Sort the lines in non-decreasing value of Γi. WLOG,

let k1 ≤ . . . ≤ kn denote the ordering of the lines when the
β value is set at βk.
c The candidate solutions are {kj , kj+1, . . . , kn}, for each

j in 1, 2, . . . , n, provided Γkj
≥ 0.

Theorem 1: The problem minS⊂I− gj(S) can be solved
in O(n2 log n) time.

V. Computational Results

In this section, we summarize our computational experi-
ence with the algorithms outlined in the previous section.

A. Stochastic Network Design Problem

In this subsection we report the results of solving the
network design problem using column generation method.
The algorithm for the general network distribution problem
is coded in C++, and the linear programming problem is
solved using CPLEX LP Solver.

We generate all the instances of the problem by vary-
ing the number of retailers and the values of β and γ.
The mean demands µi and σ2

i are randomly generated in
[100, 1600] for all i ∈ I. Holding cost is 1, zα = 1.96 (97.5%
service level), ai = 5, gi = 10, Fi = 10 for all i ∈ I. Our
goal is to find ranges of values for β and θ that resulted
in instances that varied in solution difficulty as well as the
fraction of retailers used as distribution centers in the so-
lution.

For each of the instances, we first solve the linear pro-
gramming relaxation of the set-covering model via column
generation. The initial set of columns include all single-
tons. The column labelled “No. of Columns Generated”
indicates the total number of columns added during this
phase. The resulting final optimal objective value is de-
noted by ZLP . In most of all instances generated, the cor-
responding optimal solutions are integral. We denote by
ZH the best upper bound we obtained. In the case where
the linear-programming relaxation solution is not integral,
ZH is obtained by applying an integer-programming solver
to the final master problem. The column labelled ”No.
of DCs Opened” indicates the number of sets R with value
Z∗R = 1 in the optimal linear programming solution. Tables
3 and 4 highlight the results of our computational study.
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INPUT OUTPUT
β θ DCO CT NCG zH/zLP

0.001 0.1 4 66 2793 1
0.002 0.1 7 29 879 1
0.003 0.1 8 24 792 1.001
0.004 0.1 10 16 483 1
0.005 0.1 13 13 382 1
0.001 0.1 4 66 2793 1
0.002 0.2 6 32 966 1.001
0.005 0.5 8 22 685 1
0.005 0.1 13 13 382 1
0.005 1 9 22 644 1.004
0.005 5 5 49 1963 1

Table 1: Computational results for 40 retailers instance.

INPUT OUTPUT
β θ DCO CT NCG zH/zLP

0.001 0.1 6 448 10943 1
0.002 0.1 8 233 6318 1
0.003 0.1 12 105 2607 1
0.004 0.1 21 54 1102 1
0.005 0.1 24 44 538 1
0.001 0.1 6 448 10943 1
0.002 0.2 13 101 2210 1
0.005 0.5 18 61 1324 1
0.005 0.1 24 44 538 1
0.005 1 10 117 3147 1
0.005 5 7 378 9112 1

Table 2: Computational results for 80 retailers instance.

INPUT OUTPUT
β θ DCO CT NCG zH/zLP

0.0001 0.01 10 826 22143 1
0.0002 0.01 15 563 11766 1
0.0003 0.01 24 248 5104 1
0.0004 0.01 28 124 2138 1
0.0005 0.01 33 68 1187 1
0.0001 0.01 10 826 22143 1
0.0002 0.02 23 249 5145 1
0.0005 0.05 29 119 2015 1
0.0005 0.01 33 68 1187 1
0.0005 0.1 15 571 12026 1
0.0005 0.5 11 717 18522 1.002

Table 3: Computational results for 120 retailers instance.
DCO: No. of DCs opened;CT: CPU Time (in sec-

onds);NCG: No. of columns Generated.

VI. Variable Fixing

In the straight forward implementation of the above al-
gorithm, we need to solve, for each retailer, a related sub-
modular function minimization problem where the retailer
is assumed to be the DC. This slows down the column
generation routine considerably. We show next how in-
formation on the primal and dual solution can be used to
“fix” variables, so that we can determine whether a retailer
will be a DC candidate in an optimal solution early in the
column generation routine.

Recall that the set covering model we are trying to solve
is of the form:

min
∑

R∈R
∑

j∈R cR,jZR,j

subject to
∑

R∈R:i∈R

(∑
j∈R ZR,j

)
≥ 1, ∀i ∈ I,

ZR,j ∈ {0, 1}, ∀R ∈ R.

At each stage of the column generation routine, we have:
• A set of dual prices {πj}.
• A set of primal feasible (fractional) solution zS,j . Note
that the variable zS,j is only defined for S, j with j ∈ S,
since only retailers within the set S can be the designated
DC to serve S.
• After solving the pricing problem (one for each re-

tailer), we obtain the reduced cost rj ≡ minS:j∈S

(
cS,j −

∑
k∈S λk

)
. Note that some of the rj ’s may be non-

negative.
Let ZIP and ZLP denote the optimal integral and frac-

tional solution to the set covering problem.
Claim 1:

∑
j:rj≤0 rj +

∑
j πj is a lowerbound to ZLP .

Hence it is a lowerbound to ZIP too.
Let j∗ be a retailer such that r∗j > 0. Let UB be an

upperbound for ZIP .
Claim 2: If

∑
j:rj≤0 rj +

∑
j πj +rj∗ > UB, then retailer

j∗ will never be used as a DC in the optimal solution to
the (integral) set covering problem.

Note that once we determine that the retailer j∗ will
never be used as a DC in the optimal solution, then we do
not need to solve the pricing problem corresponding to j∗

anymore in the rest of the column generation procedure.
In fact, all columns arising from using j∗ as DC (generated
previously) can also be deleted from the LP. This is the
key advantage of the variable fixing method.

The variable fixing method depends largely on the qual-
ity of the upperbound UB. If ZLP = ZIP , then the so-
lution

∑
S,j cS,jzS,j generated at each stage of the column

generation routine will be an upperbound to ZIP . Unfor-
tunately this is not true for all instances. As in Daskin
et al. (2001), we generate an upperbound for the IP by
generating a feasible solution in the following way:
• Let z∗ be the optimal LP solution obtained by solving
the problem using a partial set of columns.
• Order the retailers according to non-decreasing value of
demand.
• Starting from the first retailer (say i) on the list, if for
some S and j, i ∈ S and z∗S,j = 1, then retailer i is served
by DC j. Otherwise, there exists S, T , both containing i,
and j, k, such that z∗S,j > 0, z∗T,k > 0. We serve i using
the DC that will lead to the least total cost, and remove
retailer i from the list.
• Repeat the previous step until the list is empty.
In this way, we can generate a feasible solution to the dis-
tribution network design problem. This solution will be
used as a bound to perform variable fixing in the column
generation routine.
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A. Stochastic Network Design with variable fixing

The column labelled ”No. of DCs OUT” indicates the
number of retailers ruled out from being possible DCs in
the optimal linear programming solution by variable fixing
technique. The parameters we use for the instances below
are the same as what we use for the previous subsection.
Tables 5 and 6 highlight the results of our computational
study.

By applying variable fixing technique, we are able to cut
down the computational time dramatically. The average
CPU time is only about 9% of the CPU time without vari-
able fixing technique. The savings range from about 83%
to 94%. It is especially effective for those difficult instances
that require the most CPU times before. For example, for
β = 0.001, θ = 0.1 in the 80-retailer case, we are able
to solve the problem in about 20 seconds after applying
variable fixing technique, which used to take 448 seconds.

INPUT OUTPUT
β θ DCO DCT CT NCG zH/zLP

0.001 0.1 4 35 4.12 132 1
0.002 0.1 7 31 2.58 87 1
0.003 0.1 8 31 2.01 74 1.001
0.004 0.1 10 29 1.64 59 1
0.005 0.1 13 27 0.82 39 1
0.001 0.1 4 35 4.12 132 1
0.002 0.2 6 33 3.47 106 1.001
0.005 0.5 8 32 1.92 70 1
0.005 0.1 13 27 0.82 39 1
0.005 1 9 29 1.80 66 1.003
0.005 5 5 34 3.89 117 1

Table 4: Computational results for 40 retailers instance.

INPUT OUTPUT
β θ DCO DCT CT NCG zH/zLP

0.001 0.1 6 74 20.73 382 1
0.002 0.1 8 72 12.86 224 1
0.003 0.1 12 66 10.46 171 1
0.004 0.1 21 58 6.86 101 1
0.005 0.1 24 56 4.83 73 1
0.001 0.1 6 74 20.73 382 1
0.002 0.2 13 66 9.54 160 1
0.005 0.5 18 62 8.02 129 1
0.005 0.1 24 56 4.83 73 1
0.005 1 10 69 11.24 188 1
0.005 5 7 73 17.63 314 1

Table 5:Computational results for 80 retailers instance.

INPUT OUTPUT
β θ DCO DCT CT NCG zH/zLP

0.0001 0.01 10 109 58.37 817 1
0.0002 0.01 15 105 38.06 493 1
0.0003 0.01 24 94 25.65 302 1
0.0004 0.01 28 91 18.71 191 1
0.0005 0.01 33 87 11.54 103 1
0.0001 0.01 10 109 58.37 817 1
0.0002 0.02 23 96 26.46 318 1
0.0005 0.05 29 90 17.85 175 1
0.0005 0.01 33 87 11.54 103 1
0.0005 0.1 15 104 39.11 502 1
0.0005 0.5 11 109 50.33 718 1.003

Table 6: Computational results for 120 retailers instance.
DCO: No. of DCs opened;DCT: No. of Dcs out;CT:

CPU Time (in seconds); NCG: No. of columns Generated.

VII. Extension and Generalization

A. More General Pricing Problems

Recall that the pricing problem we solved has the follow-
ing formulation:

gj(S) ≡ u1(x) + f1(u2(y)) + f2(u3(z)) (9)

= (aj + x) +
√

bj + y +
√

cj + z (10)

If the management decides to use some inventory model
other than EOQ, as long as the corresponding pricing prob-
lem can be written as (10), then the approaches detailed
above can be applied to solve the problem. For example,
suppose they decided to use the (Q, r) policy, where an or-
der of size Q is placed whenever the inventory level reaches
(or goes below) r. If we specify that at DC j, the prob-
ability of not stocking out in the leadtime is, say α. Let
S denote the set of retailers served by j which excludes j
itself, let

D :=
∑

i∈S µi + µj ,

σ :=
√∑

i∈S σ2
i + σj

It is well known that the optimal

Q = EOQ =
√

2FjD/h,

and the value of r can be calculated by

F (r) = α,

where F is the distribution function of leadtime demand at
DC j. If F follows Normal distribution with mean D and
standard deviation of σ, then

r = D + zσ,

where z is a constant depends on α. For example, if α =
98%, then z = 2.05.

The total setup and inventory holding costs at DC j can
be calculated as:

TCj(S) = FjD/Q + h(Q/2 + r −D)
=

√
2FjhD + hσ

=
√

2Fjh(
∑

i∈S µi + µj) + h
√∑

i∈S σ2
i + σj .
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Since TCj(S) is structurally identical to the correspond-
ing inventory costs terms in (10), we can apply our algo-
rithm to solve the corresponding pricing problem.

B. Distance Constraint

In the distribution network design problem, it is quite
common to impose additional constraints on the collection
of retailers a DC can serve. For example, a typical geo-
graphical constraint stipulates that the designated DC and
the retailer cannot be too far apart. To enforce this con-
straint in our approach is easy, since we can set the distance
function dij to a huge number if retailer j cannot act as
the DC for retailer i (or vice versa).

C. Capacity Constraint

Another common constraint states that a DC cannot
handle too many retailers (say not more than k retailers
can be served by a single DC), due to capacity or other
technical limitations. In this paper, we describe how our
technique can be extended to handle the additional con-
straint of the type:

∑
i Yi,j ≤ k + 1, for some fixed k.

In this case, the column generation phase reduces to solv-
ing a problem of the type:

min
∑

i∈I aizi +
√∑

i∈I bizi +
√∑

i∈I cizi

subject to zi ∈ {0, 1}, ∀i ∈ I
zj = 1.∑

i zi ≤ k + 1.

Since the objective function is concave and separable, we
can use the same argument to reduce the problem to a
parametric version:

(PK) : minS⊆I−
∑

i∈S(αai + βbi + γci)zi

subject to zi ∈ {0, 1}, ∀i ∈ I−∑
i∈I− zi ≤ k.

The candidate solution for the column generation phase
comes out as the solution to the above linear discrete op-
timization problem for some choice of α, β and γ.

Let b(α, β, γ) denote the value of the kth smallest entry
in the set

{αai + βbi + γci : i ∈ I−}.
It is clear that if zi = 1 in an optimal solution to problem
(PK), then clearly αai + βbi + γci ≤ b(α, β, γ) since αai +
βbi + γci cannot be bigger than the k-th smallest value.
Furthermore, we need αai + βbi + γci < 0, otherwise we
would have zi = 0 in the optimal solution. Conversely, it is
easy to see that zi = 1 in the optimal solution if the point
i satisfies both inequalities.

The inequality

αai + βbi + γci < min(b(α, β, γ), 0)

determines a halfplane in 3D, and at most k out of possible
n− 1 points in the set

S ≡ {(ai, bi, ci) : i ∈ I−}

lies in this halfplane.
Hence the number of candidate solutions depends on the

number of ≤ k-set. Here, a ≤ k-set is the intersection of S
and a halfplane containing at most k points. Clarkson and
Shor (1989) showed that the number of such solutions in
3D is bounded above by O(nk2).

VIII. Conclusion

In this paper, we have outlined a formulation of a
stochastic transportation-inventory network design model.
The model determines how many and where to locate re-
gional distribution centers and how to assign retailers to
the distribution centers to minimize the total system costs,
which include distribution center location costs, inventory
costs at the distribution centers, and the transportation
costs within this two echelon supply chain.

The model was originally proposed in Shen et. al.
(2000). They were able to solve efficiently only two spe-
cial cases of the general model. We proposed two different
algorithms, primal approach and dual approach, to solve
the general model. Although both algorithms have a worst
case running time of O(n2logn), computational results sug-
gest that the dual approach is indeed much faster than the
primal approach. We then applied the variable fixing tech-
nique, which helped us to reduce the CPU time dramati-
cally.

We would like to emphasize the importance of being able
to solve the general supply chain design problem. The two
cases considered in Shen et. al. (2000) require that the de-
mand be either deterministic or σ2

i

µi
= γ for every retailer.

However, in a lot of real life situations, the demand pro-
cesses can be very different from retailer to retailer, and the
ratio of demand variance to mean demand are not the same
for different retailers. Supply chain network design prob-
lems under such conditions are the ones that the manage-
ment is most concerned with, and our model can be applied
successfully in the decision making process for problems of
this kind.

A number of extensions were also discussed in the pa-
per. First, we show that our solution techniques can be
easily extended to more general pricing problems, which
may come from more general inventory management mod-
els, or more general transportation cost structures. Second,
we show that the results in this paper can be generalized to
handle models with distance or some capacity constraints.

We propose two important related future research di-
rections. First, we believe that the primal and dual ap-
proaches are still applicable if we use the (Q, r) model with-
out service level constraints. That is, we wish to show that
the optimal cost of a (Q, r) policy is concave in the average
demand. Second, we hope to consider the cases with mul-
tiple items as well as more general capacity constraints.
Finally, we want to work on the network design models
with more realistic transportation cost structures.
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