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Abstract— The increased penetration of renewable energy
sources to the network highlights the necessity of constructing
stochastic variants of the standard unit commitment and reserve
scheduling problems. Earlier approaches to such problems are
either restricted to ad-hoc methodologies (at the expense of
a suboptimal solution), or lead to computationally intractable
formulations. In this paper we provide a unified framework to
deal with such planning problems for systems with uncertain
generation, while providing a-priori probabilistic certificates
for the robustness properties of the resulting solution. Our
methodology is based on a mixture of randomized and robust
optimization and leads to a tractable problem formulation. To
illustrate the performance of the proposed methodology we
apply it to the IEEE 30-bus network, and compare it by means
of Monte Carlo simulations against an algorithm based on a
deterministic variant of the unit commitment problem.

I. INTRODUCTION

In deregulated power markets unit commitment consists
one of the main tasks of the Transmission System Operator
(TSO). The objective is to compute a binary vector that
corresponds to the “on-off” status of the generating units, and
the generation dispatch, which denotes the amount of power
that each generator should produce to satisfy a given demand
level. In the presence of uncertainty the TSO decides also
about corrective actions to avoid any disruption of service.
The power corresponding to such actions is referred to as
reserves, and is provided by modifying the schedule of the
existing generators or by committing fast-start units.

The unit commitment and reserve scheduling problems
become more challenging due to the increasing penetration
of renewable sources in the power network. This highlights
the necessity of formulating stochastic variants of standard
day-ahead planning problems, while providing probabilistic
guarantees regarding the satisfaction of system constraints.
Earlier approaches to such problems are either restricted
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margellos|rostampour|lygeros@control.ee.ethz.ch

M. Vrakopoulou and G. Andersson are with the Power
Systems Laboratory, Department of Information Technology and
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to ad-hoc methodologies or raise tractability issues. In [1],
[2], the authors follow rule-based approaches for reserve
scheduling, whereas in [3] a hybrid scheme that separates the
unit commitment problem from the reserve scheduling one is
adopted. Following a stochastic approach, [4], [5], [6] (and
references therein), formulate stochastic unit commitment
and reserve scheduling programs, most of them modeling
the uncertain generation by means of scenarios and using
reduction techniques to achieve a computationally simpler
problem. Nevertheless, no guarantees regarding the robust-
ness of the resulting solution are provided, and only an a-
posteriori analysis is conducted. In [7] the authors propose
a robust formulation of the unit commitment problem either
by arbitrarily considering the uncertainty taking values on
a hyper-rectangular set, or by imposing assumptions on the
underlying probability distribution.

In earlier work [8], [9], we concentrated on the problem
of security constrained reserve scheduling for networks with
renewable generation. We formulated a chance constrained
optimization program and employed the scenario approach
of [10], [11], to achieve a tractable reformulation. Following
[10], and if the underlying problem is convex with respect
to the decision variables, finite sample guarantees can be
provided. In this paper we build on this framework, but
follow an alternative methodology [12] that allows to inherit
probabilistic guarantees even if the underlying problem is
not convex (e.g. mixed integer optimization programs arising
in unit commitment problems), while ensuring tractability
of the resulting optimization problem. Another contribution
of this paper is that unlike [5], [6], following the approach
of [9], not only we determine the minimum cost amount
of reserves so that robustness, in a probabilistic sense, is
guaranteed, but we also determine a reserve strategy that
can be deployed in real time operation.

Section II provides a general chance constrained op-
timization framework for the problem of stochastic unit
commitment and reserve scheduling. Section III describes
a methodology that ensures tractability while providing
probabilistic performance guarantees, whereas in Section IV
we demonstrate the efficiency of the proposed approach by
means of a numerical example. Finally, Section V provides
some concluding remarks and directions for future work.

II. PROBLEM FORMULATION

A. Definitions and preliminaries

We consider a power network comprising NG generating
units, NL loads, Nl lines, and Nb buses, and base our work
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on the following assumptions: 1) A standard DC power
flow approach [13] is adopted. 2) We consider only uncer-
tainty due to wind power generation. 3) No N− 1 security
constraints are considered. The first assumption is rather
standard for this type of problems, whereas the second one
is included to simplify the presentation of our results and
be can be easily relaxed to include other uncertainty sources
as well (e.g. PV, load, etc.). The last assumption refers to
the case of component outages emanating from the N − 1
security criterion [14]; they could be modelled following the
procedure outlined in [9].

Under the DC power flow approximation, and by eliminat-
ing the angles by setting the reference one to zero [15], the
power flows can be written as Pf = B f

[
(B̃BUS)

−1P̃ 0
]T

,
whereas the power injection vector P̃ is given by P̃ =[
CG(PG + R) +CwPw −CLPL

]
Nb−1

. Matrix B f denotes the

imaginary part of the admittance of each network branch,
whereas B̃BUS and P̃ denote the remaining parts of the nodal
admittance matrix and the power injection vector, once the
row and column corresponding to the reference angle are
removed. [·]Nb−1 denotes the first Nb−1 rows of the quantity
inside the brackets. PG ∈RNG , Pw ∈R, and PL ∈RNL denote
the generation dispatch, the wind power in-feed and the
load, respectively. Matrices CG,Cw,CL are of appropriate
dimension, and their element (i, j) is “1” if generator j
(respectively wind power/load) is connected to the bus i, and
zero otherwise. P̃ implies that the power injection at every
bus of the network is equal to the difference between the
production and the demand, where the production is given
by the sum of the outputs of the conventional units (plus a
power correction term) and the wind power output.

The power correction term R ∈ RNG is related to the
reserves provided by each generating unit. Following [9], we
define R to be a linear function of the total generation-load
mismatch, which is the difference of the wind power from its
forecast value. This choice is motivated by the fact that any
imbalance between load and generation induces frequency
deviations and activates the frequency controllers, whose
output is distributed in a weighted way to the participating
generators. Modeling the steady state behavior of this action,

R = dup max
(
− (Pw−P f

w),0
)
−ddown max

(
Pw−P f

w ,0
)
, (1)

where Pw−P f
w ∈R denotes the deviation of the wind power

Pw from the forecast P f
w . This term is directly related to

the reserves since for every mismatch, it shows the amount
of power with which each generator should adjust its pro-
duction. Vectors dup ∈ RNG , (ddown ∈ RNG ) represent the
distribution vectors. The sum of their elements is one, and
if a generator is not contributing to the frequency control,
the corresponding element in the vector is zero. The indices
up and down are used to distinguish between the up and
down spinning reserves. Note that the distribution vectors,
apart from allowing us to determine the amount of required
reserves, offer also a reserve strategy that can be deployed
in real time operation [9].

B. Chance constrained unit commitment and reserve
scheduling

The main objective is to decide about the unit commitment
so as to design a minimum cost day-ahead dispatch and
reserve schedule. We consider an optimization horizon Nt =
24 with hourly steps, and introduce the subscript t in our
notation to characterize the value of the quantities defined in
the previous section for a given time instance t = 1, . . . ,Nt .

For each step t of the optimization problem, de-
fine the vector of decision variables to be xt =[
PG,t ,dup,t ,ddown,t ,CSU

t ,Rup,t , Rdown,t , zt
]T ∈ R7NG , where

CSU
t ∈RNG is the start-up cost vector, zt ∈RNG are auxiliary

variables needed to model the minimum up and down times
of each generator, and Rup,t ,Rdown,t ∈ RNG denote the prob-
abilistically worst case up-down spinning reserves that the
system operator needs to purchase. Moreover, ut ∈ {0,1}NG

is a binary vector and denotes the “on-off” status of each
generator. Let C1,C2,Cup,Cdown ∈ RNG be generation and
reserve cost vectors, and [C2] denote a diagonal matrix
with vector C2 on the diagonal. The resulting optimization
problem is given by

min
{xt}Nt

t=1,{ut}Nt
t=1

Nt

∑
t=1

(
CT

1 PG,t +PT
G,t [C2]PG,t +1TCSU

t

+CT
upRup,t +CT

downRdown,t

)
, (2)

subject to
1) Power balance constraints: For all t = 1, . . . ,Nt ,
1T (CGPG,t +CwP f

w,t−CLPL,t) = 0. This constraint encodes the
fact that the power balance in the network should be always
satisfied when Pw,t = P f

w,t . If load uncertainty is also taken
into account, the equality constraint should be satisfied for
the forecast load value.
2) Start-up cost constraints: For t = 1, . . . ,Nt ,

CSU
t ≥ λ

SU
t (ut −ut−1), CSU

t ≥ 0. (3)

Note that CSU
t will always be zero unless the corresponding

generator changes status from “off” to “on” within two
consecutive periods [5]. In this case, due to (2), CSU

t will
become equal to λ SU

t ∈RNG×NG , which is a diagonal matrix
including the start-up costs.
3) Generation and transmission capacity constraints: For all
t = 1, . . . ,Nt

utPmin ≤ PG,t ≤ utPmax,

−Pline ≤ B f

[
(B̃BUS)

−1P̃ f
t

0

]
≤ Pline, (4)

where Pmin,Pmax ∈ RNG denote the minimum and maximum
generating capacity of each unit, Pline denotes the line limits,
and P̃ f

t =
[
CG(PG +R)+CwP f

w −CLPL
]

Nb−1. Note that P̃ f
t is

given by the same expression as P̃t but with Pw,t =P f
w,t . These

constraints denote the generation and transmission capacity
constraints for the deterministic case where the wind power
is equal to its forecast value. Following the formulation of
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[6] we have

−Pdown ≤ PG,t −PG,t−1 ≤ Pup, for t = 1, . . . ,Nt , (5)
t

∑
j=t−∆tup+1

z j ≤ u j, for t = ∆tup, . . . ,Nt , (6)

t+∆tdown

∑
j=t+1

z j ≤ 1−u j, for t = 1, . . . ,Nt −∆tdown, (7)

zt ≥ ut −ut−1, zt ≥ 0, for t = 1, . . . ,Nt . (8)

Equation (5) models the ramping constraints of each gen-
erator, whereas by means of the auxiliary variables zt ,
t = 1, . . . ,Nt , (6), (7), (8) encode minimum up and down
times for the generating units. Pup,Pdown ∈ RNG denote the
ramping limits of each unit, and ∆tup,∆tdown ∈R+ denote the
minimum time a unit needs to change status.
4) Distribution vector constraints: For all t = 1, . . . ,Nt ,
1T dup,t = 1, 1T ddown,t = 1, encoding the fact that the ele-
ments of the distribution vectors should sum up to one.
5) Probabilistic constraints:

P
(
{Pw,t}Nt

t=1 ∈ RNt | −Pline ≤ B f

[
(B̃BUS)

−1P̃t
0

]
≤ Pline,

utPmin ≤ PG,t +Rt ≤ utPmax,

−Rdown,t ≤ Rt ≤ Rup,t ,

for all t = 1, . . . ,Nt

)
≥ 1− ε, (9)

where Rt is given by (1). The first constraint inside the
probability encodes the standard transmission capacity con-
straints, whereas the second one provides guarantees that the
scheduled generation dispatch plus the reserve contribution
Rt will not result in a new operating point outside the gen-
eration capacity limits. The last constraint of (9) is included
to determine the reserves Rup,t ,Rdown,t that guarantee that the
generation and transmission capacity constraints are satisfied
with high probability.

III. PROPOSED METHODOLOGY

A. Dealing with the chance constraint

Using a more compact notation, the chance constrained
problem of Section II-B can be written as

min
x∈RNx ,u∈{0,1}NGNt

J(x) subject to (P1)

P
(

δ ∈ ∆ | A(δ )x+Bu+ c(δ )≥ 0
)
≥ 1− ε,

where x ∈ RNx with Nx = 7NGNt is a vector including
the decision variables, u ∈ {0,1}NGNt is a vector of binary
variables, and δ ∈ ∆ ⊂ RNt is the vector of uncertain pa-
rameters (the wind power prediction error for every hour
t = 1, . . . ,Nt ). Variables x,u and δ consist “stacked” versions
of {xt}Nt

t=1, {ut}Nt
t=1 and {Pw,t−P f

w,t}Nt
t=1, respectively. J(x)∈R

is quadratic in x, and for each δ ∈ ∆, A(δ ),B,c(δ ) are of
appropriate dimension. It is assumed that ∆ is endowed with
a σ -algebra D , and that P is a probability measure defined
over D . For all x∈RNx , the constraint functions are assumed

to be measurable with respect to D and the Borel σ -algebra
over RNt .

To solve (2)-(9) we have to transform the chance con-
strained problem to a tractable, but in some sense equivalent
problem. To avoid introducing arbitrary assumptions on P
and its moments we follow a scenario based methodology.
Due to the binary vector u, we can not apply the procedure
of [10] and substitute the chance constraint with a finite
number of hard constraints corresponding to scenarios of the
uncertainty. Following such an approach would not allow
us to provide any probabilistic guarantee, since convexity
with respect to the decision variables is required. Moreover,
even if this condition were satisfied, the number of scenarios
that one needs to generate grows linearly with respect to the
decision variables [11], thus hampering the applicability of
the method to large scale systems. To overcome this difficulty
we exploit the recent results of [12], and follow a three step
procedure.

Step 1: Let B(p) =×Nt
j=1[p

min
j , pmax

j ] be a hyper-rectangle
parameterized by p = (pmin, pmax) ∈ R2Nt , where pmin =
(pmin

1 , . . . , pmin
Nt

) ∈ RNt and pmax = (pmax
1 , . . . , pmax

Nt
) ∈ RNt .

Consider now the problem

min
p∈R2Nt

Nt

∑
i=1

(
pmax

i − pmin
i

)
subject to (P2)

P
(

δ ∈ ∆ | δi ∈ [pmin
i , pmax

i ], for i = 1, . . . ,Nt

)
≥ 1− ε.

By minimizing the sum of the interval lengths which contain
every uncertainty element δi, P2 provides an appropriate
parametrization p so that B(p) encloses at least an 1− ε

fraction of the probability mass of the uncertainty vector δ .
In general B(p) could be any convex set with convex volume,
and instead of P2 we could minimize the volume of B(p)
which encloses δ with probability at least 1− ε .

Step 2: Problem P2 is a convex problem by construction
and we can apply the standard scenario approach to obtain
a solution. Let β ∈ (0,1) be a confidence parameter and
following [11] choose the number of uncertainty realizations
N that need to be extracted according to N ≥ 2

ε

(
2Nt + ln 1

β

)
.

Consider now the scenario program that corresponds to P2

min
p∈R2Nt

Nt

∑
i=1

(
pmax

i − pmin
i

)
subject to (P3)

δ
(k)
i ∈ [pmin

i , pmax
i ], for i = 1, . . . ,Nt ,k = 1, . . . ,N.

Following [10], with confidence at least 1−β , the optimal
solution p∗ of P3 is feasible for the chance constrained
problem P2.

Step 3: Finally, we pose the following robust counterpart
of problem P1

min
x∈RNx ,u∈{0,1}NGNt

J(x) subject to (P4)

A(δ )x+Bu+ c(δ )≥ 0, for all δ ∈ B(p∗)∩∆.

Note that this is not a randomized program, and we require
the constraints to be satisfied for all values of the uncertainty
inside B(p∗)∩ ∆. Therefore, P4 is a robust mixed-integer
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quadratic problem. As shown in Proposition 1 of [12], with
confidence at least 1− β , any feasible solution of P4 is
feasible for the initial chance constrained problem P1.

B. Tractable robust reformulation

Following the methodology outlined in the previous sec-
tion, to solve P1 requires generating N scenarios, where N is
independent of the number of decision variables and depends
only on the dimension of the parameter vector p, and then
solving P4 which is a robust program. This procedure leads
to a tractable problem as long as P4 is tractable. To ensure
this, we follow the approach of [16], [17], whose authors
propose a tractable reformulation of robust convex programs,
that was subsequently extended in [18] to capture robust
mixed-integer problems as well.

For a certain class of uncertainty sets (e.g. hyper-
rectangular) it is shown in [17] that problems in the form of
P4 are tractable and remain in the same class as the original
problems, e.g. robust mixed-integer programs remain mixed-
integer programs. This is achieved under the assumption that
the constraint functions are concave and homogeneous with
respect to the uncertainty vector, and by introducing some
additional decision variables and constraints. Notice that the
homogeneity assumption is trivially satisfied in our case, but
the elements of A(δ ) are not necessarily concave with respect
to δ due to the max terms in (1). However, P4 exhibits a
particular structure that allows us to apply the methodology
of [17]. Specifically, since the constraints that couple the
individual stages (every hour i = 1, . . . ,Nt ) are deterministic,
and the constraints of each stage depend only on the uncer-
tainty elements and decision variables that correspond to that
stage, we can split the robust constraint in P4 in two robust
constraints as follows. Considering for simplicity ∆ = RNt ,
one of these constraints requires A(δ )x+Bu+c(δ )≥ 0 for all
δ ∈ B+, where B+ = {δ ∈ B(p∗)|δi ≥ 0 for all i = 1, . . . ,Nt},
and the other requires A(δ )x+Bu+c(δ )≥ 0 for all δ ∈ B−,
where B− = {δ ∈ B(p∗)|δi ≤ 0 for all i = 1, . . . ,Nt}. In other
words, the first constraint should be satisfied for all values of
the uncertainty in the positive region B+ ⊂ B(p∗), whereas
the second should be satisfied for all values of the uncertainty
in the negative region B−⊂B(p∗), thus rendering A(δ ) linear
in δ for each robust constraint (to see this inspect (1)).

Similar to the parametrization vector p, let p+, p−

be parametrization vectors corresponding to the hyper-
rectangular regions B+ and B−, respectively. In the sequel,
we follow the methodology of [17] to show how a robust
mixed-integer linear constraint in the form of P4 can be
replaced by a list of linear constraints. To avoid unnecessarily
complicating the notation, we show this only for a single
robust constraint; however, following the aforementioned
discussion, the constraint in P4 should be replaced with two
robust constraints corresponding to B+ and B−, and for each
of them one should apply the procedure presented in the
sequel with the parametrization vector p being replaced with
p+ and p−, respectively.

For all j = 1, . . . ,Nt let e j ∈ RNt be a unit vector whose
j-th element is “1”, and p0 = 0.5(pmin + pmax) ∈ RNt be

a vector whose elements are the middle points of each
interval [pmin

j , pmax
j ], j = 1, . . . ,Nt . Moreover, denote by Nr

the number of rows of A(δ ) and let y ∈ RNr , Q ∈ RNr×Nt

(with elements qi j) be additional decision variables. We are
now in a position to define an optimization problem which
provides a tractable reformulation of P4.

min
x∈RNx ,u∈{0,1}NGNt ,y∈RNr ,Q∈RNr×Nt

J(x) subject to (P5)

1) Ai(e jeT
j (pmax− p0))x+ ci(e jeT

j (pmax− p0))≥ qi j,

for all i = 1, . . . ,Nr, j = 1, . . . ,Nt ,

2) Ai(e jeT
j (pmin− p0))x+ ci(e jeT

j (pmin− p0))≥ qi j,

for all i = 1, . . . ,Nr, j = 1, . . . ,Nt ,

3)
Nt

∑
j=1

qi j ≥ yi, for all i = 1, . . . ,Nr,

4) A(p0)x+Bu+ c(p0)+ y≥ 0.

We discuss now the interpretation of the structure of P5.
Note that we seek to transform P4 in a tractable form. Its
constraints can be equivalently written as

A(p0 +∆p)x+Bu+ c(p0 +∆p)≥ 0, (10)

for all ∆p with ∆p j ∈ [pmin
j − p0

j , pmax
j − p0

j ], j = 1, . . . ,Nt . Un-
der the concavity and homogeneity assumption for A(·),c(·)
(note that these assumptions hold only if we distinguish
between B+ and B−), we have that for any ∆p, A(p0+∆p)≥
A(p0)+A(∆p) and c(p0 +∆p) ≥ c(p0)+ c(∆p). Therefore,
it suffices to require that for all admissible ∆p

A(p0)x+Bu+ c(p0)+A(∆p)x+ c(∆p)≥ 0. (11)

To achieve this, we need to bound the term A(∆p)x +
c(∆p). Consider first the worst case perturbation vectors
e jeT

j (pmax− p0) ∈ RNt , e jeT
j (pmin− p0) ∈ RNt , for each j =

1, . . . ,Nt . Notice that these vectors have all their elements
zero and in the j-th position include the maximum (respec-
tively minimum) deviation of this element from the middle
point p0

j . For each i = 1, . . . ,Nr, constraints 1), 2), impose a
bound qi j to the terms Ai(e jeT

j (pmax− p0))x+ci(e jeT
j (pmax−

p0)) and Ai(e jeT
j (pmin− p0))x+ci(e jeT

j (pmin− p0)). Letting
now yi, i = 1, . . . ,Nr, as set by constraint 3), and considering
the worst case superposition of the perturbation vectors, for
each i= 1, . . . ,Nr we have that Ai(∆p)x+ci(∆p)≥∑

Nt
j=1 qi j ≥

yi. The last equation implies that A(∆p)x+ c(∆p) ≥ y, and
together with (11) justifies constraint 4).

Problem P5 is a mixed-integer quadratic problem, and
compared to P4 has 2(Nt +1)Nr additional decision variables
and 2(2Nt +1)Nr additional constraints, where the factor of
2 accounts for the fact that we need to consider two robust
constraints corresponding to B+ and B−, respectively. Due
to the equivalence between P5 and P4, the optimal solution
of P5 is feasible for P1 with confidence at least 1−β . The
proposed procedure is summarized in Algorithm 1.

Note that a vertex enumeration scheme can be also applied
in the particular set-up without an exponential dependance
on the dimension of the uncertainty. The reason is that the
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Algorithm 1 Proposed approach.
1: Stochastic unit commitment and reserve scheduling.
2: Set u0 ∈ {0,1}NG B initial status of the generating units.
3: Fix ε ∈ (0,1), β ∈ (0,1).
4: Define B(p) =×Nt

j=1[p
min
j , pmax

j ] and
generate N ≥ 2

ε

(
2Nt + ln 1

β

)
scenarios.

5: Solve P3 and determine p∗.
B p∗ is feasible for P2 with probability at least 1−β .

6: Solve P5.
B P5 is equivalent with P4 and its optimal solution is feasible
for P1 (i.e. (2)-(9)) with probability 1−β .

Algorithm 2 Benchmark approach.
1: Deterministic unit commitment.
2: Set u0 ∈ {0,1}NG B initial status of the generating units.
3: Define x1

t =
[
PG,t ,CSU

t ,zt
]T ∈ R3NG and set Pw = P f

w ,
xt ← x1

t for all t = 1, . . . ,Nt .
4: Solve (2)-(8).
5: Stochastic reserve scheduling.
6: Fix {ut}Nt

t=1 according to Step 4, and ε ∈ (0,1), β ∈ (0,1).
7: Define x2

t =
[
PG,t ,dup,t ,ddown,t ,Rup,t , Rdown,t

]T ∈ R5NG ,
and set xt ← x2

t for all t = 1, . . . ,Nt .
8: Generate Ñ ≥ 2

ε

(
5NGNt + ln 1

β

)
scenarios.

9: Solve the scenario program that corresponds to (2)-(9).
B the resulting optimal solution is feasible
for (2)-(9) with probability 1−β .

uncertainty affecting the constraints of each time-step is
scalar and does not influence the constraints of the other
time-steps. Therefore, for each stage i = 1, . . . ,Nt it suffices
to enforce the corresponding constraints only for the extreme
values of uncertainty interval (pmax

i , pmin
i ).

IV. NUMERICAL STUDY

A. Simulation set-up

To illustrate the performance of our algorithm we compare
it against a hybrid methodology, where the unit commitment
and reserve scheduling problems are treated separately. We
start by formulating the deterministic variant of the unit
commitment problem, for the case where the wind power is
equal to its forecast. Note that since this corresponds to the
nominal case no reserves are needed (for Pw = P f

w , (1) leads
to R = 0). Therefore, defining x1

t =
[
PG,t ,CSU

t ,zt
]T ∈ R3NG ,

we need to solve over (2)-(8) with respect to {x1
t }

Nt
t=1,{ut}Nt

t=1,
with Pw,t = P f

w,t for all t = 1, . . . ,Nt .
At a next step, we fix the “on-off” status of the generating

units (and also CSU
t ,zt ) to the binary vector computed by

the deterministic unit commitment program, and formulate a
stochastic reserve scheduling problem. This requires solving
(2)-(9), where minimization is now carried out with respect
to x2

t =
[
PG,t ,dup,t ,ddown,t ,Rup,t , Rdown,t

]T ∈ R5NG . To deal
with the resulting chance constrained problem we follow the
standard scenario approach [11], and substitute the chance
constraint with Ñ ≥ 2

ε

(
5NGNt + ln 1

β

)
hard constraints. The

term 5NGNt denotes the number of decision variables in
the chance constrained program. The basic steps of this
procedure, which we will refer to as “benchmark approach”,

are summarized in Algorithm 2. Note that in the benchmark
approach we use the standard scenario approach instead
of the proposed methodology, thus generating a different
number of scenarios. This is motivated by the fact that
our objective is to demonstrate the potential advantage of
using Algorithm 1 against an algorithm that does not support
chance constrained mixed-integer problems.

To compare the proposed approach with the benchmark
one we carried out Monte Carlo simulations. To generate
scenarios for the wind power error, we used a Markov chain
based model (see [9]). All optimization problems were solved
using the solver CPLEX [19] via the MATLAB interface
YALMIP [20].

B. Simulation results

Algorithms 1 and 2 are applied to the IEEE 30-bus net-
work [21] with a wind power generator connected to bus 22;
numerical data for the reserve, start-up and production cost
vectors can be found in [22], whereas Pup = Pdown = Pmax/3
and the elements of the minimum up and down time vectors
(∆tup,∆tdown) corresponding to the first two generators were
chosen to be 2 hours.

When attempting to solve the problem using Algorithm
2 we faced memory problems due to the high number of
constraints Ñ. To carry out the comparison study and illus-
trate the advantage of a stochastic unit commitment problem,
we removed the ramping constraints (5) that couple the
optimization stages. The linear dependance of the constraints
on the uncertainty elements, together with the fact that the
stages in Algorithm 2 are decoupled (the binary variables are
fixed), allows us to use for every stage only the minimum and
maximum value of the Ñ scenarios. The resulting problem
is computationally less expensive, and can be solved by
existing tools. At the end of the section we reconsider
constraint (5) and repeat our analysis only for Algorithm 1. It
should be apparent that, in contrast to the standard scenario
approach, the proposed methodology enables us to deal with
problems of higher dimension with low computational cost;
due the robust problem involved at Step 3 of our method,
the resulting solution is not necessarily less conservative.

Fig. 1 shows for one day of the simulated data the total
scheduled cost (sum of the production, reserve and start-
up costs), and the production cost. The cost pattern follows
the load profile that was employed. The proposed algorithm
leads to lower total cost, while the production cost is similar
for both methods. The improvement in terms of cost is
due to the scheduling flexibility offered by the proposed
algorithm, where the unit commitment is solved together
with the reserve scheduling problem, allowing us to identify
more optimal unit commitment schedules.

We repeated the procedure outlined by Algorithms 1 and
2 for 30 days of our data-set, corresponding to different
forecast and actual wind power values. Fig. 2 shows for
each day the relative cost difference between the costs
generated by Algorithms 1 and 2. For all days this difference
is always positive (a maximum improvement of 1.29% is
encountered), highlighting that the proposed approach leads
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Fig. 1. Total scheduled cost (solid line) as the sum of the production,
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the simulated data. The “blue” lines correspond to the proposed approach
(Algorithm 1), whereas the “red” lines correspond to the benchmark
approach (Algorithm 2).
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Fig. 2. Relative cost difference between the cost generated by Algorithm
2 and the cost generated by Algorithm 1, normalized with the cost of
Algorithm 2, for 30 days of the simulated data.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
x 105

to
ta

l c
os

t (
$)

 −
 A

lg
or

ith
m

 1

time (days)

Fig. 3. Total cost per day using Algorithm 1 and including the ramping
constraints (5).

to systematically lower cost compared to the benchmark
approach. Fig. 3 shows the total cost for every day, obtained
after applying Algorithm 1 while considering the ramping
constraints (5) of the generating units.

V. CONCLUDING REMARKS

In this paper a unified framework for solving the problem
of stochastic unit commitment and reserve scheduling is
proposed, while providing a priori guarantees for the prob-
ability of constraint satisfaction. Current work concentrates

toward incorporating security constraints in the developed
framework and decentralizing the developed scheme.
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reserves in power systems with high penetration of wind power,” IEEE
Transactions on Power Systems, vol. 24, no. 2, pp. 900–910, 2009.

[6] A. Papavasiliou, S. Oren, and R. O’Neill, “Reserve requirements for
wind power integration: A scenario-based stochastic programming
framework,” IEEE Transactions on Power Systems, vol. 26, no. 4,
pp. 2197 – 2206, 2011.

[7] D. Bertsimas, E. Litvinov, X. Sun, J. Zhao, and T. Zheng, “Adaptive
robust optimization for the security constrained unit commitment
problem,” submitted to IEEE Transactions on Power Systems, 2011.

[8] M. Vrakopoulou, K. Margellos, J. Lygeros, and G. Andersson, “A
Probabilistic Framework for Security Constrained Reserve Schedul-
ing of Networks with Wind Power Generation,” submitted to IEEE
International Conference & Exhibition (ENERGYCON), 2012.

[9] ——, “A Probabilistic Framework for Reserve Scheduling and N-1
Security Assessment of Systems with High Wind Power Penetration,”
IEEE Transactions on Power Systems, submitted, 2012.

[10] G. Calafiore and M. Campi, “The scenario approach to robust control
design,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp.
742–753, 2006.

[11] M. Campi, S. Garatti, and M. Prandini, “The scenario approach for
systems and control design.” Annual Reviewes in Control, vol. 33,
no. 2, pp. 149–157, 2009.

[12] K. Margellos, P. Goulart, and J. Lygeros, “On the road between
robust optimization and the scenario approach for chance constrained
optimization problems,” submitted to IEEE Transactions on Automatic
Control, 2012.

[13] G. Andersson, Modeling and Analysis of Power Systems. Lecture
Notes, ETH Zürich, 2011.
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