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In this paper, a new hybrid multiobjective algorithm, namely, the modified bald eagle search Algorithm (MBES), integrated with
the grasshopper optimization algorithm, is proposed to solve the unit commitment (UC) problem. We consider a standard 10-unit
power system with two wind farms, two photovoltaic farms, and flexible loads for optimization purposes. The UC problem is
tackled under uncertainties related to demand and renewable generation capacities. To account for these uncertainties,
probability density functions (PDFs) are assigned to the sources of uncertainty, and Monte Carlo simulation (MCS) is
employed to select several scenarios with specific probability coefficients. Additionally, two innovative objective functions based
on operation cost and emissions are introduced, with each scenario weighted based on its occurrence probability. To assess the
performance of the proposed MOGOA-MBES algorithm, simulations are conducted across three scenarios with varying
conditions, and the results are compared against those obtained from several multiobjective algorithms. Our findings,
supported by optimization results and the S-metric index, demonstrate that the proposed MOGOA-MBES algorithm
outperforms other algorithms in terms of reducing operation cost and emissions. Furthermore, the simulation results reveal
that uncertainties lead to an increase in cost and emissions, whereas the inclusion of flexible loads and their participation in
the UC program can effectively mitigate cost and emission levels.

1. Introduction

One of the important and fundamental issues in the power
system study is providing the electrical demand for consumers
at a lower operating cost. Certainly, it cannot be done in any
way, and there are many limitations [1, 2]. Therefore, unit
commitment (UC) is one of the most important subjects in
power system operation [3]. In recent decades, due to the
increase in the price of energy as well as environmental emis-
sion, the use of renewable energy sources such as wind and
photovoltaic farms has increased [4]. If the penetration of
these resources increases, they can directly affect the studies
of economic dispatch (ED) and unit commitment directly,
and the power system calculations will change [5, 6]. On the
other hand, uncertainty is an undeniable part of systems anal-

ysis. Without considering uncertainty, the results do not have
sufficient validity and accuracy [7]. In recent years, several
studies have been done in the field of unit commitment of
the power system to renewable sources [8–10]. Unit UC stud-
ies can be divided into six categories: traditional methods [11],
innovative methods [12], artificial intelligence methods
[13–15], stochastic methods [16], estimated control methods
[17], and other theoretical methods [18].

The traditional methods used in the UC program include
linear programming (LP) [19], nonlinear programming (NLP)
[20] and law-based methods of dynamic programming [21].
In [22], a UC program is done based on the on/off mode of
power generation units and the continuous implementation
of power sharing. Also, mixed integer linear programming
(MILP) is used to solve the UC problem and minimizing
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operation cost. In [23], the MILP is used for solving the UC
problem, and the demand response program (DRP) is used
to reduce peak hour load. The results show that DRP can help
reduce operation cost. Traditional methods cannot be the best
solution for the UC problem because they are not practical
due to the nonlinearity and high order of power systems. In
recent years, metaheuristic algorithm are used for solving UC
problem. The optimization algorithms such as whale optimiza-
tion algorithm (WOA) [24], genetic algorithm (GA) [25], parti-
cle swarm optimization (PSO) algorithm [26], and gray wolf
optimization (GWO) algorithm [27]. Bayesian optimization is
also used for unit commitment and reducing cost and emission
in the power system [28]. Bayesian optimization is an effective
approach for fixing luxurious black-box optimization issues,
and it determines the candidates’ answers for steeply priced
evaluation via optimizing the acquisition characteristic [29].
In [30], a parameter-free self-tuning variant of NSGA-II for
multiobjective environmental/economic dispatch optimization.
NSGA-RL outperforms NSGA-II and other existing methods,
achieving improved satisfaction levels and a well-distributed
Pareto front. It eliminates the need for parameter tuning, mak-
ing it a promising approach for multiobjective optimization
problems. In [31], a binary fishmigration algorithm is proposed
for solving the UC problem. The UCmodel for this reference is
a combination of thermal units’ operation cost, investment cost,
and distributed generation cost. Metaheuristic algorithms have
a weakness in their dependency on algorithm parameter tuning.
Poor selection of algorithm parameters can lead to algorithm
nonconvergence or getting trapped in local optima [32].

Including demand response program (DRP) in the UC
problem is done in recent years. The participation of flexible
loads in DRP can greatly reduce the cost of operating the
power system [33]. The flexible loads can reduce their sub-
sumption when the power system faces an energy shortage.
Therefore, for the duration and amount of energy reduction
by flexible loads in the power system, they should be rewarded.
In addition to reducing the power shortage and reducing the
operating cost, the presence of flexible loads in the power sys-
tem is effective in improving the load profile, and improving
the power quality and reliability indexes of power systems
[34]. In [35], DRP is considered in the UC program, and the
operation cost has been reduced by 2.5% compared to the
nonimplementation of DRP. Also, a genetic algorithm is used
for solving the UC problem.

The weakness of the reviewed articles is not considering
uncertainty. Uncertainty is an undeniable part of the UC stud-
ies, and considering the uncertainty will increase the accuracy
of the UC results. The main source of uncertainty in the UC
program for the power system with renewable farm are load
uncertainty and renewable generation capacity uncertainty
[36]. Also, the price of electricity and load also have uncer-
tainty. The amount of storage power, amount of production,
load, and price of electricity in UC are estimated by several
methods, and the inherent error of this forecast causes devia-
tion from the optimal plan and, as a result, it causes inappropri-
ate use [37]. On the one hand, changes in weather conditions
affect the production of renewable resources, and on the other
hand, they change the amount of load. The estimated weather
conditions for the participation program of the power genera-

tion units are made according to the meteorological data from
the local center or the external center [38].

In this paper, the UC program a standard power system
in present of photovoltaic and wind farm with high penetra-
tion is done. In the UC study, the uncertainties of the electri-
cal load and renewable farms are considered, and a weighted
objective function based on scenario possibilities is pro-
posed. So, possible scenarios are more effective in the objec-
tive function values due to the increase in their coefficient.
Also, an innovative hybrid algorithm of the multiobjective
grasshopper optimization algorithm and modified bald eagle
search (MOGOA-MBES) is proposed to solve the problem.
Therefore, the main contributions of this paper are

(i) Proposing weighted heuristic objective functions
based on the probability of occurrence

(ii) Proposing an innovative hybrid algorithm with
accuracy

(iii) Solving the problem of the participation of units in
the power system with high penetration of renew-
able PV and wind farms

In Figure 1, the graphical abstract of UC problem solving
method is shown.

In the following, problem formulation is done in Section
2. In this section, load and renewable source uncertainty
modeling is done first, and then the Monte Carlo simulation
for scenario selection is briefly described. Finally, the pro-
posed objective functions and problem constraints are
introduced. In Section 3, the proposed hybrid optimization
algorithm is introduced. The simulation result analysis is
done in Section 4. The results are compared with several
algorithms. Finally, the conclusions and suggestions for the
future research are done in Section 5.

2. Problem Formulation

The unit commitment problem in the presence of uncer-
tainties requires a complete understanding of the influential
sources of uncertainty and their accurate and appropriate
modeling. In the studied power system, electrical load uncer-
tainty and renewable farm power uncertainty are considered,
and other uncertainty sources are ignored due to their small
impact on the UC problem. To model the uncertainties, the
probability density function (PDF) corresponding to load
and generation uncertainties should be carefully selected
according to the values of the previous measurements.

2.1. Uncertainties Modeling. The electrical demand in the
power system constantly changes, and it is not possible to
consider an accurate pattern for the load changes. Weather
condition changes and time vary are two main factors in
changing consumption patterns. Daily and weekly changes
in demand mainly depend on the behavior patterns of differ-
ent energy consumers. Uncertainty created due to changes in
loading conditions can have a significant impact on the UC
study. Previous studies and applications have shown that the
use of the normal distribution aligns well with real-world
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data on electrical load intensity and provides acceptable
results. The normal PDF is widely used for electrical demand
uncertainty modeling, which can be expressed in the form of
equation (1) [39].

f PLð Þ = 1ffiffiffiffiffiffi
2π

p ∗
σPL

exp −
PL − μPLð Þ2
2∗σ2PL

 !
, ð1Þ

where PL, μPL, and σPL are electrical load, average load, and
standard deviation, respectively. The uncertainty of wind
power is studied as another important influencing factor in
the problem of UC in the understudy power system. Wind
speed is a random variable, and meteorological data can be
suitable for estimating the wind energy potential. Wind
speeds in many geographical areas exhibit a phenomenon
that can be described by the Weibull distribution. The Wei-
bull distribution is defined by two main parameters called
shape and scale. These parameters allow for customization
of the Weibull distribution to fit the data and describe spe-
cific conditions such as gust length, and maximum wind

speed. The probabilistic nature of wind speed can be mod-
eled by the Weibull PDF [40].
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Figure 2: The wind farm power curve.
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Figure 1: Graphical abstract of the proposed UC problem solving method.
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where υt is wind speed and kt and ct are the shape factor and
scale factor of the Weibull PDF which are calculated by

kt =
συt
μυt

� �−1:086
, ð3Þ

Ct =
μυt

Γ 1 + 1/ktð Þð Þ , ð4Þ

where μυt and συ
t are the mean and variance of the wind data,

respectively. These parameters are calculated based on his-
torical data of wind speed. The wind farm generation capac-
ity can be calculated by

Pw =
Pr

V3 − V3
ci

V3
r −V3

ci

, Vci ≤V ≤ Vr ,

Pr , Vr ≤V ≤ Vco,

0, o:w,

8>>>><>>>>: ð5Þ

where Pr is wind farm rated power, and Vci, Vco, and Vr cut-
in, cut-off, and rated wind speeds of wind turbines, respec-
tively. The wind turbine power curve is shown in Figure 2.

The production power of the photovoltaic farm depends
on the intensity of solar radiation, the absorption capacity of
the array surface, and the ambient temperature. The inten-
sity of solar radiation has a probabilistic nature. Previous
studies and simulations have demonstrated that the use of
the beta distribution aligns well with observed data on solar
radiation intensity. The beta distribution is defined by two
primary parameters, called alpha and beta. Estimating these

parameters from observed data is relatively straightforward
and can be performed using common statistical inference
methods. Beta PDF can be used to estimate the solar radia-
tion on the farm which is formulated by equation (6) [41].

f tpv sit
À Á

=
0, αt > 0, βt > 0,

Γ αt + βtÀ Á
Γ αtð ÞΓ βtÀ Á sit

À Áαt−1 1 − sit
À Áβt−1, o:w,

8><>:
ð6Þ

where sit is irradiation random variable, Γ is gamma func-
tion, αt and βt are the parameters of the beta PDF. The
values of αt and βt depend on the mean and standard devi-
ation of the radiation data. The PV farm generation capacity
can be calculated by equation (23)

PPV = Pr × f PV
si
sis

+ αt T − Tsð Þ
� �

, ð7Þ
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where Pr is photovoltaic farm rated power, f PV is photovol-
taic array surface cleanliness factor, sis is standard irradia-
tion (1000w/m2), αt temperature coefficient, T is array
temperature, and Ts is standard temperature (25°C).

2.2. Scenario Generation. To consider the uncertainty related
to variables, the iterative technique is used. The problem is
solved in several times and each time, the possible input var-
iables are selected using the probability density function. In
this method, a stopping criterion is defined to ensure that
the correct result is obtained. The stopping criterion is a cri-
terion that, if it is fulfilled in every iteration of solving the
problem, the problem ends and the obtained results are dis-
played in the output. In the framework of probabilistic anal-
ysis of the objective function, the problem is expressed as
y = f ðzÞ, where z is the vector of possible variables of the
problem, and the dense function has a unique probability.
In this case, for the possible analysis of the problem, the
objective function is calculated in the form of

y = 〠
Ns

s=1
πs × f zð Þ, ð8Þ

where πs is the sth scenario possibility, and f is its fitness.
The value of πs in each scenario is determined by the prob-
ability density function. The Monte Carlo simulation (MCS)
method is also used to select the scenario. The scattering of
scenarios selected by MCS helps to select the most likely
conditions that may occur in the power system. In
Figure 3, an overview of the Monte Carlo method is shown.

The fundamental steps of uncertainty calculation by the
Monte Carlo method are as follows:

Step 1: definition of the mathematical model of the mea-
surement system

Step 2: select PDF for each input quantities
Step 3: obtaining the probability density functions of the

output quantity
Step 4: determining the uncertainty of the measurement

system

2.3. Objective Functions. To solve the UC problem, two objec-
tive functions are considered. The first objective function is
defined based on operation cost, and the second objective
function is defined based on environmental emission. The
operation cost function is a combination of the power genera-
tion cost of power plant units, wind and photovoltaic farm
costs, transmission losses cost, and the cost of flexible loads
by participating in the demand response program.

Min f1 =Min〠
NS

k=1
Sκ 〠

T

t=1
cost tð Þ

=Min〠
NK

k=1
Sκ 〠

T

t=1
〠
Nu

u=1
Ck
U tð Þ + 〠

Nwt

i=1
Ci
WT tð Þ + 〠

NPV

j=1
Cj
PV tð Þ + CLoss tð Þ + CDR tð Þ

 !
,

ð9Þ

where Ck
UðtÞ, Ci

WTðtÞ, Cj
PVðtÞ, CLossðtÞ, and CDRðtÞ are the

thermal unit cost, wind farm cost, photovoltaic farm cost,
transmission losses cost, and demand response program cost
of flexible loads. Also, Sκ is the probability of kth scenario.
The thermal units’ cost can be calculated by equation (10) [22].

CU i, tð Þ = CF
U i, tð Þ + CSC

U i, tð Þ, ð10Þ

whereCF
Uði, tÞ is fuel cost of the unit andCSC

U ði, tÞ is startup and
shutdown cost ith thermal unit. The fuel cost with considering
valve point effect can be calculated by equation (11). The valve
point effect in cost function is calculated by sinusoidal term.

CF
U i, tð Þ = aiP

2 i, tð Þ + biP i, tð Þ + ci + di sin ei Pmin ið Þ − P i, tð Þ
� �� ���� ���:

ð11Þ

The fuel cost is shown in Figure 4.
The thermal unit startup and shutdown cost can be

calculated by

CSC
U i, tð Þ = SUC ið Þ × U i, tð Þð −U i, t − 1ð Þj j, ð12Þ

where each time startup and shutdown (SUC) is calculated
by equation (13) according to the duration of the unit being
out of service.

SUC ið Þ =
HSC ið Þ, Toff ≤ CST ið Þ +MDT ið Þ,
CSC ið Þ, Toff > CST ið Þ +MDT ið Þ,

(
ð13Þ

where HSC is the hot startup cost and CSC is cold startup
cost. Also, Toff is unit shutdown time interval, CSTðiÞ the
time required for cold startup, and MDTðiÞ is the minimum
turn-off time of i th unit. The wind farm and PV farm costs
are by equations (14) and (15), respectively. It should be
noted that the first-order model can be the best choice for
renewable farms operation cost, and higher-order equations
may cause the complexity of the problem and does not have
much effect on the accuracy of the final result and may cause
the algorithm to be trapped in the local optimum use of
higher order equations will cause the complexity of the
problem and does not have much effect on the accuracy of
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Figure 7: Bald eagles search stage and spiral movement.
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the final answer and may cause the algorithm to be trapped
in the local optimum [24].

Ci
WT tð Þ = A + BPwt tð Þ, ð14Þ

Cj
PV tð Þ = C +DPPV tð Þ, ð15Þ

where A, B, C, and D are the cost coefficients of wind and
PV farms, PwtðtÞ is generated power of the wind farm, and
PPVðtÞ is the generated power of the PV farm. The transmis-
sion loss cost can be calculated by equation (16) [25].

CE
Loss tð Þ = PLoss tð Þ × CE tð Þ, ð16Þ

where PLossðtÞ is per hour transmission loss and CEðtÞ is
electricity price. The PLossðtÞ is calculated using the

PLoss = Boo + 〠
Ng

j=1
BjoPj + 〠

Ng

i=1
〠
Ng

j=1
PiBijPj: ð17Þ

The UC problem changes if flexible load inn power sys-

tem is allowed to participate in demand response program
(DRP). The reward that should be paid due to the participa-
tion of flexible loads in the DRP is calculated by

CDR tð Þ = PDR tð Þ × RDR tð Þ, ð18Þ

where PDR is the amount of power reduced by the flexible
loads and RDR is the amount of bonus that is paid to the flex-
ible load for each megawatt of reduced power consumption.

In recent years, governmental and nongovernmental orga-
nizations have paid attention to the issue of environmental
emission caused by thermal power plant units. Because they
believe that a significant share of emissions is related to the
power generation units in the power plant. Therefore, in this
paper, emission is considered as a separate objective function.
The second objective function can be calculated by

Min f2 Xð Þ =Min〠
NS

k=1
Sk 〠

T

t=1
Emission tð Þ =Min〠

NS

k=1
sk 〠

T

t=1
〠
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Pk
u tð Þ × Ek

u

( )
:

ð19Þ
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For the studied power system, only the sources of emission
are thermal units and the PV and wind farms are free of any
emission. Ek

u indicates per megawatt emission of a power plant

unit at time t which it includes CO2, SO2, and NOx. The opti-
mization algorithm should select operation points in such a
way that the operating cost and emission are minimal [42–46].

Start
•Select the MOGOA-MBES algorithm parameters (Population size, Maximum iteration and etc.)
•Initialize the MBES population. (Select f, l, u)
•While Ite<Max_Ite
•For all BES do
•Initialize the MOGOA population.
•Calculate objective function for all the grasshoppers.
•Find non-dominated particles and store in repository.
•Select best solution.
•While Ite<Max_Ite
•For all grasshopper do
•Update S, G, A.
•Update grasshopper position.
•Find non-dominated particles and update repository.
•Select best solution.

end for
•Ite=Ite+1;
•end while
•perform select space
•perform search space
•perform swooping
•end for
•end while

End

Algorithm 1: Pseudo-code of the MOGOA-MBES.

Table 1: Cost and emission coefficients of thermal units [69].

Unit G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

pmin(MW) 150 135 73 60 73 57 20 47 20 55

pmax MWð Þ 470 460 340 300 243 160 130 120 80 55

MUT (h) 8 8 5 5 6 3 3 1 1 1

MDT (h) 8 8 5 5 6 3 3 1 1 1

Startup cost (cold) ($) 9000 10000 1100 1120 1800 340 520 60 60 60

Startup cost (HOT) ($) 4500 5000 550 560 900 170 260 30 30 30

CST (h) 5 5 4 4 4 2 2 0 0 0

Initial status 8 8 -5 -5 -6 -3 -3 -1 -1 -1

Cost

ai 0.00043 0.00063 0.00039 0.0007 0.0008 0.00056 0.00211 0.00480 0.10908 0.00951

bi 21.60 21.05 20.81 23.90 21.62 17.87 16.51 23.23 19.58 22.54

ci 958.20 1313.60 604.97 471.60 480.29 601.75 502.70 639.40 455.60 692.40

di 450 600 320 260 280 310 300 340 270 380

ei 0.0410 0.0360 0.028 0.052 0.063 0.0480 0.0860 0.0820 0.0980 0.0943

Mission

αi 10.33908 10.3390 30.03910 30.039 32.000 32.0000 033.000 033.0005 35.0005 36.00012

βi -0.24444 -0.24444 -0.40695 -0.4069 -0.3813 -0.38132 -0.39023 -0.39023 -0.39524 -0.39864

γi 0.00312 0.00312 0.00509 0.0050 0.0034 0.00344 0.00465 0.00465 0.00465 0.00470
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2.4. Constraints. The UC problem constraints are as follow:
Power balance constraint: the amount of electric power

generation and consumption must be equal in every hour.

〠
Nu

k=1
Pk
u tð Þ + 〠

NPV

j=1
Pj
PV tð Þ + 〠

NWT

i=1
Pi
WT tð Þ = PLoad tð Þ + PLoss tð Þ − PDR tð Þ:

ð20Þ

Thermal units’ constraints: the thermal units’ constraints
are as follows:

ukPMin
u ≤ Pk

u tð Þ ≤ ukPMax
u ð21Þ

Pk
u tð Þ − Pk

u t − 1ð Þ ≤URMax
u ð22Þ

where uk is a binary number show unit status and UR is
slope rate of production.

Renewable farms constraints: the generated power capac-
ity of wind and PV are limited.

PMin
WT ≤ Pi

WT tð Þ ≤ PMax
WT , ð23Þ

PMin
PV ≤ Pj

PV tð Þ ≤ PMax
PV : ð24Þ

Emission constraint: the amount of emission produced by
the thermal units should be less than the permissible limit.

Emissionku tð Þ ≤ EPermit
u , ð25Þ

where EPermit
u is the maximum allowed amount of emission

produced by the thermal unit.

3. Proposed Optimization Algorithm

To solve the UC problem andminimize of objective functions,
a hybrid multiobjective grasshopper optimization algorithm
and modified bald eagle search algorithm (MOGOA-MBES)
are proposed. The performance of optimization algorithms is
highly dependent on the parameters of the algorithm. If the
algorithm parameters are not selected correctly, there is a pos-
sibility of nonconvergence or getting trapped at local optimal
points. The velocity control parameters and scale control
parameters have crucial role in MOGOA performance. The
velocity control parameters include factors such as accelera-
tion coefficient and time-varying coefficient. They influence
the speed at which the grasshoppers move during the search.
The scale control parameters include factors such as the scale
change coefficient and scale change range. They are used to
adjust the scale of position and velocity changes for the grass-
hoppers. Therefore, for the proposed algorithm, the parame-
ters of the MOGOA are optimally selected by the modified
version of the BES algorithm (MBES). So that in each iteration
of the MOGOA algorithm, its parameters are optimally deter-
mined by the MBES. The mechanism of the proposed algo-
rithm is shown in Figure 5.

As shown in Figure 5, the UC problem is solved using
the MOGOA algorithm, and in each iteration, its parameters
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are optimized by the BES algorithm. Consequently, by precisely
adjusting the parameters of the MOGOA algorithm through
the BES algorithm, the best results will be obtained [47–51].

3.1. Multiobjective GOA Algorithm. The grasshopper optimi-
zation algorithm (GOA) is a particle-based metaheuristic
algorithm which is modeled on the behavior of grasshopper.
The effectiveness of the GOA has been proven in various
articles, but in this paper, a modified version of the GOA
algorithm is presented. The search method in the GOA con-
sists of two parts: exploitation and exploration. For the
exploration section, search agents are affected to move sud-
denly, while grasshoppers want to move locally. The swarm-
ing behavior of grasshoppers can be model as follows [52].

Xi = Si +Gi + Ai, ð26Þ

where Xi is the position of the ith particle, Si is the social
interaction, Gi is the gravitational force on the ith particle,
and also Ai is wind advection. Note that to avoid random

behavior, this equation can be written as equation (21).

Xi = r1Si + r2Gi + r3Ai, ð27Þ

where r1, r2, and r3 are random numbers with uniform dis-
tribution in the range of (0, 1). The Si can be defended as

Si = 〠
N

j=1
j≠i

s dij
À Ácdij , ð28Þ

where dij = jxj − xij and cdij = ðxj − xiÞ/dij are the distance
and is unit vector between ith and jth grasshopper, respec-
tively. Also, s is a function to define the strength of social
forces, which is calculated by

s rð Þ = f e−r/l − e−r , ð29Þ

where f is the attraction intensity and l is the attractive
length scale. The gravitational force (Gi) can be calculated by

Gi = −g beg , ð30Þ

where g is the gravitational constant and beg represents a
unit vector towards the center of the earth. Finally, the wind
advection (Ai) is formulated as

Ai = ucew , ð31Þ

where u is a constant thrust and cew is a unit vector on the
windward side. By substituting S, G, and A in equation
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Figure 11: The PV farm generation capacity for the scenarios.
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(21), this equation can be expanded as equation (32) [52]

Xi = 〠
N

j=1
j≠i

s xj − xi
�� ��À Á xj − xi

dij
− g beg + ucew , ð32Þ

where N is the number of the grasshoppers.
The multiobjective grasshopper optimization algorithm

(MOGOA) is an extended version of the GOA algorithm,
in which instead of an optimal solution, several optimal
results will be created in the form of a Pareto front which
are saved in the repository [53–57]. The archived results

are updated by the Pareto front solutions, and finally, the
MOGOA will select one of them from the repository. The
main issue is to achieve a goal to increase the distribution
of solutions in the archive. For this purpose, the number of
neighboring results in the neighborhood of each result is
selected by using a fixed interval, and the number of the
neighboring results is calculated, and it is considered as a
quantitative measure to evaluate the congestion of the area
in the Pareto front. The probability the selected result from
the repository is calculated by

Pi =
1
Ni

, ð33Þ
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Figure 13: The wind farm generation capacity for the scenarios.
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Figure 14: The Pareto front for the first part of simulation.
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where Ni is the number of the results in the neighboring of i
th results.

3.2. Modified BES Algorithm. The bald eagle search (BES)
algorithm is a population-based intelligent optimization
algorithm. Bald eagles often hunt from high altitudes, and
they are able to track fish from long distances. Figure 6
shows bald eagles hunting. In order to find food, eagles
choose an area with a certain capacity for fish and determine
the route accordingly [58].

The BES algorithm to imitate the behavior of bald eagles is
divided into three stages: space selection, search, and swooping.
In the space selection stage, bald eagles choose the best place to
search for prey in the search space and it is expressed as

Pnew, i = Pbest + α × r Pmean − Pið Þ, ð34Þ

where r is a random number with uniform distribution, α is a
number between 1.5 and 2, Pbest is the best region with high
nutritional value, and Pmean is the details of the previous step.
Search spaces are selected close to each other in terms of food
nature. The α parameter for the modified version of the BES
algorithm is calculated by equation (35). This equation shows
that the α is not constant, and it is dynamic. Choosing a
dynamic coefficient for the α helps the algorithm determine
the optimal value with higher accuracy.

α = α0 1 + iteMax − iteð Þ/iteMaxð Þ: ð35Þ

In the search stage, bald eagles move in a spiral direction in
the search space and choose the best position to hunt prey. This
feature enables the BES algorithm to discover new spaces and
increase diversity. Figure 7 shows the search space stage.

The search space stage can be formulated by

Pi, new = Pi + y ið Þ × Pi − Pi+1ð Þ + x ið Þ × Pi − Pmeanð Þ, ð36Þ

x ið Þ = xr ið Þ
max xrj jð Þ , ð37Þ

y ið Þ = yr ið Þ
max yrj jð Þ , ð38Þ

xr ið Þ = r ið Þ × sin θ ið Þð Þ, ð39Þ
yr ið Þ = r ið Þ × cos θ ið Þð Þ, ð40Þ
θ ið Þ = a × π × rand, ð41Þ

r ið Þ = θ ið Þ × R × rand, ð42Þ
where the parameter a is between 5 and 10 and defines the
point search angle. The R is used to determine the number
of cycles and is between 0.5 and 2. Finally, in the swooping
stage, eagles dive from the best place towards their prey.
Equations ((43)–(49)) formulate the swooping stage [58].

Pi, new = rand × Pbest + x1 ið Þ × Pi − c1 × Pmeanð Þ
+ y1 ið Þ × Pi − c2 × Pbestð Þ, ð43Þ

x1 ið Þ = xr ið Þ
max xrj jð Þ , ð44Þ

y1 ið Þ = yr ið Þ
max yrj jð Þ , ð45Þ

xr ið Þ = r ið Þ × sinh θ ið ÞÞ½ �, ð46Þ
yr ið Þ = r ið Þ × cosh θ ið ÞÞ½ �, ð47Þ

θ ið Þ = a × π × rand, ð48Þ
r ið Þ = θ ið Þ × R × rand: ð49Þ

The eagle movement is plotted by a polar equation. Also,
the best position can be found by multiplying the center
point and current point division of polar for the x-axis and
multiplying best point and current point division for the y
-axis. The parameters c1 and c2 increase the intensity of
the eagle search movement [59–63]. The optimization result
of the MBES algorithm on the benchmarks and comparing it
with some other algorithms showed that the proposed MBES
algorithm is more accurate than its previous version and
other optimization algorithms.

3.3. MOGOA-MBES. The proposed algorithm is a combina-
tion of the multiobjective grasshopper algorithm (MOGOA)
and the mutant version of the bald eagle search (MBES)
algorithm. In the proposed hybrid algorithm, the parameters
of the MOGOA (f , l, and u) are optimally estimated by the
MBES algorithm in each iteration. The flowchart of the pro-
posed MOGOA-MBES algorithm is shown in Figure 8.

The pseudo-code of the proposed MOGOA-MBES algo-
rithm is given in Algorithm 1.
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Figure 15: The S-metric index for the first part of simulation.

Table 2: The best results for the first part of the simulation.

NSGAII MOPSO MODE MOGOA Proposed

Cost ($) 732614 732758 732608 732547 732318

Emission (ton) 256715 252804 252864 252097 249167
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Table 3: The optimization results comparison for the first part of simulation.

NSGAII MOPSO MODE MOGOA Proposed

GD 36217 33117 32457 31209 29882

SM 2921 2837 2741 2689 2653

HV 1.08344691e9 1. 06548738e9 0. 98569639e9 0. 93455681e9 0. 89339305e9
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Figure 16: Production power of the units for the first part of the simulation.
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4. Simulation Results and Discussion

In this section, first the studied power system and its param-
eters are introduced, and then the results of the proposed
MOGOA-MBES are stated. Also, for better analysis of the
results, the UC problem was also solved with multiobjective
particle swarm optimization (MOPSO), nondominated sort-
ing genetic algorithm (NSGAII), multiobjective differential
evolution (MODE), and multiobjective grasshopper optimi-
zation algorithm (MOGOA). The population size and a
maximum number of iterations are 100 and 50 for all the
optimization algorithms, respectively. The maximum num-
ber of iterations is chosen in such a way to ensure that the
algorithms have reached their final value.

4.1. Introduction of the Case Study. In this paper, a standard
10-unit power systemwith two wind farms, and two photovol-
taic farms is selected for doing simulations. The 10-unit power
system provides a simplified representation of a larger-scale
power system. It strikes a balance between capturing essential
system characteristics and keeping the model manageable and
computationally feasible for analysis and optimization. The
use of a standardized 10-unit power system facilitates bench-
marking and comparison of different UC algorithms and
methodologies. The cost and emission coefficients of the
power system are given in Table 1. This table provides
essential information about the operational characteristics,
cost parameters, and emission coefficients of the units in the
power system, which are crucial for performing unit commit-
ment optimization in the UC problem. The G9 unit has a
relatively high cost with a fuel cost coefficient, but it has the

lowest startup costs (both cold and hot) compared to other
units [64–68].

To perform simulation, 10 different scenarios were selected
by the Monte Carlo Simulation (MCS) using demand and
renewables sources PDFs. The predicted electrical demand
for 24 hours in different scenarios is shown in Figure 9.

To model the solar irradiation intensity in the PV farm,
the beta probability density function with coefficients α =
5:63 and β = 3:27 is used [70]. In Figure 10, the beta PDF
for solar radiation intensity is shown [71–75].

According to the beta PDF considered for the solar irra-
diation, the PV farm generation capacity for the scenarios is
shown in Figure 11.

The wind speed in the studied power system has a Wei-
bull probability density function with coefficients k = 1:89
and c = 5:49, similar to Figure 12.

According to the Weibull probability density function
considered for wind speed and characteristics of wind tur-
bines, the wind farm generation capacity for the selected sce-
narios by the MCS is shown in Figure 13.

4.2. Scenarios Results Analysis. The simulations are done in
three sections. In the first section, the UC program is done
in case of ignoring the uncertainties, and none of the loads
are flexible. In the second part of the simulations, the uncer-
tainties are considered in the UC program, and again, the
flexible loads are omitted. Finally, in the third section, the
UC program is carried out by considering the flexible loads
in conditions of uncertainty.

4.2.1. Without Uncertainty and Flexible Loads. In the first
part of the simulations, the UC program is done in the
understudy power system in case of ignoring uncertainty
and flexible loads. The electrical demand and the amount
of wind and PV farm generation capacity for 24 hours are
shown with a solid red line in Figures 9, 11, and 13, respec-
tively. In Figure 14, the Pareto front of each optimization
algorithm is shown for the first section of the simulation.

As shown in Figure 14, dominant results are uniformly
distributed on the Pareto front. For a more accurate evaluation
of the results, the S-metric index is calculated to determine the
dispersion of dominant results, and it is shown by bar chart in
Figure 15. Lower values of the average metric distance means
that the Pareto responses were more dispersed, and zero value
of the S-metric means that all the results are distributed in the
Pareto front with almost the same distance.

The best solution should be chosen from the dominant
particles. In this paper, the weighting method is used to
select the final result. The values of the best results for opti-
mization algorithms are given in Table 2.

According to the obtained accumulated in Table 2, the
proposed MOGOA-MBES algorithm has performed better
than other metaheuristic algorithms, and its cost and emission
are the least. The final value of the operation cost is $732318,
and the amount of emission is equal to 249167 tons. For better
comparison, generational distance (GD), spacing metric (SM),
and hypervolume (HV) for all the algorithms are calculated
and accumulated in Table 3.
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Figure 18: The S-Metric index for the second part of simulation.

Table 4: The best results for the second part of the simulation.

NSGAII MOPSO MODE MOGOA Proposed

Cost ($) 742465 742314 742179 742148 741932

Emission (ton) 266401 266573 264146 263232 261097
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In Figure 8, the production power of the power plants
and renewable farms after optimization by the MOGOA-
MBES is shown in Figure 16.

As shown in Figure 16, the thermal units T1 and T2 pro-
vided the largest share of the electrical demand. The wind
and PV farms also participated in the UC program in the
peak hours in order to reduce the operation cost and envi-
ronmental emission by providing a part of the required elec-
trical energy. Photovoltaic farms also had a great impact on
reducing emissions and costs in the initial peak.

4.2.2. Considering Uncertainty and without Flexible Loads. In
the second section of the simulation, the UC program is solved
for the power system without flexible load and in the case of
considering load and renewable generation uncertainties.
The electrical demand and renewable farm generation capac-
ity for different scenarios are shown by dashed line in
Figures 9, 11, and 13, respectively. In Figure 17, the values of
dominant particles for the second section are shown.

For better analysis of the optimization results, the S-
metric index is calculated for the algorithms, and it is shown
in Figure 18.

According to the S-metric results, the dispersion of the
dominant particles has increased compared to the first sce-
nario, and the reason is the consideration of uncertainty.

The S-metric average for the proposed MOGOA-MBES algo-
rithm is about 0.48p.u. which is lower than other metaheuristic
algorithms. Conversely, the S-metric average for the NSGAII
algorithm is more than all the algorithms, which confirms the
high dispersion of the obtained results by this algorithm.

The operation cost and emission values of the final opti-
mal results selected by the weighting method from the dom-
inant results are given in Table 4.

According to the Table 3 results, the lowest operation cost
and emission are related to the proposed MOGOA-MBES
algorithm, which are $741932 and 261097 ton, respectively.
While the highest cost is related to the NSGAII algorithm
which is equal to $742465, and the highest amount of emission
is related to the MOPSO algorithm which is equal to 266573
ton. The GD, SM, and HV indexes for all the algorithms in
the second part of the simulation are given in Table 5.

In Figure 19, the electric power produced by the thermal
units and renewable farms, in the case of solving the UC
problem with the proposed MOGOA-MBES algorithm, is
shown by a bar chart.

In this section, the thermal unit Th1 supplies about
14.23% of the electrical energy demand, which is more than
other generation units. The wind farms provide about 5.2%
and the photovoltaic farms provide about 4.3% of the electri-
cal load in the power system. The production power of wind

Table 5: The optimization results comparison for the second part of simulation.

NSGAII MOPSO MODE MOGOA Proposed

GD 38055 37923 37679 37094 36784

SM 4027 3989 3925 3876 3816

HV 1.41558737e9 1.39856210e9 1.38976548e9 1.35482901e9 1.34194132e9
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Figure 19: Production power of the units for the second part of the simulation.
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and PV farms is often focused on the peak load times of the
network.

4.2.3. Considering Uncertainty and Using Flexible Loads.
Finally, for the third part of the simulations, the uncertainties
and flexible loads are considered in the UC program. There-
fore, the electrical demand can be reduced by the flexible loads
in some hours to help the power system. The electrical demand
and renewable generation capacities are considered similar to
the second section. In Figure 20, the Pareto front obtained by
multiobjective optimization algorithms is shown.

Also, the S-metric index is calculated to determine the
dispersion of dominant results in the third section, and it
is displayed in Figure 21.

The best result for the third section is also selected by the
weighting method, and it is accumulated in Table 6.

The results of this section of simulation show that the par-
ticipation of flexible loads in the UC program has reduced the
operation cost in the conditions of uncertainties. As a result,
demand reduction during peak hours reduces operation cost
and emission even when uncertainties are taken into account.
Also, similar to previous sections, the proposed MOGOA-
MBES has better performance than other algorithms. The
power system operation cost and emission are $736480 and
255890 tons after doing optimization by the MOGOA-MBES.
The GD, SM, and HV indexes for the third part of the simula-
tion are accumulated in Table 7.

In Figure 22, the contribution of the thermal units and
renewable farms to total electrical demand is shown.

As shown in Figure 22, electrical energy consumption is
decreased during peak hours due to flexible load participa-
tion in the UC program. Also, the thermal units Th1 and
Th2 provided 40% of the total electrical energy demand.
Wind farms and photovoltaic farms provided about 5% of
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Figure 20: The Pareto front for the third part of simulation.
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Figure 21: The S-metric index for the third part of the simulation.

Table 6: The best results for the third part of the simulation.

NSGAII MOPSO MODE MOGOA Proposed

Cost ($) 739804 739447 737738 737236 736849

Emission (ton) 264856 262409 260349 258507 257381
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the total load. Supplying power by renewable operation cost
and emission reduction.

5. Conclusion

In this paper, the optimal stochastic planning of resources in
the power system with thermal units in the presence of wind
farms and photovoltaics has been done with the approach of
reducing operating costs and environmental pollution. In the
studies, the uncertainties of electric loads and the uncertainties
of the production power of renewable resources are considered.
It is also assumed that the loads are flexible and have the ability
to participate in the electrical and thermal load response pro-
gram. A hybrid self-adjusting algorithm was proposed, which
has the capability of extensive search of the search space and
does not get trapped in local optimal points. The optimization
results in three parts showed that the proposed MOGOA-
MBES algorithm was more accurate than other multiobjective
metaheuristic algorithms. Also, the results proved that when
the uncertainties in the participation of the units were consid-
ered, the cost and pollution increased, but if there are respon-
sive loads in the power system and they participate in the
load response program, the cost and pollution are about 3%.
Will be reduced. In the recent decade, photovoltaic and wind
renewable resources have been extensively deployed in power

systems, which can have a direct impact on UC studies. In this
context, providing an accurate model of the power system
under uncertain conditions is of great importance. This paper
simulation results can be used in the real world. In line with
the research carried out in this article, it is possible to consider
the issue of rotating reservation and pump storage.
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