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Abstract

We study nonconvex finite-sum problems and

analyze stochastic variance reduced gradient

(SVRG) methods for them. SVRG and related

methods have recently surged into prominence

for convex optimization given their edge over

stochastic gradient descent (SGD); but their theo-

retical analysis almost exclusively assumes con-

vexity. In contrast, we obtain non-asymptotic

rates of convergence of SVRG for nonconvex op-

timization, showing that it is provably faster than

SGD and gradient descent. We also analyze a

subclass of nonconvex problems on which SVRG

attains linear convergence to the global optimum.

We extend our analysis to mini-batch variants,

showing (theoretical) linear speedup due to mini-

batching in parallel settings.

1. Introduction

We study nonconvex finite-sum problems of the form

min
x2Rd

f(x) :=
1

n

Xn

i=1
fi(x), (1)

where both f and fi (i 2 [n]) may be nonconvex and have

Lipschitz continuous gradients. We denote the class of such

finite-sum Lipschitz smooth functions by Fn. We optimize

functions in Fn in the Incremental First-order Oracle (IFO)

framework (Agarwal & Bottou, 2014) defined below.

Definition 1. For f 2 Fn, an IFO takes an index i 2 [n]
and a point x 2 R

d, and returns the pair (fi(x),rfi(x)).

IFO based analysis was introduced to study lower bounds

for finite-sum problems. Algorithms that use IFOs are fa-

vored in large-scale applications as they, usually, require
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only a small amount of first-order information at each it-

eration. Two fundamental models in machine learning that

profit from IFO algorithms are (i) empirical risk minimiza-

tion, which typically uses convex finite-sum models; and

(ii) deep learning, which uses nonconvex ones.

The prototypical IFO algorithm, stochastic gradient de-

scent (SGD),1 has witnessed tremendous progress in the

recent years. By now a variety of accelerated, parallel,

and faster converging variants are known. Among these, of

particular importance are variance reduced (VR) stochas-

tic methods (Schmidt et al., 2013; Johnson & Zhang, 2013;

Defazio et al., 2014a), which have delivered progress such

as linear convergence rates (for strongly convex functions)

as opposed to sublinear rates of ordinary SGD (Robbins &

Monro, 1951; Nemirovski et al., 2009). Similar (but not

same) benefits of VR methods can also be seen in smooth

convex functions. The SVRG algorithm of (Johnson &

Zhang, 2013) is particularly attractive here because of its

low storage requirement in comparison to the algorithms

in (Schmidt et al., 2013; Defazio et al., 2014a).

Despite the meteoric rise of VR methods, their analysis for

general nonconvex problems is largely missing. Johnson

& Zhang (2013) remark on convergence of SVRG when

f 2 Fn is locally strongly convex and provide compelling

experimental results (Fig. 4 in (Johnson & Zhang, 2013)).

However, problems encountered in practice are typically

not even locally convex, let alone strongly convex. The cur-

rent analysis of SVRG does not extend to nonconvex func-

tions as it relies heavily on convexity for controlling the

variance. Given the dominance of stochastic gradient meth-

ods in optimizing deep neural nets and other large noncon-

vex models, theoretical investigation of faster nonconvex

stochastic methods is much needed.

Convex VR methods are known to enjoy the faster conver-

gence rate of batch gradient descent (GRADDESCENT) but

1We use ‘incremental gradient’ and ‘stochastic gradient’ inter-
changeably, though we are only interested in finite-sum problems.
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Algorithm Nonconvex Convex Gradient Dominated Fixed Step Size?

SGD O
�

1/✏2
�

O
�

1/✏2
�

O
�

1/✏2
�

⇥

GRADIENTDESCENT O (n/✏) O (n/✏) O (n⌧ log(1/✏))
p

SVRG O
�

n+ (n2/3/✏)
�

O
�

n+ (
p
n/✏)

�

O
�

(n+ n2/3
⌧) log(1/✏)

� p

MSVRG O
�

min
�

1/✏2, n2/3/✏
 �

O
�

min
�

1/✏2,
p
n/✏

 �

� ⇥

Table 1. Table comparing the best IFO complexity of different algorithms discussed in the paper. The complexity is measured in terms

of the number of oracle calls required to achieve an ✏-accurate solution (see Definition 2). Here, by fixed step size, we mean that the step

size of the algorithm is fixed and does not depend on ✏ (or alternatively on T , the total number of iterations). The complexity of gradient

dominated functions refers to the number of IFO calls required to obtain an ✏-accurate solution for a ⌧ -gradient dominated function

(see Sec. 2 for the definition). For SGD, we are not aware of any specific results for gradient dominated functions. Also, we hide the

dependence of IFO complexity on the Lipschitz constant L (see Section 2), [f(x0)�f(x∗)] and kx0�x∗k (where x0 is the initial point

and x∗ is an optimal solution to (1)) to make a cleaner comparison. The results marked in red are the contributions of this paper.

with a much weaker dependence on n, without compromis-

ing the rate like SGD. However, it is not clear if these ben-

efits carry beyond convex problems, prompting the central

question of this paper:

For nonconvex functions in Fn, can one ob-

tain convergence rates faster than both SGD and

GRADDESCENT using an IFO?

Perhaps surprisingly, we provide an affirmative answer to

this question and show how a careful selection of parame-

ters in SVRG indeed yields faster convergence rates.

Main Contributions. We summarize our main contribu-

tions below and also list the key results in Table 1.

• We analyze nonconvex stochastic variance reduced gra-

dient (SVRG), and prove that it has faster rates of con-

vergence than GRADDESCENT and ordinary SGD. We

show that SVRG is faster than GRADDESCENT by a fac-

tor of n1/3 (see Table 1).

• We provide new theoretical insights into the interplay be-

tween step-size, iteration complexity and convergence of

nonconvex SVRG (see Corr. 2).

• We analyze mini-batch nonconvex SVRG and show that

it provably benefits from mini-batching. Specifically, we

show theoretical linear speedups in parallel settings for

large mini-batch sizes. By using a mini-batch of size b
(< n2/3), we show that mini-batch nonconvex SVRG is

faster by a factor of b (Thm. 6). We are not aware of any

prior work on mini-batch first-order stochastic methods

that shows linear speedup in parallel settings for noncon-

vex optimization.

• For an interesting nonconvex subclass of Fn called gra-

dient dominated functions (Polyak, 1963; Nesterov &

Polyak, 2006), we propose a variant of SVRG that at-

tains a global linear rate of convergence. We improve

upon many prior results for this subclass of functions

(see Section 3.1). To the best of our knowledge, ours is

the first work that shows a stochastic method with linear

convergence for gradient dominated functions.

• Our analysis yields as a byproduct a direct convergence

analysis for SVRG for smooth convex functions (Sec. 4).

• We examine a variant of SVRG (called MSVRG) that has

faster rates than both SGD and GRADDESCENT.

Concurrent to our work, Allen-Zhu & Hazan (2016) have

also obtained an SVRG-based O(n1/3) improvement over

GRADDESCENT. However, both our algorithm and anal-

ysis are somewhat simpler; our analysis also yields better

minibatching with speedups linear in b, and an interesting

hybrid variant MSVRG. Moreover, we also provide global

linear convergence rate analysis of SVRG for the class of

gradient-dominated functions.

1.1. Other Related Work

Convex. Bertsekas (2011) surveys several incremental

gradient methods for convex problems. A key reference

for stochastic convex optimization (for minEz[F (x, z)])
is (Nemirovski et al., 2009). Faster rates of convergence are

attained for problems in Fn by VR methods, see e.g., (De-

fazio et al., 2014a; Johnson & Zhang, 2013; Schmidt et al.,

2013; Konečný et al., 2015; Shalev-Shwartz & Zhang,

2013; Defazio et al., 2014b). Asynchronous VR frame-

works are developed in (Reddi et al., 2015). Agarwal &

Bottou (2014); Lan & Zhou (2015) study lower-bounds

for convex finite-sum problems. Shalev-Shwartz (2015)

prove linear convergence of stochastic dual coordinate as-

cent when the individual fi (i 2 [n]) are nonconvex but f
is strongly convex. They do not study the general noncon-

vex case. Moreover, even in their special setting our results

improve upon theirs for the high condition number regime.

Nonconvex. SGD dates at least to the seminal work (Rob-

bins & Monro, 1951); and since then it has been developed
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in several directions (Poljak & Tsypkin, 1973; Ljung, 1977;

Bottou, 1991; Kushner & Clark, 2012). In the (nonsmooth)

finite-sum setting, Sra (2012) considers proximal splitting

methods, and analyzes asymptotic convergence (without

rates) with nonvanishing gradient errors.

The first nonasymptotic convergence (with rate) analysis

for SGD is in (Ghadimi & Lan, 2013), who show O(1/✏2)
convergence for SGD. A similar rate for parallel and dis-

tributed SGD was shown in (Lian et al., 2015). GRAD-

DESCENT’s O(1/✏) convergence is well-known (Nesterov,

2003, Chap. 1.2.3). The first analysis of nonconvex SVRG

is due to Shamir (2014), who considers the special problem

of computing a few top eigenvectors (e.g., for PCA); see

also (Shamir, 2015). As sequels to this paper, we now also

have extensions to nonconvex SAGA and proximal nons-

mooth nonconvex VR methods (Reddi et al., 2016a;b).

2. Background & Problem Setup

We say f is L-smooth if there is a constant L such that

krf(x)�rf(y)k  Lkx� yk, 8 x, y 2 R
d.

Throughout, we assume that the fi are L-smooth, so that

krfi(x) � rfi(y)k  Lkx � yk (i 2 [n]). Such an as-

sumption is common in the analysis of first-order methods.

We say f is �-strongly convex if there is a � � 0, such that

f(x) � f(y)+ hrf(y), x�yi+ λ
2 kx�yk2 8x, y 2 R

d.

The quantity  := L/� is called the condition number of

f , whenever f is L-smooth and �-strongly convex. We say

f is non-strongly convex when f is 0-strongly convex.

We also recall the class of gradient dominated func-

tions (Polyak, 1963; Nesterov & Polyak, 2006), where a

function f is called ⌧ -gradient dominated if for any x 2 R
d

f(x)� f(x⇤)  ⌧krf(x)k2, (2)

where x⇤ is a global minimizer of f . Note that such a func-

tion f need not be convex. It is also easy to show that a

�-strongly convex function is 1/2�-gradient dominated.

We analyze convergence rates for the above classes of func-

tions. Following Nesterov (2003); Ghadimi & Lan (2013)

we use krf(x)k2  ✏ to judge when is iterate x approx-

imately stationary. Contrast this with SGD for convex f ,

where one uses [f(x) � f(x⇤)] or kx � x⇤k2 as a conver-

gence criteria. Unfortunately, such criteria cannot be used

for nonconvex functions due to the hardness of the prob-

lem. While the quantities krf(x)k2 and f(x) � f(x⇤) or

kx � x⇤k2 are not comparable in general (see (Ghadimi

& Lan, 2013)), they are typically assumed to be of similar

magnitude. Throughout our analysis, we do not assume n
to be constant, and report dependence on it in our results.

For our analysis, we need the following definition.

Definition 2. A point x is called ✏-accurate if krf(x)k2 
✏. A stochastic iterative algorithm is said to achieve ✏-

accuracy in t iterations if E[krf(xt)k2]  ✏, where the

expectation is over the stochasticity of the algorithm.

We measure the efficiency of the algorithms in terms of

the number of IFO calls made by the algorithm (IFO com-

plexity) to achieve an ✏-accurate solution. Throughout the

paper, we hide the dependence of IFO complexity on the

Lipschitz constant L, and the initial point (in terms of

kx0 � x⇤k2 and f(x0) � f(x⇤)) for a clean comparison.

We introduce one more definition, useful in the analysis of

SGD methods for bounding the variance.

Definition 3. We say f 2 Fn has �-bounded gradients if

krfi(x)k  � for all i 2 [n] and x 2 R
d.

2.1. Nonconvex SGD: Convergence Rate

Stochastic gradient descent (SGD) is one of the simplest

algorithms for solving (1). The update at the tth iteration of

SGD is of the following form:

xt+1 = xt � ⌘trfit(x). (SGD)

By using a uniformly randomly chosen (with replacement)

index it from [n], SGD uses an unbiased estimate of the

gradient at each iteration. Under appropriate conditions,

Ghadimi & Lan (2013) establish convergence rate of SGD

to a stationary point of f . Their results include the follow-

ing theorem.

Theorem 1. Suppose f 2 Fn has �-bounded gradients;

let ⌘t = ⌘ = c/
p
T where c =

q

2(f(x0)�f(x∗))
Lσ2 , and x⇤ is

an optimal solution to (1). Then, the iterates of SGD satisfy

min
0tT�1

E[krf(xt)k2] 
r

2(f(x0)� f(x⇤))L

T
�.

For completeness we present a proof in the appendix. Note

that our choice of step size ⌘ requires knowing the total

number of iterations T in advance. A more practical ap-

proach is to use a ⌘t / 1/
p
t or 1/t. A bound on IFO calls

made by SGD follows as a corollary of Thm. 1.

Corollary 1. For a function f 2 Fn with �-bounded gra-

dient, the IFO complexity of SGD to obtain an ✏-accurate

solution is O(1/✏2).

As seen in Thm. 1, SGD has a convergence rate of O(1/
p
T).

This rate is not improvable in general, even when the

function is (non-strongly) convex (Nemirovski & Yudin,

1983). This barrier is due to the variance introduced by

the stochasticity of the gradients.

3. Nonconvex SVRG

We now turn our focus to variance reduced methods. We

use SVRG (Johnson & Zhang, 2013), an algorithm recently
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Algorithm 1 SVRG
�

x0, T,m, {pi}
m
i=0, {⌘i}

m�1
i=0

�

1: Input: x̃0 = x0
m = x0 2 R

d, epoch length m, step sizes
{⌘i > 0}m−1

i=0 , S = dT/me, discrete probability distribution
{pi}

m
i=0

2: for s = 0 to S � 1 do
3: xs+1

0 = xs
m

4: gs+1 = 1

n

Pn
i=1

rfi(x̃
s)

5: for t = 0 to m� 1 do
6: Uniformly randomly pick it from {1, . . . , n}
7: vs+1

t = rfit(x
s+1

t )�rfit(x̃
s) + gs+1

8: xs+1

t+1 = xs+1

t � ⌘tv
s+1

t

9: end for
10: x̃s+1 =

Pm
i=0

pix
s+1

i

11: end for
12: Output: Iterate xa chosen uniformly random from

{{xs+1

t }m−1

t=0 }S−1

s=0 .

shown to be very effective for reducing variance in convex

problems. As a result, it has gained considerable interest in

both machine learning and optimization communities. We

seek to understand its benefits for nonconvex optimization.

Alg. 1 presents SVRG’s pseudocode.

Observe that Alg. 1 operates in epochs. At the end of epoch

s, a full gradient is calculated at the point x̃s, requiring n
calls to the IFO. Within its inner loop SVRG performs m
stochastic updates. The total number of IFO calls for each

epoch is thus Θ(m + n). For m = 1, the algorithm re-

duces to the classic GRADDESCENT algorithm. Suppose

m is chosen to be O(n) (typically used in practice), then

the total IFO calls per epoch is Θ(n). To enable a fair com-

parison with SGD, we assume that the total number of in-

ner iterations across all epochs in Alg. 1 is T . Also note

a simple but important implementation detail: as written,

Alg. 1 requires storing all the iterates xs+1
t (0  t  m).

This storage can be avoided by keeping a running average

with respect to the probability distribution {pi}
m
i=0.

Alg. 1 attains linear convergence for strongly convex

f (Johnson & Zhang, 2013); for non-strongly convex

functions, rates faster than SGD can be shown by using

an indirect perturbation argument—see e.g., (Konečný &

Richtárik, 2013; Xiao & Zhang, 2014).

We first state an intermediate result for the iterates of non-

convex SVRG. To ease exposition, we define

Γt =
�

⌘t �
ct+1⌘t

�t
� ⌘2tL� 2ct+1⌘

2
t

�

, (3)

for some parameters ct+1 and �t (to be defined shortly).

Our first main result is the following theorem that provides

convergence rate of Alg. 1.

Theorem 2. Let f 2 Fn. Let cm = 0, ⌘t = ⌘ > 0,

�t = � > 0, and ct = ct+1(1 + ⌘� + 2⌘2L2) + ⌘2L3

such that Γt > 0 for 0  t  m � 1. Define the quantity

�n := mint Γt. Further, let pi = 0 for 0  i < m and

pm = 1, and let T be a multiple of m. Then for the output

xa of Alg. 1 we have

E[krf(xa)k2] 
f(x0)� f(x⇤)

T�n
,

where x⇤ is an optimal solution to (1).

Furthermore, we can also show that nonconvex SVRG ex-

hibits expected descent (in objective) after every epoch.

The condition that T is a multiple of m is solely for con-

venience and can be removed by slight modification of the

theorem statement. Note that the value �n above can de-

pend on n. To obtain an explicit dependence, we simplify

it using specific choices for ⌘ and �, as formalized below.

Theorem 3. Suppose f 2 Fn. Let ⌘ = µ0/(Ln
α)

(0 < µ0 < 1 and 0 < ↵  1), � = L/nα/2, m =
bn3α/2/(3µ0)c and T is some multiple of m. Then there

exists universal constants µ0, ⌫ > 0 such that we have the

following: �n � ν
Lnα

in Thm. 2 and

E[krf(xa)k2] 
Lnα[f(x0)� f(x⇤)]

T⌫
,

where x⇤ is an optimal solution to the problem in (1) and

xa is the output of Alg. 1.

By rewriting the above result in terms IFO calls, we get the

following general corollary for nonconvex SVRG.

Corollary 2. Suppose f 2 Fn. Then the IFO complexity

of Alg. 1 (with parameters from Thm. 3) for achieving an

✏-accurate solution is:

IFO calls =

(

O
�

n+ (n1�α

2 /✏)
�

, if ↵ < 2/3,

O (n+ (nα/✏)) , if ↵ � 2/3.

Corr. 2 shows the interplay between step size and the IFO

complexity. We observe that the number of IFO calls is

minimized in Corr. 2 when ↵ = 2/3. This gives rise to the

following key results of the paper.

Corollary 3. Suppose f 2 Fn. Let ⌘ = µ1/(Ln
2/3)

(0 < µ1 < 1), � = L/n1/3, m = bn/(3µ1)c and T is

some multiple of m. Then there exists universal constants

µ1, ⌫1 > 0 such that we have the following: �n � ν1

Ln2/3 in

Theorem 2 and

E[krf(xa)k2] 
Ln2/3[f(x0)� f(x⇤)]

T⌫1
,

where x⇤ is an optimal solution to the problem in (1) and

xa is the output of Alg. 1.

Corollary 4. If f 2 Fn, then the IFO complexity of Alg. 1

(with parameters in Corr. 3) to obtain an ✏-accurate solu-

tion is O(n+ (n2/3/✏)).

Note the rate of O(1/T ) in the above results, as opposed

to slower O(1/
p
T ) rate of SGD (Thm. 1). For a more

comprehensive comparison of the rates, refer to Sec. 6.
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Algorithm 2 GD-SVRG
�

x0,K, T,m, {pi}
m
i=0, {⌘i}

m�1
i=0

�

Input: x0 2 R
d, K, epoch length m, step sizes {⌘i > 0}m−1

i=0 ,
discrete probability distribution {pi}

m
i=0

for k = 0 to K do
xk = SVRG(xk−1, T,m, {pi}

m
i=0, {⌘i}

m−1

i=0 )
end for
Output: xK

3.1. Gradient Dominated Functions

Before ending our discussion on convergence of noncon-

vex SVRG, we prove a linear convergence rate for the

class of ⌧ -gradient dominated functions (2). In fact, for ⌧ -

gradient dominated functions we can prove a stronger re-

sult of global linear convergence. For ease of exposition,

assume that ⌧ > n1/3, a property analogous to the “high

condition number regime” for strongly convex functions

typical in machine learning. Note that gradient dominated

functions can be nonconvex.

Theorem 4. Suppose f 2 Fn is ⌧ -gradient dominated

(⌧ > n1/3). Then, the iterates of Alg. 2 with T =
d2L⌧n2/3/⌫1e, m = bn/(3µ1)c, ⌘t = µ1/(Ln

2/3) for

0  t < m, pm = 1 and pi = 0 for 0  i < m satisfy

E[krf(xk)k2]  2�k[krf(x0)k2],
E[f(xk)� f(x⇤)]  2�k[f(x0)� f(x⇤)].

Here µ1 and ⌫1 are the constants used in Corr. 3.

An immediate consequence is the following.

Corollary 5. If f 2 Fn is ⌧ -gradient dominated, the IFO

complexity of Alg. 2 (with parameters from Thm. 4) to com-

pute an ✏-accurate solution is O((n+ ⌧n2/3) log(1/✏)).

Note that GRADDESCENT can also achieve linear con-

vergence rate for gradient dominated functions (Polyak,

1963). However, GRADDESCENT requires O(n +
n⌧ log(1/✏)) IFO calls to obtain an ✏-accurate solution as

opposed to O(n+ n2/3⌧ log(1/✏)) for SVRG. Similar (but

not the same) gains can be seen for SVRG for strongly con-

vex functions (Johnson & Zhang, 2013). Also notice that

we did not assume anything except smoothness on the in-

dividual functions fi in the above results. In particular, the

following corollary is also an immediate consequence.

Corollary 6. If f 2 Fn is �-strongly convex and the func-

tions {fi}
n
i=1 are possibly nonconvex, then the IFO com-

plexity of Alg. 2 (with parameters from Thm. 4) to compute

an ✏-accurate solution is O((n+ n2/3) log(1/✏)).

Recall that here  denotes the condition number L/�
for a �-strongly convex function. Corr. 6 follows from

Corr. 5 upon noting that �-strongly convex function is

1/2�-gradient dominated. Thm. 4 generalizes the linear

convergence result in (Johnson & Zhang, 2013) since it al-

lows nonconvex fi. Observe that Corr. 6 also applies when

fi is strongly convex (i 2 [n]), though in this case a more

refined result can be proved (Johnson & Zhang, 2013).

Finally, we note that our result also improves on a recent

result on SDCA in the setting of Corr. 6 when the condi-

tion number  is reasonably large. More precisely, for l2-

regularized empirical loss minimization, Shalev-Shwartz

(2015) show that SDCA requires O((n+ 2) log(1/✏) iter-

ations when the fi’s are possibly nonconvex but their sum

f is strongly convex. In comparison, we show that Alg. 2

requires O((n + n2/3) log(1/✏)) iterations, which is an

improvement over SDCA when  > n2/3.

4. Convex Case

In the previous section, we showed nonconvex SVRG con-

verges to a stationary point at the rate O(n2/3/T ). A nat-

ural question is whether this rate can be improved if we

assume convexity? We provide an affirmative answer. For

non-strongly convex functions, this yields a direct analy-

sis (i.e., not based on strongly convex perturbations) for

SVRG. While we state our results in terms of stationar-

ity gap krf(x)k2 for the ease of comparison, our analy-

sis also provides rates with respect to the optimality gap

[f(x)� f(x⇤)] (see the proof of Thm. 5 in the appendix).

Theorem 5. If f 2 Fn and fi is convex (i 2 [n]), pi =
1/m for 0  i < m, and pm = 0. Then for Alg. 1, we have

E[krf(xa)k2] 
Lkx0 � x∗k2 + 4mL2

⌘
2[f(x0)� f(x∗)]

T⌘(1� 4L⌘)
,

where x⇤ is optimal for (1) and xa is the output of Alg. 1.

We now state corollaries of this theorem that explicitly

show the dependence on n in the convergence rates.

Corollary 7. If m = n and ⌘ = 1/(8L
p
n) in Thm. 5, then

we have the following bound:

E[krf(xa)k2] 
L
p
n(16Lkx0 � x∗k2 + [f(x0)� f(x∗)])

T
,

where x⇤ is optimal for (1) and xa is the output of Alg. 1.

The above result uses a step size that depends on n. For the

convex case, we can also use step sizes independent of n.

The following corollary states the associated result.

Corollary 8. If m = n and ⌘ = 1/(8L) in Thm. 5, then
we have the following bound:

E[krf(xa)k2] 
L(16Lkx0 � x∗k2 + n[f(x0)� f(x∗)])

T
,

where x⇤ is optimal for (1) and xa is the output of Alg. 1.

We can rewrite these corollaries in terms of IFO complexity

to get the following corollaries.

Corollary 9. If f 2 Fn and fi is convex for all i 2 [n],
then the IFO complexity of Alg. 1 (with parameters from

Corr. 7) to compute an ✏-accurate solution is O(n+
p
n/✏).
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Corollary 10. If f 2 Fn and fi is convex for all i 2 [n],
then the IFO complexity of Alg. 1 (with parameters from

Corr. 8) to compute ✏-accurate solution is O(n/✏).

These results follow from Corr. 7 and Corr. 8 and noting

that for m = O(n), the total IFO calls made by Alg. 1

is O(n). It is instructive to quantitatively compare Corr. 9

and Corr. 10. With a step size independent of n, the conver-

gence rate of SVRG has a dependence that is in the order of

n (Corr. 8). But this dependence can be reduced to
p
n by

either carefully selecting a step size that diminishes with n
(Corr. 7) or by using a good initial point x0 obtained by,

say, running O(n) iterations of SGD.

We emphasize that the convergence rate for convex case

can be improved significantly by slightly modifying the al-

gorithm (either by adding an appropriate strongly convex

perturbation (Xiao & Zhang, 2014) or by using a choice

of m that changes with epoch (Zhu & Yuan, 2015)). How-

ever, it is not clear if these strategies provide any theoretical

gains for the general nonconvex case.

5. Mini-batch Nonconvex SVRG

In this section, we study the mini-batch version of Alg. 1.

Mini-batching is a popular strategy, especially in multicore

and distributed settings as it greatly helps one exploit par-

allelism and reduce the communication costs. The pseu-

docode for mini-batch nonconvex SVRG (Alg. 3) is pro-

vided in the supplement due to lack of space. The key dif-

ference between the mini-batch SVRG and Alg. 1 lies in

lines 6 to 8. To use mini-batches we replace line 6 with

sampling (with replacement) a mini-batch It ⇢ [n] of size

b; lines 7 to 8 are replaced with the following updates:

us+1
t = 1

|It|

X

it2It

�

rfit(x
s+1
t )�rfit(x̃

s)
�

+ gs+1,

xs+1
t+1 = xs+1

t � ⌘tu
s+1
t

When b = 1, this reduces to Alg. 1. Mini-batch is typically

used to reduce the variance of the stochastic gradient and

increase the parallelism. Lem. 4 (in Sec. G of the appendix)

shows the reduction in the variance of stochastic gradients

with mini-batch size b. Using this lemma, one can derive

the mini-batch equivalents of Lem. 1, Thm. 2 and Thm. 3.

However, for the sake of brevity, we directly state the fol-

lowing main result for mini-batch SVRG.

Theorem 6. Let f 2 Fn and �n denote the following:

�n := min
0tm�1

�

⌘ � ct+1η

β
� ⌘2L� 2ct+1⌘

2
�

,

where cm = 0, ct = ct+1(1 + ⌘� + 2η2L2
/b) + η2

tL
3
/b for

0  t < m. Suppose ⌘ = µ2b/(Ln
2/3) (0 < µ2 < 1),

� = L/n1/3, m = bn/(3bµ2)c and T is some multiple

of m. Then for b < n2/3, there exists universal constants

µ2, ⌫2 > 0 such that: �n � ν2b
Ln2/3 and

E[krf(xa)k2] 
Ln2/3[f(x0)� f(x⇤)]

bT⌫2
,

where x⇤ is optimal for (1) and xa is the output of the mini-

batch version of Alg. 1.

It is important to compare this result with mini-batched

SGD. For a mini-batch size of b, SGD obtains a rate of

O(1/
p
bT + 1/T ) (Dekel et al., 2012) (obtainable by a

modification of Thm. 1). Specifically, SGD has a 1/
p
b de-

pendence on the batch size. In contrast, Thm. 6 shows that

SVRG has a much better dependence of 1/b on the batch

size. Hence, compared to SGD, SVRG allows more efficient

mini-batching. More formally, in terms of IFO queries we

have the following result.

Corollary 11. If f 2 Fn, then the IFO complexity of the

mini-batch version of Alg. 1 (with parameters from Thm. 6

and mini-batch size b < n2/3) to obtain an ✏-accurate so-

lution is O(n+ (n2/3/✏)).

Corr. 11 shows an interesting property of mini-batch SVRG.

First, note that b IFO calls are required for calculating the

gradient on a mini-batch of size b. Hence, SVRG does not

gain on IFO complexity by using mini-batches. However,

if the b gradients are calculated in parallel, then this leads

to a theoretical linear speedup in multicore and distributed

settings. In contrast, SGD does not yield an efficient mini-

batch strategy (Li et al., 2014).

6. Comparison of the convergence rates

In this section, we give a comprehensive comparison of re-

sults obtained in this paper. In particular, we compare key

aspects of the convergence rates for SGD, GRADDESCENT,

and SVRG. The comparison is based on IFO complexity to

achieve an ✏-accurate solution.

Dependence on n: The number of IFO calls of SVRG

and GRADDESCENT depend explicitly on n. In con-

trast, the number of oracle calls of SGD is independent

of n (Thm. 1). However, this comes at the expense of

worse dependence on ✏. The number of IFO calls in

GRADDESCENT is proportional to n. But for SVRG this

dependence reduces to n1/2 for convex (Corr. 7) and n2/3

for nonconvex (Corr. 3) problems. Whether this difference

in dependence on n is due to nonconvexity or just an arti-

fact of our analysis is an interesting open problem.

Dependence on ✏: The dependence on ✏ (or alternatively

T ) follows from the convergence rates of the algorithms.

SGD is seen to depend as O(1/✏2) on ✏, regardless of con-

vexity or nonconvexity. In contrast, for both convex and

nonconvex settings, SVRG and GRADDESCENT converge

as O(1/✏). Furthermore, for gradient dominated func-
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tions, SVRG and GRADDESCENT have global linear con-

vergence. This speedup in convergence over SGD is espe-

cially significant when medium to high accuracy solutions

are required (i.e., ✏ is small).

Assumptions used in analysis: It is important to under-

stand the assumptions used in deriving the convergence

rates. All algorithms assume Lipschitz continuous gra-

dients. However, SGD requires two additional subtle but

important assumptions: �-bounded gradients and advance

knowledge of T (since its step sizes depend on T ). On the

other hand, both SVRG and GRADDESCENT do not require

these assumptions, and thus, are more flexible.

Step size / learning rates: It is valuable to compare the

step sizes used by the algorithms. The step sizes of SGD

shrink as the number of iterations T increases—an un-

desirable property. On the other hand, the step sizes of

SVRG and GRADDESCENT are independent of T . Hence,

both these algorithms can be executed with a fixed step

size. However, SVRG uses step sizes that depend on n (see

Corr. 3 and Corr. 7). A step size independent of n can be

used for SVRG for convex f , albeit at cost of worse depen-

dence on n (Corr. 8). GRADDESCENT does not have this

issue as its step size is independent of both n and T .

Dependence on initial point and mini-batch: SVRG is

more sensitive to the initial point in comparison to SGD.

This can be seen by comparing Corr. 3 (of SVRG) to Thm. 1

(of SGD). Hence, it is important to use a good initial point

for SVRG. Similarly, a reasonably large mini-batch can be

beneficial to SVRG. For SVRG, mini-batches not only pro-

vides parallelism but also good theoretical guarantees (see

Thm. 6). In contrast, the performance gain in SGD with

mini-batches is not very pronounced (see Sec. 5).

7. Best of two worlds

We have seen in the previous section that SVRG combines

the benefits of both GRADDESCENT and SGD. We now

show that these benefits of SVRG can be made more pro-

nounced by an appropriate step size under additional as-

sumptions. In this case, the IFO complexity of SVRG is

lower than those of SGD and GRADDESCENT. This vari-

ant of SVRG (MSVRG) chooses a step size based on the

total number of iterations T (or alternatively ✏). For our

discussion below, we assume that T > n.

Theorem 7. Suppose f 2 Fn has �-bounded gradients.
Let ⌘t = ⌘ = max{c/

p
T , µ1/(Ln2/3)} (µ1 is the constant

from Corr. 3), m = bn/(3µ1)c, and c =

q

f(x0)�f(x∗)
2Lσ2 .

Further, let T be a multiple of m, pm = 1, and pi = 0 for
0  i < m. Then, the output xa of Alg. 1 satisfies

E[krf(xa)k2]

 ⌫̄min
n

2

r

2(f(x0)� f(x∗))L

T
�,

Ln2/3[f(x0)� f(x∗)]

T⌫1

o

,

where ⌫̄ > 0 is a universal constant, ⌫1 is the universal

constant from Corr. 3 and x⇤ is an optimal solution to (1).

Corollary 12. If f 2 Fn has �-bounded gradients, the

IFO complexity of Alg. 1 (with parameters from Thm. 7) to

achieve an ✏-accurate solution is O(min{1/✏2, n2/3/✏}).

An almost identical reasoning can be applied when f is

convex to get the bounds specified in Table 1. Hence, we

omit the details and directly state the following result.

Corollary 13. Suppose f 2 Fn has �-bounded gradients

and fi is convex for i 2 [n], then the IFO complexity of

Alg. 1 (with step size ⌘ = max{1/(L
p
T ), 1/(8L

p
n)},

m = n and pi = 1/m for 0  i  m� 1 and pm = 0) to

achieve an ✏-accurate solution is O(min{1/✏2,
p
n/✏}).

MSVRG has a convergence rate faster than those of both

SGD and SVRG, though this benefit is not without cost.

MSVRG, in contrast to SVRG, uses the additional assump-

tion of �-bounded gradients. Furthermore, its step size

is not fixed since it depends on the number of iterations

T . While it is often difficult to compute the step size of

MSVRG (Thm. 7) in practice, it is typical to try multiple

step sizes and choose the one with the best results.

8. Experiments

We present our empirical results in this section. In par-

ticular, we study multiclass classification using neural net-

works. This is typical nonconvex problem encountered in

machine learning.

Experimental Setup. We train neural networks with one

fully-connected hidden layer of 100 nodes and 10 softmax

output nodes. We use `2-regularization for training. We use

CIFAR-102, MNIST3, and STL-104 datasets for our exper-

iments. These datasets are standard in the neural networks

literature. The `2 regularization is 1e-3 for CIFAR-10 and

MNIST, and 1e-2 for STL-10. The features in the datasets

are normalized to the interval [0, 1]. All the datasets come

with a predefined split into training and test datasets.

We compare SGD (the de facto algorithm for training neural

networks) against nonconvex SVRG. The step size is criti-

cal for SGD; we set it using the popular t-inverse schedule

⌘t = ⌘0(1+⌘0bt/nc)�1, where ⌘0 and ⌘0 are chosen so that

SGD gives the best performance on the training loss. In our

experiments, we also use ⌘0 = 0; this results in a fixed step

size for SGD. For SVRG, we use a fixed step size as sug-

gested by our analysis. Again, the step size is chosen so

that SVRG gives the best performance on the training loss.

Initialization & mini-batching. Initialization is critical to

training of neural networks. We use the normalized initial-

ization in (Glorot & Bengio, 2010) where parameters are

2
www.cs.toronto.edu/ kriz/cifar.html

3
http://yann.lecun.com/exdb/mnist/

4
https://cs.stanford.edu/ acoates/stl10/
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Figure 1. Neural network results for CIFAR-10, MNIST and STL-10 datasets. The top row represents the results for CIFAR-10 dataset.

The bottom left and middle figures represent the results for MNIST dataset. The bottom right figure represents the result for STL-10.

chosen uniformly from [�
p

6/(ni + no),
p

6/(ni + no)]
where ni and no are the number of input and output layers

of the neural network, respectively.

For SVRG, we use n iterations of SGD for CIFAR-10 and

MINST and 2n iterations of SGD for STL-10 before run-

ning Alg. 1. Such initialization is standard for variance

reduced schemes even for convex problems (Johnson &

Zhang, 2013; Schmidt et al., 2013). As noted earlier in

Sec. 6, SVRG is more sensitive than SGD to the initial point,

so such an initialization is typically helpful. We use mini-

batches of size 10 in our experiments. SGD with mini-

batches is common in training neural networks. Note that

mini-batch training is especially beneficial for SVRG, as

shown by our analysis in Sec. 5. Along the lines of theo-

retical analysis provided by Thm. 6, we use an epoch size

m = n/10 in our experiments.

Results. We report objective function (training loss), test

error (classification error on the test set), and krf(xt)k2
(convergence criterion in our analysis). For all algorithms,

we compare these criteria against the number of effective

passes through the data, i.e., IFO calls divided by n. This

includes the cost of calculating the full gradient at the end

of each epoch of SVRG. Due to the SGD initialization in

SVRG and mini-batching, the SVRG plots start from an x-

axis value of 10 for CIFAR-10 and MNIST and 20 for STL-

10. Figure 1 shows the results. It can be seen that for SVRG

krf(xt)k2 is lower compared to SGD, suggesting faster

convergence. Furthermore, training loss is also lower com-

pared to SGD in all the datasets. Notably, the test error

for CIFAR-10 is lower for SVRG, indicating better gener-

alization; we did not notice substantial difference in test

error for MNIST and STL-10 (see Sec. H in the appendix).

Overall, these results on a network with one hidden layer

are promising; it will be interesting to study SVRG for deep

neural networks in the future.

9. Discussion

In this paper, we examined a VR scheme for noncon-

vex optimization. We showed that by employing VR in

stochastic methods, one can outperform both SGD and

GRADDESCENT even for nonconvex optimization. When

the function f in (1) is gradient dominated, we proposed a

variant of SVRG that has linear convergence to the global

minimum. Our analysis shows that SVRG has a number of

interesting properties that include convergence with fixed

step size, descent (in expectation) after every epoch; a prop-

erty that need not hold for SGD. We also showed that

SVRG, in contrast to SGD, enjoys efficient mini-batching,

attaining speedups linear in the size of the mini-batches in

parallel settings. Our analysis also reveals that the initial

point and use of mini-batches are important to SVRG.

Before concluding the paper, we would like to discuss the

implications of our work and few caveats. One should exer-

cise some caution while interpreting the results in the paper.

All our theoretical results are based on the stationarity gap.

In general, this does not necessarily translate to optimality

gap or low training loss and test error. One criticism against

VR schemes in nonconvex optimization is the general wis-

dom that variance in the stochastic gradients of SGD can

actually help it escape local minimum and saddle points. In

fact, Ge et al. (2015) add additional noise to the stochastic

gradient in order to escape saddle points. However, one can

reap the benefit of VR schemes even in such scenarios. For

example, one can envision an algorithm which uses SGD as

an exploration tool to obtain a good initial point and then

uses a VR algorithm as an exploitation tool to quickly con-

verge to a good local minimum. In either case, we believe

variance reduction can be used as an important tool along-

side other tools like momentum, adaptive learning rates for

faster and better nonconvex optimization.



SVRG for Nonconvex Optimization

Acknowledgment: SS and AS were partially supported by

NSF grant: IIS-1409802.

References

Agarwal, Alekh and Bottou, Leon. A lower bound for the

optimization of finite sums. arXiv:1410.0723, 2014.

Allen-Zhu, Zeyuan and Hazan, Elad. Variance reduction

for faster non-convex optimization. In ICML, 2016.

Bertsekas, Dimitri P. Incremental gradient, subgradient,

and proximal methods for convex optimization: A sur-

vey. In S. Sra, S. Nowozin, S. Wright (ed.), Optimization

for Machine Learning. MIT Press, 2011.
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