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Stochastic variations in sensory awareness are
driven by noisy neuronal adaptation: evidence

from serial correlations in perceptual bistability
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When the sensory system is subjected to ambiguous input, perception alternates between interpretations in a
seemingly random fashion. Although neuronal noise obviously plays a role, the neural mechanism for the gen-
eration of randomness at the slow time scale of the percept durations (multiple seconds) is unresolved. Here
significant nonzero serial correlations are reported in series of visual percept durations (to the author’s knowl-
edge for the first time accounting for duration impurities caused by reaction time, drift, and incomplete per-
cepts). Serial correlations for perceptual rivalry using structure-from-motion ambiguity were smaller than for
binocular rivalry using orthogonal gratings. A spectrum of computational models is considered, and it is con-
cluded that noise in adaptation of percept-related neurons causes the serial correlations. This work bridges, in
a physiologically plausible way, widely appreciated deterministic modeling and randomness in experimental
observations of visual rivalry. © 2009 Optical Society of America
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. INTRODUCTION
rimate sensory perception automatically switches be-
ween alternative interpretations when there is inconclu-
ive sensory input. Such alternations are observed clearly
hile the sensory system is uninterruptedly being sub-

ected to ambiguous input, meaning that more than one
utually exclusive interpretation of the sensory input is

ontinuously available. The alternations, which occur in
earing, touch, and vision, occur on a multiple second
ime scale and they seem to appear at random moments.
uch a stochastic process poses the fundamental ques-
ion: Which physiological signal in the alternation process
s responsible for the random percept alternations? To an-
wer this question we focus on alternations in visual
wareness—a phenomenon called “visual rivalry”—where
wo visual percepts of an ambiguous scene compete for
ominance in awareness.
The two main factors in visual rivalry are cross-

nhibition [1] and self-adaptation [2] of the neuronal
opulations that are associated with the construction of
he two percepts (review in [3,4]). Although it becomes in-
reasingly clear that internal neuronal noise (occurring
n a millisecond time scale) plays a major role in visual
ivalry [5–8] the neural mechanism responsible for the
eneration of randomness at the slow time scale of the
ercept durations (multiple seconds) is unresolved.
Because of the presence of neuronal adaptation, there

ught to be deterministic carryover effects across succes-
ive alternations as the neuronal adaptation modifies the
eginning conditions at the next perceptual duration [2].
t is, however, not clear how a deterministic model can
enerate the observed stochastic behavior. A stochastic
rocess allows for the possibility of temporal serial corre-
1084-7529/09/122612-11/$15.00 © 2
ation (by definition a stochastic process does not need to
e completely random), meaning that serial correlations
n perceptual durations may reflect footprints of the un-
erlying deterministic perceptual alternation mechanism.
Here the role of neuronal adaptation in causing slow

tochastic variation in visual awareness is studied both in
xperiments and in computational modeling. Our tool is
he quantitative analysis of serial correlation in percep-
ual durations for different stimulus conditions.

. Computational Modeling Approach
o date nonzero serial correlation in percept durations
as not been employed in computational modeling. Most
ublished models of visual rivalry employ a roughly simi-
ar interaction between self-adaptation and cross-
nhibition [8–22]. Models that incorporate cross-inhibition
nd self-adaptation without the addition of noise would
lways produce equally long durations without stochastic
ariation (e.g., see [5,8] for a discussion of this issue) and
ithout serial correlation. We argue that this determinis-

ic behavior of models does actually enable us to elucidate
hich component of the process is responsible for serial

orrelation at a slow (multiple seconds) time scale. Con-
ider the relationship between two sequential perceptual
eriods of either of the two competing percepts A and B.
he percept duration for, say, percept B depends on the
egree of adaptation of the neurons producing percept B
t the moment percept B becomes dominant. This “onset
daptation value” of percept B depends, in turn, on the
ominance duration of both the preceding percept B (be-
ause during dominance of percept B the adaptation of
ercept B increases) and the preceding competing percept

(during which the adaptation of B decays). Thus, in
009 Optical Society of America
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odels containing self-adaptation, the dominance period
f a percept must depend on (i.e., correlate with) a history
f the dominance periods of preceding percepts. We argue
hat adding white—i.e., uncorrelated—noise to a particu-
ar component of the perceptual alternation process pro-
ides a window to simulate whether that component plays
key role. Because this white noise is uncorrelated, it

ught not cause serial correlations. More precisely, if se-
ial correlations can be produced by adding white noise to
he adaptation dynamics, but not by adding noise to the
ynamics of the neural cross-inhibited activity, one can
nfer that adaptation is responsible for serial correlation.

. Experimental Approach
n the course of decades of research only a few studies in
isual rivalry have addressed serial correlation in percept
uration. Fox and Herrmann pioneered [23], and ever
ince there have been a handful of experimental studies
hat reported serial correlation [24–29], of which only a
ew early papers focused on serial correlation in an ex-
erimental fashion [24–26]. Although all of these studies
eported positive correlations the correlations were small
roughly between 0.1 and 0.2). It is obvious that the (de-
erministic) carryover effects across successive perceptual
urations are not a major factor in the generation of per-
ept durations. The positive correlations were regarded
y the field as being too small to be taken as serious de-
iations from zero correlation ([9] for review). In recent
ears it became clear that there were a number of experi-
ental issues that may influence perceptual duration se-

ies and that were not considered in previous determina-
ions of serial correlation. These include

• perceptual durations exhibit slow drift over time
30–32] due to slowly changing attention, or a slow
hange in the number of blinks, or a variety of other
ources such as, for example, long-term adaptation [33];

• data series may be impurified by piecemeal rivalry,
uperimposed percepts, and return-transitions to the
ame percept without fully experiencing the alternative
ercept [6,10,34];
• during the perceptual switch there is no stable per-

eptual state; these intermediate percepts can take up as
uch as 30% of the presentation duration for low-

ontrast stimuli [6];
• there are reaction time limitations, particularly

hile responding to quickly succeeding percepts.

In our experiments below these issues were taken into
ccount. In addition two classes of stimuli were examined:
ratings as a binocular rivalry stimulus and the ambigu-
usly rotating sphere as a perceptual rivalry stimulus.
or generality, we employed a parametric design in which
e varied physical stimulus properties across data collec-

ion sessions (contrast for the gratings; number of dots for
he sphere).

. Aim of This Study
elow, using quantitative analysis of serial correlation in
erceptual durations as a tool, model simulations of new
ata are employed, reported serial correlations are sur-
eyed, and new correlation calculations of existing data
re presented. We do so to investigate the role of noisy
ariations in neuronal adaptation in driving stochastic
ariations in sensory awareness.

. MATERIALS AND METHODS
. Experiment 1. Binocular Rivalry, Varying Contrast

. Apparatus and Procedure
he stimuli were presented one on either side of a
amma-corrected CRT monitor (80 Hz refresh rate) and
iewed through a conventional mirror stereoscope (view-
ng distance 66 cm) to produce binocular rivalry. The
timulus consisted of two sine-wave gratings �±45 deg�
ith a diameter of 1.0 deg, and a spatial frequency of
.0 cycles/deg on a gray background. Chin and head rests
educed head movements. To prevent drift in binocular
ye posture—i.e., to keep the two eyes’ gratings on top of
ach other, meaning that they project to corresponding
etinal positions—stimuli were surrounded by unfilled
quares �0.4 deg� presented binocularly. This turned out
o be an important step in our experimental design in pre-
enting piecemeal rivalry and perceptual superposition of
he two eyes’ gratings.

Four naïve subjects participated. First, we determined
he individual threshold contrast where percept alterna-
ion was still possible, which varied from 0.10 to 0.17
ichelson. Levels were chosen along a logarithmic scale

p to full contrast (1.0 Michelson), the mean luminance
lways being equal to the background. Each session con-
isted of four (five for subject S4) trial blocks, randomized
or contrast (across blocks), each block comprising five
in of continuous viewing, with a mandatory 2 min rest-

ng period between blocks. Each session was repeated six
imes, amounting to 120 min of data collection per con-
rast condition (150 min for S4). Subjects scored domi-
ance of either the left or the right grating by holding
own the left or right button of a computer mouse.
Our stimulus was designed to diminish both piecemeal

ivalry and perceptual superposition of the two eyes’ grat-
ngs for the full contrast condition, and we took advantage
f the occurrence of such mixed percepts for lower con-
rasts. Subjects were instructed to release both mouse
uttons during the occurrence of mixed percepts. For the
ull contrast stimulus we succeeded in diminishing the
ccurrence of these phenomena; within a 5 min session
ur subjects indicated mixed percepts for less than 5 s
�2% �. For the lowest contrast stimuli mixed percepts
ccurred frequently (up to 30%), in line with known litera-
ure [6]. The fact that there was no significant occurrence
f mixed percepts for the full contrast condition means
hat we are looking at a pure binary percept alternation
rocess in this condition. The occurrence of mixed per-
epts with lower contrasts enables us to investigate the
ffect of mixed percepts on serial correlations.

. Data Analysis
o calculate serial correlation we used the Spearman
ank correlation index since it is nonparametric, well-
uited for our not-normally distributed data. Before a
pearman rank correlation index was calculated, the data
ere corrected (purified) using the following steps: (1) the
rst 30 s of each trial were discarded; (2) we deleted the
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ixed-percept periods (so the length of the duration list
as truncated); (3) a linear regression was used to probe

he amount of drift in a data collection block. This drift
as corrected. Although we planned on discarding the en-

ire block from the analysis if the amount of drift in the
ean percept duration was more than 0.5 s/min, the drift
as always smaller. In the drift analysis we also used an-
ther frequently employed statistical method: we divided
ata series into smaller chunks, each of which was used
o calculate the serial correlation.

. Experiment 2. Perceptual Rivalry for the Ambiguously
otating Sphere
his experiment was identical to experiment 1, but here
e presented the ambiguously rotating sphere (4 deg di-
meter consisting of white dots with constant size). Our
our subjects scored the perceived direction of the stimu-
us’ front surface by holding down either the left or right
utton of the mouse. For ambiguous structure from mo-
ion spheres there is the possibility that subjects perceive
he stimulus as two convex surfaces that are sliding on
op of each other as opposed to a 3D sphere with a front
nd a back [35,36]. Some observers perceive the sliding-
onvex surfaces over 50% of the time. For others this per-
ept hardly occurs. We selected subjects for whom this
ercept occurred less than 1% of the time during pretest-
ng. We further minimized the occurrence of the percept
y instructing the subject to concentrate solely on the di-
ection of the stimulus’ front surface, making the task bi-
ary and supposedly involving competition between only
wo neuron populations, each representing a motion di-
ection of the front surface (gestalt) to either the right or
he left [37–39]. The stimulus was presented monocu-
arly; the nondominant eye was patched. We varied the
umber of dots of the sphere per session: 100, 300, 500,
00, and 900 dots. In previous work we found that there is
robust relationship between the numbers of dots on the

phere and the alternation rate [37], similar to how the
lternation rate for gratings depends on the grating con-
rast. During each trial block subjects viewed the stimu-
us continuously for 5 min; there were five blocks in each
ession. Per subject there was a total of ten sessions,
mounting to a data set of a total of 1250 min (50 min per
ubject per dot quantity).

. Simulation: Noise and Serial Correlation
he two main factors in visual rivalry are self-adaptation
nd cross-inhibition. We first added white noise, �G�� ,��,
o the adaptation Ai of the dominant percept. As adapta-
ion dynamics, we employed the simplest possibility: a
onventional “leaky integrator” (with constant � reflect-
ng adaptation build-up),

�tAi = − Ai + �S�Hi� + �G��,��,

ith � a small scaling constant and G a standard Gauss-
an with peak at zero and a standard width [G�� ,��; �
0, �=1]. The adaptation dynamics as such is generic and
onventional; it is identical in structure to the adaptation
ynamics used in the models cited above. With respect to
etails of the adaptation dynamics, models differ slightly.
o test the role of noise we selected the recent model for
isual rivalry by Noest et al. [22] that is now supported by
wide range of recently published phenomena and quan-
itative data (review in [40,41]). To be precise, the second
erm in the equation �S�Hi� is model specific by using a
igmoid function [S�z�0�=z2 / �1+z2�; S�z�0�=0; i de-
otes one of the two alternative percepts, j the other per-
ept]. This means that neuronal outputs occur as sigmoi-
al transformations S�Hi� of the percepti-related
omponent of the local fields (�109 neurons) that encode
he two competing bistable percepts, but the precise form
f the dynamics is not essential for the issues of the cur-
ent paper.

The structure of the cross-inhibited neural activity dy-
amics equation is also conventional,

��tHi = Xi − �1 + Ai�Hi − 	S�Hj�;

t combines the standard elements, i.e., first, decaying of
eural activity, and second, cross-inhibition by the other
ercept j in a straightforward way: The neural activity Hi
ntegrates its visual input Xi (stimulus strength) with the
ain control �1+Ai� depending on adaptation and cross-
nhibition S�Hj�. The parameter 	 is a coupling constant
nd � is a time constant reflecting that cross-inhibition in
his equation occurs faster than adaptation in the previ-
us equation. For the simulations we used a fourth-order
onadaptive Runga–Kutta method [X=1, �=5, 	=10/3].
he parameter �A was 7.1, time scale separation � was
/30. We ran the same number of alternations as present

n the experimental data to enable direct comparison. To
imulate a variety of stimulus strengths (resembling con-
rasts or dot densities) we varied the X value from 88% up
o full strength in steps of 4%.

. RESULTS
. Experiment 1. Significant Serial Correlation in
inocular Rivalry
e first investigated grating rivalry for our four observ-

rs. The perceptual duration distributions across the
ested grating contrasts (subtending threshold to full con-
rast) for one typical subject (S2) are depicted in Fig. 1(a).
hose distributions exhibit the often-reported character-

stic long-tailed shape. From these distributions we calcu-
ated the means and the fit parameters (the scale and the
hape parameters) after fitting the CDFs (cumulative dis-
ribution functions) of a gamma distribution [27,42,43]
hat appeared to be more suitable than other distribu-
ions. We used the CDFs for our fitting procedure be-
ause, contrary to the PDF, the CDF does not involve an
rbitrary bin size. In all, we collected 520 min of data.
he data lists contained at least 205 percept durations
er subject per contrast condition (but usually around
00), with a total of 8861 percepts. The mean percept du-
ation decreased with stimulus contrast (star symbols in
ig. 1(b); p�0.05, standard regression), replicating be-
avioral data patterns that have been known for a long
ime (e.g., [44,45]). Although it is not essential for the se-
ial correlation conclusions of this paper, note a substan-
iation of a relatively new insight in that modifications in
oth the scale parameter (star symbols in Fig. 1(c)) and
he shape parameter (star symbols in Fig. 1(d)) are sys-
ematic [37,43], providing insights in addition to the ob-
ious changes in the mean duration [43]. Although for
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ubject S2 (whose individual data are displayed in Fig.
(a)) the changes with contrast of the mean percept dura-
ion were moderate (Fig. 1(b)), S2’s scale and shape pa-
ameters show a clear change with contrast (Figs. 1(c)
nd 1(d)). Because the mean of a gamma distribution is
efined as the product of shape and scale [46], the rate of
hange of the scale parameter must have been larger than
he rate of change of the mean duration. The variance
oes also decrease with contrast, as variance is defined as
he product of shape and squared scale [46].

To examine serial dependence we calculated the Spear-
an rank correlation coefficient. Interestingly, and con-

rary to current thinking, the correlation of the length of a
articular percept dominance period with the length of an
mmediately following dominance period of the same per-
ept (denoted by lag 1) was always positive for all con-
rasts and all subjects (Fig. 2). Fifteen of the seventeen
utcomes were significantly positive (see 95% confidence
nalysis below). On average the lag 1 serial correlation
mounted to almost 0.2. Interestingly, given that the se-

ig. 1. Binocular grating rivalry. a. The probability distribution
gamma distribution (solid curve). From top to bottom grating co
urations. b. Increasing the contrast entailed on average (star s
ubjects are denoted by disks (color online). The disks of subject
ontrast, the gamma scale parameter decreases (c.) and the gamm
han the symbols.
i

ial correlation did not change with contrast nearly as
uch as the occurrence of mixed percepts did (for full con-

rast there was an insignificant occurrence of mixed per-

raw percept durations of subject S2 binned (gray) and fitted by
changed from threshold to maximum, producing shorter percept

s) smaller mean durations for our four subjects. The individual
covered by the disks of S2 and S3. On average, with increasing
pe parameter increases (d.). Error bars in the mean are smaller

ig. 2. Lag 1 serial correlation for binocular grating rivalry ex-
ressed in Spearman rank correlation of (immediately) following
ominance periods is always positive for all contrasts and all
ubjects. On average (stars) the serial correlation amounts to 0.2,
of the
ntrast
ymbol
S1 are

a sha
.e., 20%. Error bars, ±1 StErr.
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epts; for low contrasts mixed percepts occurred up to
0% of the time), we infer that mixed percepts do not have
clear influence on the serial correlation.
We further investigated whether the influence of a

ingle perceptual duration extends to more than just the
mmediately following percept (lag 2 or more; Fig. 3). The
erial correlation at lag 2 was frequently significant (9 out
f 17). Significance is indicated by the dashed curves,
howing the 95% significance boundaries for the baseline
ssumption that the correlation is zero. Those signifi-
ance boundaries were calculated through computational
imulations using the same number of pairs as used in
he Spearman rank correlation above, meaning that they
ise slightly with increasing lag (because there are fewer
airs in a list for larger lags). The boundaries depend
lightly on the contrast, because the length of a list of per-
ept durations depends on the contrast (i.e., higher con-
rast means more flips per minute). Although up to lag 3
ll coefficients were positive, for lags greater than 2 the
orrelations became insignificant.

. Reaction Time Control Experiment
any short durations had to be reported in the experi-
ent above, meaning that reaction time delays become an

ssue. Serial correlations may arise when an observer ex-
eriences a perceptual alternation that is quickly followed
y the next alternation, particularly when piecemeal per-
epts, mixed percepts, and returns to the previous percept
without experiencing the alternative percept) also occur.

way to examine reaction time influences is to employ a
pseudorivalry” condition in which the gratings presented
o the two eyes are identical, together alternating in ori-
ntation. When decision making or motor planning is re-
ponsible for the nonzero serial percept duration correla-

ig. 3. Serial correlation for binocular grating rivalry expressed
umber. The dashed curves specify the significance boundaries (
ulation necessarily decreases with greater lags; they depend on
elow those curves there is no significant correlation. The data f

eplotted from Fig. 2. For lag 1 the correlation coefficient is gene
nd also for greater lags, it is generally nonsignificant.
ion, the reported percept durations in this pseudorivalry
ondition should also produce nonzero correlations. We
sed exactly the same stimulus design as described
bove, except that the two eyes were presented with non-
ompeting identical gratings. To produce a realistic pseu-
orivalry transition from one grating to the other grating,
e incorporated superimposed gratings and incomplete

ransitions entailing return percepts. In 25% of the tran-
itions the transition sequence reversed halfway, produc-
ng a return percept. Using 15 intermediate image frames
uring a transition, our naïve observers were not able to
istinguish the fluent percept transitions produced by our
seudorivalry condition from mentally produced percept
ransitions. To focus on quickly following alternations,
ercept durations varied randomly between 0.8 and 1.4 s.
The Spearman rank correlation was calculated for both

he pseudorivalry list of durations presented by the ex-
erimenter and the list of durations produced by the ob-
erver (using exactly the same analyses as described
bove for the previous experiment). The difference in cor-
elation between the two data sets is the correlation pro-
uced by the observer (Table 1). The average serial corre-
ation was 0.03±0.03, not significantly different from
ero, meaning that the serial percept duration correla-
ions found in our previous experiment were not governed
y imperfections in button presses.

. Experiment 2. Significant Serial Correlation in
erceptual Rivalry
or perceptual rivalry, using the ambiguously rotating
phere, we performed exactly the same data analysis as
e did above for binocular rivalry. The lag 1 correlation

oefficient across the various numbers of dots on the
phere is depicted in Fig. 4. The correlation amounts to

earman rank correlation generally decreases with increasing lag
up with lag because the number of data pairs used for the cal-

ontrast because the length of the data lists vary with contrast).
immediate correlation with the next percept duration (lag 1) are
ignificantly positive for all contrasts and all subjects. For lag 3,
in Sp
they go

the c
or the
rally s



a
c
c
g
l
r
l

D
C
A
c
a
a
s
l
d
m
c
p
c
r
s
c

p
b
a
t
a
d
o
t
t
t
i
f
i
d
v
s
t
l
s
a
p
a
w
m
t

b
e

F
b
a

F
a
m
d
c
d
p
f
2

F
w
a
f
a
r
c
l

Raymond van Ee Vol. 26, No. 12 /December 2009 /J. Opt. Soc. Am. A 2617
bout 0.1. Much as we found for binocular rivalry all lag 1
orrelations were positive (15 out of 20 reach 95% signifi-
ance), indicating that the lengths of serial durations are
enerally not independent. The correlation coefficients for
ag 2 and higher (see Fig. 5) resemble those for binocular
ivalry (Fig. 3): at lag 3 all, and at lag 2 almost all, corre-
ations were insignificant.

ig. 4. As Fig. 2 but for perceptual rivalry produced by the am-
iguous sphere. The serial dependence is positive for all subjects
nd for the sphere’s number of dots.

ig. 5. As Fig. 3 but for the ambiguous sphere containing vari-
ble number of dots. The serial correlation expressed in Spear-
an rank correlation generally changes with lag number. The

ashed curves specify the significance boundaries. Below those
urves there is no significant correlation. The data for the imme-
iate correlation with the next percept duration (lag 1) are re-
lotted from Fig. 4. For lag 1 the correlation coefficient is positive
or all numbers of dots (significant in 10 out of 20 cases). For lag
and greater lags correlation is generally nonsignificant.

Table 1. Serial Perceptual Duration Correlation
for the Pseudorivalry Stimuli

Subject

Correlations (Spearman rank)

Blocks
1, 2, and 3 Mean St Dev

S1 −0.07 0.01 −0.01 −0.02 0.04
S2 0.10 0.08 0.21 0.13 0.07
S3 −0.07 0.08 0.06 0.03 0.08
S4 0.00 −0.16 0.04 −0.04 0.11

Mean 0.03±0.03
. Simulations: Noise in Adaptation Drives Serial
orrelation
typical percept duration distribution produced by the

omputational model employed with white noise in the
daptation dynamics (thereby covering both adaptation A
nd its build-up �) is depicted in Fig. 6(a). To determine
erial correlation we calculated the Spearman rank corre-
ation coefficient within the resulting list of perceptual
urations, identical to what we did above for the experi-
entally acquired data. Figure 6(b) shows that all lag 1

orrelations across the various contrasts are significantly
ositive. For larger lags the correlations become insignifi-
ant below the 95% significance boundaries for zero cor-
elation. Computational modeling using multiple time
cales [33] is able to produce significant higher-lag coeffi-
ients, but this goes beyond the scope of this paper.

We found that noise in the other relevant model com-
onent, the neural activity dynamics (thereby covering
oth activity H and cross-inhibition strength 	), was not
ble to account for the magnitude of the serial correla-
ions found. The largest lag 1 correlation that we were
ble to produce only marginally exceeded the 95% confi-
ence boundary (dashed line in Fig. 6(b)). Although it is
bvious that the main reason for this finding is that the
ime scale of fast variations in cross-inhibited neural ac-
ivity is rather different from the time scale of percept al-
ernations, a limited understanding of the neural dynam-
cs prevents us from providing quantitative graphs that
acilitate unambiguous interpretation. A full understand-
ng is lacking because all published equations on neural
ynamics in perceptual bistability necessarily contain se-
ere approximations on how to average the activity of 109

ingle neurons into one single parameter. In addition,
here are multiple combinations of parameter values that
ead to the same serial correlation. Thus, quantitative
imulation outcomes on the role of noise in neural activity
re not yet interpretable with respect to the individual
arameters. In any case it seems safe to conclude that
ny combination of noise in the parameters associated
ith the neural activity dynamics does not account for the
agnitude of the experimentally found serial correla-

ions.
Noise in the stimulus strength parameter X has not

een explicitly mentioned yet; Figs. 2–5 demonstrate that
ven large changes in the input strength hardly affect the

ig. 6. a. Percept durations (as in Fig. 1) produced by our model
ith white noise in the adaptation parameter (A) binned (gray)
nd fitted by a gamma distribution (solid curve). b. As Fig. 3 but
or the model-generated percept durations. With noise in the ad-
ptation parameter (A) the model produces positive Spearman
ank correlation coefficients, particularly for lag 1. The dashed
urves specify the significance boundaries (based on fixed list
ength). Below those curves there is no significant correlation.
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ag 1 serial correlations. Figure 6(b) demonstrates that
he simulated lag 1 correlations are also immune to
hanges in the input strength (see Section 4 for consistent
nterpretation).

In Section 4 it is discussed that noise in neural activity
ctually can, via an indirect route, affect serial correlation
hrough both the adaptation build-up of the neurons as-
ociated with the dominant percept duration and the re-
overy from adaptation of the neurons associated with the
uppressed percept duration. It is also discussed that our
pproach is generic (not simply specific to the performed
imulations or selected model), and that it extends a simi-
ar finding of Kim et al. for stochastic resonance [5] into
he domain of serial correlation.

. New Serial Correlation Analyses on Existing
ttentional Control Data
o date, no studies have reported serial correlations for
ata series obtained under voluntary attentional control.
e analysed (employing the same Spearman analysis as

sed above) the data series from a previously published
omparison study that employed different attentional
ontrol conditions [47]. For comparison we first replotted
Fig. 7(a)) the reported serial correlations in the literature
23–29]. The pioneering Fox and Hermann (1967) [23]
ata are not in this plot because it did not report lag 1 cor-
elations, only higher-lag correlations. We have also pub-
ished serial correlations in a paper that explored in de-
ail the differences in dynamics for four different rivalry
timuli under identical stimulus presentation conditions.
ur data, too, contained unanimous positive lag 1 corre-

ations for all stimuli [31], here replotted in Fig. 7(b), left
anel.
The previously published comparison study [47] of

hich we now analyze the produced serial correlations
as based on 60,000 perceptual reversals for four differ-
nt rivalry stimuli under different attentional voluntary
ontrol tasks. The tasks involved either holding one of the
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ig. 7. a. Data from other laboratories. b. Previous data from
ur own laboratory. It is obvious that serial correlation is gener-
lly positive irrespective of task and stimulus. Interestingly, for
he more cognitive stimuli (slant rivalry) and for the higher-level
ask (hold) the serial correlations tend to become smaller. c. The
ag 1 serial correlation for the passive task correlates negatively
ith the percentage of voluntary control in lengthening the per-

eptual duration (for the hold task relative to the passive task).
or the gratings there is a small effect of voluntary control and

here is a considerable lag 1 correlation for the passive task. For
he more cognitive stimuli, where the conscious act of voluntary
ontrol has more influence, there is a smaller lag 1 correlation for
he passive task. These data support the speculation that a more
ognitive task produces less lag 1 serial correlation in perceptual
uration, i.e., the alternation process is then less prone to inter-
al variation in neural adaptation.
wo percepts in dominance or viewing the stimulus in a
assive way without exerting attentional control. Inter-
stingly, for the more cognitive stimuli (for example, slant
ivalry involving highly cognitive interpretation of linear
erspective) and for the higher-level cognitive task (hold a
ercept in dominance) the serial correlations tend to be-
ome smaller (Fig. 7(b), right panel). Figure 7(c) demon-
trates that the lag 1 serial correlation for the passive
ask correlates (negatively) with the effectiveness of vol-
ntary control in lengthening the perceptual duration (for
he hold task relative to the passive task). For the more
ognitive stimuli, where top-down voluntary attentional
ontrol exerts more influence, there is a smaller lag 1 cor-
elation, suggesting that the perceptual alternation pro-
ess is less prone to noisy variations in the neuronal ad-
ptation associated with percept dominance.

. DISCUSSION
sing a computational analysis based on straightforward

heoretical principles, it is demonstrated that noise in ad-
ptation of percept-related neurons can cause the ob-
erved slow stochastic variations in sensory awareness on
multiple seconds time scale. In addition, evidence is pro-
ided that serial correlations depend on stimulus and
ask. This work forms a means of bringing together, in a
hysiologically plausible way, widely appreciated deter-
inistic modeling and the randomness component in ex-

erimental observations in visual rivalry. Although we
onfirm previous literature ([9] for review) to the extent
hat carryover effects across successive perceptual dura-
ions are not the major factor in the generation of percept
urations, we found significant serial correlation of pure
erceptual durations (accounting for impurities caused by
eaction time, drift, and incomplete percepts) in both bin-
cular and perceptual rivalry. This contradicts a fre-
uently occurring idea among scientists in the field that
omplete randomness of perceptual periods constitutes a
allmark of visual rivalry. Although we focused on the vi-
ual domain, from emerging evidence in other sensory do-
ains ([48,49] for audition, and [50] for touch) it appears

hat the dynamics of series of perceptual dominance du-
ations are strikingly similar across the sensory domains,
mplying that our findings may be extended to other sen-
ory domains.

. Neuronal Noise at a Slow Time Scale of Percept
daptation

t is remarkable, but also revealing, that our computa-
ional simulations produce correlated serial perceptual
urations by adding white (i.e., uncorrelated) noise that
ught not cause the serial correlations. Recently it be-
ame increasingly clear that noise must play a major ex-
laining role [5–8], but the neural mechanism responsible
or the generation of stochastic behavior at the slow time
cale of percept durations remained unresolved. We rea-
oned that adding noise to a particular component of the
ompetition process provides a window to simulate
hether it plays a key role in the process. We found, on
ne hand, that noise in the slow adaptation dynamics was
ble to account for the experimental data patterns (Fig.
(b)). On the other hand, noise in the dynamics of cross-
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nhibited neural activity was not able to account for the
agnitude of serial correlations found. Note that even

arge changes in the input strength hardly affected either
he experimentally found or the simulated serial correla-
ions (Figs. 2–6). These findings nicely dovetail with the
nterpretation that serial correlation is governed by varia-
ion in adaptation of percept-related (as opposed to
timulus-related) neurons.

Why is it that noise in the parameter associated with
eural activity per se does not produce the serial correla-
ions found? For one thing, cross-inhibition is physiologi-
ally a key element in the competition process [1], which
aturally contains (Poisson) noise in the neuronal firing
atterns. However, the time scale of fast variations in
ross-inhibited neural activity is rather shorter than the
ime scale of percept alternations: while the percept
trength slowly changes from being suppressed to being
ominant, the neural activity noise produces rapid ran-
om jittering on those percept strengths. Close to the de-
erministic alternation moment this noisy jittering can
ake the perceptual alternation happen more quickly or
ore slowly. The same is true for the next alternation
here the noise will determine another random variation

n the alternation moment, which is unrelated (i.e., uncor-
elated) to the first. Thus, noise in neural activity per se is
nable to cause directly the serial correlations found.
However, by producing jittering in percept durations

his noise will indirectly affect both the adaptation
uild-up of the neurons associated with the dominant per-
ept duration and the recovery from adaptation of the
eurons associated with the suppressed percept duration.
his implies that noise in neural activity can produce
arginal serial percept duration correlations indirectly

hrough adaptation, bringing us back to our computa-
ional finding that variations in adaptation account for
he experimentally found pattern of serial correlations.
his reasoning is supported by literature on stochastic
esonance [5] (see below) and we argue that it holds in a
eneral sense.

. How Generic is Our Finding?
ow generic is our finding—that serial correlations are

aused by variations in the slow time scale of neural
daptation—and how specific is it to the simulations per-
ormed (using the Noest-2007 model)? We considered vari-
us classes of models. The grand class of models, includ-
ng the model we used, involves interaction between
daptation and cross-inhibition [8–10,14–21]. All these
odels behave in a similar way under noise in the adap-

ation component, meaning that our finding applies to a
road class of models. Note that a similar claim can be
ound in the literature for stochastic resonance. Kim et al.
2006) [5] explicitly compared a number of influential ad-
ptation models and also found that adding noise to ad-
ptation, rather than to neural activity, was crucial in
roducing the stochastic resonance that they obtained ex-
erimentally.
Other classes of models involve random walks [51,52],
arkov chains [53], or random fractal theory [54]. These

re interesting and inspiring from a theoretical point of
iew, but they await physiological implementation. Until
hen it is impossible to state which model parameter
ould be responsible for serial correlation in human be-
avioral data. Other models, some very recent, that use
ultiple layers [55–57], multiple neuron pools [58], or os-

illator coding [59] cannot be generic models because they
o not explain now-established experimental findings on
ultiple time scales in perceptual memory ([40,41] for re-

iew) and/or experimental findings that led to the modifi-
ation of Levelt’s second proposition [6]. It is often as-
umed that all models produce long-tailed (gamma or log-
ormal) percept duration distributions, but there is a
lass of statistical models that does not [60], thereby fail-
ng to fit experimentally found percept duration distribu-
ions.

There is one paper, by Gao et al. [29], that is seminal in
resenting a model producing positive serial correlations,
upporting experimentally obtained correlations of as
arge as 0.3, which are published in the same paper. Their

odel provided an explanation for this correlation based
n an 1/ f analysis. However, 1/ f analyses are very sensi-
ive to drift in the data, and this study did not consider
rift. Given the serial correlation they found of as much
s 0.3 and their long periods of observation �5 min�, it
ay be suspected that their substantial correlation was

imply caused by drift and could therefore be explained by
/ f noise. These authors validated their theoretical find-

ngs with the huge memory effects reported for perceptual
tabilization in onset rivalry after intermittent blank pe-
iods [61], thereby confusing serial correlation in switches
nder prolonged viewing (a switch process involving
egative cross-inhibition) with perceptual stabilization in
nset rivalry (a choice process involving positive priming
22]; review in Pearson and Brascamp [40]).

. Possible Flaws in Experimentation
here are reasons to expect positive correlations between
uccessive durations due to mechanisms not related to
he stochasticity issue. For example, a gradual change of
ttention (either focusing, or diverting [62]) and/or the
umber of blinks can cause positive serial correlation.
ur drift correction takes care of a gradual change over

he 5 min observation period. Short-term changes in at-
ention or blink rate may be responsible for the deviations
rom the mean values in Fig. 2 and Fig. 4. However, it is
lear that we find quite constant lag 1 serial correlations
cross varying stimulus contrast for the grating (Fig. 2)
nd across the number of stimulus elements for the am-
iguously rotating sphere (Fig. 4). This would then mean
hat the number of blinks did not change considerably
cross the different stimulus presentation blocks. One
ould expect more blinks and eye movements with in-

reasing stimulus ambiguity such as one experiences
hen there are many mixed percepts for low-contrast
ratings. However, even then we found quite constant se-
ial correlations (Fig. 2). In addition to different stimuli,
e examined different attentional states, finding that for

he grating the serial correlation did not change across at-
entional tasks (Fig. 7(b)). Thorough eye movement stud-
es, in which we measured microsaccades and blinks
63–65], did not reveal gradual changes over time in the
mount of blinks and microsaccades.
Serial correlations were smaller for the ambiguously

otating sphere (Fig. 4) than for the grating stimulus (Fig.
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). A first explanation, but an incorrect one, would be that
ixed percepts (both piecemeal rivalry and intermediate

ercepts of superimposed gratings) occurring for the grat-
ng stimulus but not for the ambiguously rotating sphere
ause the larger correlation coefficients. This cannot be
he case because for the high-contrast gratings mixed per-
epts did not occur to any significant extent ��2% �. In-
tead, the fact that we found very similar (Fig. 2) serial
orrelations both for high grating contrast (no mixed) and
ow grating contrast (many mixed percepts) enables us to
onclude that mixed percepts do not influence serial cor-
elations to a great extent.

. Binocular Rivalry versus Perceptual Rivalry
t is interesting to further discuss the differences between
inocular and perceptual rivalry: Although computational
rinciples just prior to the production of visual awareness
ppear to be common to the two types of rivalry [66,67],
he neuronal input to the computational mechanism of ri-
alry must stem from different cortical neurons and dif-
erent cognitive levels. Indeed, the differences found in se-
ial correlation may point to qualitatively different
nderlying mechanisms for binocular and perceptual ri-
alry, a suggestion that has been made before
31,39,47,65,68]. Meng and Tong [68] as well as van Ee et
l. [47] recognized that top-down attentional control is
ore effective for perceptual rivalry than for binocular ri-

alry. Van Ee [31] demonstrated that the temporal dy-
amics are different for binocular and perceptual rivalry,
nd we also showed that eye movements (including mic-
osaccades) play a larger causal role for percept-switching
n binocular rivalry than in perceptual rivalry [65]. It may
e the case that the difference in serial correlation indi-
ates that for perceptual rivalry of the ambiguous sphere
he two (high-level) surface gestalt interpretations rival
37–39,66], while in grating rivalry both the (high-level)
rating gestalts but also the lowest-level line detectors ri-
al, thereby producing more noisy variation in neuronal
daptation and thus more serial correlation. In a similar
ein, we speculate that serial correlation produced during
igh-level attentional control tasks (like holding the per-
ept) tend to be smaller (i.e., less prone to internal noisy
ariation in neuronal adaptation) than those produced
nder passive viewing (Fig. 7). It is noteworthy that, con-
istent with our findings, a previous study by Richards et
l. [69] reported that the dynamics of perceptual bistabil-
ty is more “structured” in the sense of deterministic
haos (i.e., less dependent on noisy variation in adapta-
ion) for perceptual rivalry than for binocular rivalry. Fu-
ure data and analyses for different “cognitive tasks” may
hallenge the speculations from this paragraph.

. Findings Supporting Nonrandomness in Percept
urations
esides our findings and the findings from the studies in
ig. 7, there are other indications that the visual rivalry
rocess may not produce purely randomly occurring per-
eptual alternations. A previous study reported that per-
eptual durations produced by visual rivalry exhibits low-
imensionality characteristics associated with a
eterministic nonlinear dynamical system showing cha-
tic behavior (chaotic meaning deterministic with unpre-
ictable future) [69]. A related study by Lehky [26] per-
ormed two tests for a chaotic perceptual duration
enerator: in the first test, a correlation dimension test, it
as reported that correlation dimensions as a function of
mbedding dimension (involving time delay) deviated
rom what would have been found on the one hand for a
haotic generator (up to embedding dimension of 10), and
n the other hand it deviated from what would have been
ound for a true random generator; in the second test, a
onlinear forecasting test, it was reported that perceptual
uration series were more predictable than randomized
urrogate data by about 5% (significant by �1–2 sigmas).
evertheless, these findings were regarded by the field as
eing too small to be taken as serious deviations from
ero correlation, and zero correlation remained a hall-
ark of visual rivalry ([9] for review).
A relevant paper by Mamassian and Goutcher (2005)

n temporal rivalry dynamics showed that survival prob-
bilities of binary percepts are not random [30]. Findings
n perceptual trapping in which one sequence of percepts
n multistability is more likely than another sequence
70] indicate that high-level gestalt grouping of stimulus
eatures are important in determining successive per-
epts. Other findings on the role of mood and attentional
ontrol in modifying perceptual durations [71] provided
ndications, too, that the visual rivalry process does not
roduce purely random percept durations. These latter
ndings relate to the discussion above on top-down influ-
nces.

. Zero Serial Correlation of Percept Durations is Not a
allmark of Visual Rivalry
ur data counteract a previous “Poisson clock” model [46]

hat predicts purely random uncorrelated percept dura-
ions. Historically, it was quickly recognized that percept
uration distributions had a characteristic long tail that
as reasonably well fit by a gamma distribution [46].
uch a distribution can theoretically be produced by a
rocess involving a Poisson clock. Relevant here is that
uch a random clock, in turn, appears to generate serially
ncorrelated perceptual durations. Given that the first
tudy on serial correlation concluded that correlation was
ero [23], initially there seemed to be clear evidence that
Poisson clock must underlie awareness alternations in

isual rivalry [46]. Relevant recent work by Murata et al.
rovided a new angle to this issue as it reported quan-
ized perceptual duration distribution fit parameters for
ifferent ambiguous stimuli that support the Poisson
lock model [72]. In our work, however, we were not able
o replicate their findings because of our study’s statisti-
al power, and we noted that the results of their study
ay lack convincing statistical power as well [42]. Never-

heless, it would be interesting to pursue such experi-
ents in more detail because such results might chal-

enge current model predictions.
Zero correlation of serially consecutive perceptual peri-

ds is frequently used as a hallmark of visual rivalry, and
his idea has exerted a considerable influence on the route
ollowed by theorists as it has often been used as a con-
training boundary condition in the design of mechanistic
odels of visual rivalry. A stochastic process is a random

rocess that allows serial correlation, meaning that with
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egard to the random component there is nothing detri-
ental in accepting that serial correlations are nonzero.
ote that in the literature there is not one single experi-
ent that produced zero serial correlations, and that our

ignificance analyses support nonzero correlation as well.
ll reported experimental outcomes on serial correlation
re in excellent agreement with our outcomes. Even
hough findings from the literature could equally well
ave been used to criticize a sole contribution of a random
witch generator, they instead were used as support for
he Poisson clock model. Given the above reviewed work
n a deterministic component as well as on a role of
igher-level attentional effects in the alternation process,

t is harder to explain away the nonzero serial correla-
ions than to accept them as reflecting a deterministic
omponent to the alternation process. This is even more
he case when realizing that, on the one hand, the neu-
onal mechanism responsible for the generation of pure
andomness at a time scale of percept durations is unre-
olved, while on the other hand there is straightforward
eural modeling [22] that is consistent with a wide range
f findings and that naturally produces serial correlations
f a magnitude that matches experimentally found corre-
ations.

. CONCLUSION
ignificant nonzero serial correlation in perceptual dura-
ions are reported, and evidence that serial correlations
epend on stimulus and task is provided. Developing a
onspecific computational logic based on straightforward
heoretical principles, it is demonstrated that noise in ad-
ptation of percept-related neurons can cause the ob-
erved slow stochastic variations in sensory awareness on

multiple seconds time scale. This work bridges, in a
hysiologically plausible way, discrepancies between
idely appreciated deterministic modeling and random-
ess in experimental observations in visual rivalry.
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