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Abstract. A stochastic volatility in mean (SVM) model using the class of
symmetric scale mixtures of normal (SMN) distributions is introduced in this
article. The SMN distributions form a class of symmetric thick-tailed distri-
butions that includes the normal one as a special case, providing a robust alter-
native to estimation in SVM models in the absence of normality. A Bayesian
method via Markov-chain Monte Carlo (MCMC) techniques is used to esti-
mate parameters. The deviance information criterion (DIC) and the Bayesian
predictive information criteria (BPIC) are calculated to compare the fit of dis-
tributions. The method is illustrated by analyzing daily stock return data from
the São Paulo Stock, Mercantile & Futures Exchange index (IBOVESPA).
According to both model selection criteria as well as out-of-sample forecast-
ing, we found that the SVM model with slash distribution provides a signifi-
cant improvement in model fit as well as prediction for the IBOVESPA data
over the usual normal model.

1 Introduction

In recent years, stochastic volatility (SV) models have been considered as useful
tools for modeling time-varying variances, mainly in financial applications where
policymakers or stockholders are constantly facing decision problems that usually
depend on measures of volatility and risk. An attractive feature of the SV model is
its close relationship to financial economic theories (Melino and Turnbull, 1990)
and its ability to capture the main empirical properties often observed in daily
series of financial returns in a more appropriate way (Carnero et al., 2004).

The relation between expected returns and expected volatility has been exten-
sively examined in recent years. The theory generally predicts a positive relation
between expected stock returns and volatility if investors are risk averse. In other
words, investors require a larger expected return from a security that is riskier. Em-
pirical studies that attempt to test this important relation, however yield mixed re-
sults. French (1987) found a positive and significant relationship and Theodossiou
(1995) reported a positive but nonsignificant relationship between stock market
volatility and stock returns. Consistent with the asymmetric volatility argument,
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Nelson (1991) and, more recently, Brandt and Kang (2004) reported evidence of
a negative and often significant relationship between volatility and returns. Over-
all, there appears to be stronger evidence of a negative relationship between un-
expected returns and innovations to the volatility process, which French (1987)
interpreted as indirect evidence of a positive correlation between the expected risk
premium and ex ante volatility. This theory, known as feedback volatility, states
that bad (good) news decreases (increases) stock prices and increases volatility,
therefore determining a further decrease of the price. An alternative explanation for
asymmetric volatility where causality runs in the opposite direction is the leverage
effect put forward by Black (1976), who asserted that a negative (positive) return
shock leads to an increase (decrease) in the firm’s financial leverage ratio, which
has an upward (downward) effect on the volatility of its stock returns. However,
French (1987) and Schwert (1989) argued that leverage alone cannot account for
the magnitude of the negative relationship. For example, Campbell and Hentschel
(1992) found evidence of both volatility feedback and leverage effects, whereas
Bekaert and Wu (2000) presented results suggesting that the volatility feedback
effect dominates the leverage effect empirically.

Many empirical studies have shown strong evidence of heavy-tailed condi-
tional mean errors in financial time series; see, for example, Mandelbrot (1963),
Liesenfeld and Jung (2000), Chib et al. (2002) and Jacquier et al. (2004). Fre-
quently, the volatility of daily stock returns has been estimated with SV models,
but the results have relied on an extensive premodeling of these series to avoid
the problem of simultaneous estimation of the mean and variance. Koopman and
Uspensky (2002) introduced the SV in mean (SVM) model to deal with this prob-
lem and the unobserved volatility is incorporated as an explanatory variable in
the mean equation of the returns under the normality assumption of the innova-
tions. In this article we propose to enhance the robustness of the specification of
the innovation return in SVM models by introducing SMN distributions. In fact,
the flexibility of the SVM with SMN distributions could fit time varying features
in the mean of the returns and heavy tails simultaneously. We refer to this gen-
eralization as an SVM-SMN class of models. This rich class contains as proper
elements the SVM with normal (SVM-N), Student-t (SVM-t), slash (SVM-S) and
the contaminated normal (SVM-CN) distributions. The estimation of such intri-
cate models is not straightforward, since volatility now appears in both the mean
and the variance equation and hence intensive computational methods are needed
for. Inference in the SVM-SMN class of models is performed under a Bayesian
paradigm via MCMC methods. An efficient multi-move sampler is developed to
simulate the log-volatilities by blocks (Abanto-Valle et al., 2010; Shephard and
Pitt, 1997; Watanabe and Omori, 2004).

The remainder of this paper is organized as follows. Section 2 gives a brief in-
troduction about the SMN distributions. Section 3 outlines the general class of the
SVM–SMN models as well as the Bayesian estimation procedure using MCMC
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methods. Section 4 is devoted to application and model comparison among partic-
ular members of the SVM–SMN models using the IBOVESPA data set. Finally,
some concluding remarks and suggestions for future developments are given in
Section 5.

2 Scale mixture of normal distributions

Andrews and Mallows (1974) used the Laplace transform technique to prove that
a continuous random variable Y has a SMN distribution if it can be expressed as
follows:

Y = μ + κ1/2(λ)Z, (2.1)

where μ is a location parameter, Z is a normal random variable with zero mean
and variance σ 2, κ(λ) is a positive weight function, λ is a mixing positive random
variable with density p(λ|ν), ν is a scalar or parameter vector indexing the dis-
tribution of λ. As in Choy and Chan (2008), we restrict our attention to the case
in that κ(λ) = 1/λ. Thus, Y |λ ∼ N (μ,λ−1σ 2) and the marginal p.d.f. of Y with
respect to λ is given by

f (y|μ,σ 2, ν) =
∫ ∞

0
N (y|μ,λ−1σ 2)p(λ|ν) dλ. (2.2)

From a suitable choice of the mixing density p(·|ν), a rich class of continuous
symmetric distributions can be described by the density given in (2.2) that can
readily accommodate thicker tails than the normal process. Note that when λ = 1
(a degenerate random variable), we retrieve the normal distribution. Apart from
the normal model, we explore three different types of heavy-tailed densities based
on the choice of the mixing density p(·|ν).

• The Student-t distribution, Y ∼ T (μ,σ 2, ν).
The use of the Student-t distribution as an alternative robust model to the normal
distribution has frequently been suggested in the literature (Little, 1988). For
the Student-t distribution with location μ, scale σ and degrees of freedom ν,
Y ∼ T (μ,σ 2, ν) is equivalent to the following hierarchical form:

Y |μ,σ 2, ν, λ ∼ N
(
μ,

σ 2

λ

)
, λ|ν ∼ G(ν/2, ν/2), (2.3)

where G(·, ·) denotes the gamma distribution.
• The Slash distribution, Y ∼ S(μ,σ 2, ν), ν > 0.

This distribution presents heavier tails than those of the normal distribution and
it includes the normal case when ν ↑ ∞. The slash distribution is equivalent to
the following hierarchical form:

Y |μ,σ 2, λ ∼ N
(
μ,

σ 2

λ

)
, λ|ν ∼ Be(ν,1), (2.4)

where Be(·, ·) denotes the beta distribution.
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• The contaminated normal distribution, Y ∼ C N (μ,σ 2, ν), ν′ = (δ, γ ).
Here, λ is a discrete random variable taking one of two states. The probability
function of λ, given the parameter vector ν′ = (δ, γ ), is denoted by

p(λ|ν) = δI(λ=γ ) + (1 − δ)I(λ=1), 0 ≤ δ < 1,0 < γ < 1, (2.5)

where I(·) denotes an indicator function. It follows then that

f (y) = δN (y|μ,γ −1σ 2) + (1 − δ)N (y|μ,σ 2). (2.6)

Parameter δ can be interpreted as the proportion of outliers while γ may be
interpreted as a scale factor. The contaminated normal distribution reduces to
the normal one when γ = 1.

3 The heavy-tailed stochastic volatility in mean model

The SV in mean model with heavy tails is defined by

yt = β0 + β1yt−1 + β2e
ht + eht /2λ

−1/2
t εt , (3.1a)

ht = α + φht−1 + σηηt , (3.1b)

λt ∼ p(λt |ν), εt ∼ N (0,1), ηt ∼ N (0,1), (3.1c)

where yt and ht are, respectively, the compounded return and the log-volatility
at time t . We assume that |φ| < 1, that is, that the log-volatility process is sta-

tionary and that the initial value h0 ∼ N ( α
1−φ

,
σ 2

η

1−φ2 ). The innovations εt and ηt

are assumed to be mutually independent and normally distributed with mean zero
and unit variance. In this setup, λt is a scale factor, p(λt |ν) is the mixing den-
sity and ν the parameter that captures the heavy-tailness. The aim of the SVM-
SMN class of models is to simultaneously estimate the ex ante relation between
returns and volatility and the volatility feedback effect in the presence of outliers.
This class of models includes the SVM with Student-t (SVM-t), with slash (SVM-
S) and contaminated normal (SVM-CN) distributions as special cases. The first
and second models are obtained by choosing the mixing density as λt ∼ G(ν

2 , ν
2 ),

λt ∼ Be(ν,1), respectively, where G(·, ·) and Be(·, ·) denote the gamma and beta
distributions respectively. In the SVM-CN model λt follows a discrete distribution,
such that p(λt |ν) = δI(λt=γ ) + (1− δ)I(λt=1), where ν′ = (δ, γ ) and I(·) is an indi-
cator function. When λt = 1 for all t , we have the SVM with normal distribution of
Koopman and Uspensky (2002), and we denote it by SVM-N. Under a Bayesian
paradigm, we use MCMC methods to conduct the posterior analysis in the next
subsection. Conditional on λt , some derivations are common to all members of the
SVM-SMN family (see Appendix for details).
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3.1 Parameter estimation via MCMC

Let θ = (β0, β1, β2, α,φ,σ 2
η , ν′)′ be the full parameter vector of the entire class of

SVM-SMN models, h0:T = (h0, h1, . . . , hT )′ be the vector of the log volatilities,
λ1:T = (λ1, . . . , λT )′ be the mixing variables and y0:T = (y0, . . . , yT )′ be the in-
formation available up to time T , while ν is the parameter vector associated with
the mixture distribution. The Bayesian approach to estimate the parameters in the
SVM-SMN models uses the data augmentation principle, which considers h0:T
and λ1:T as latent parameters. The joint posterior density of parameters and latent
unobservable variables can be written as

p(h0:T ,λ1:T , θ |y0:T ) ∝ p(y1:T |y0, θ,λ1:T ,h0:T )p(h0:T |θ)p(λ1:T |θ)p(θ), (3.2)

where p(θ) is the prior distribution. Since p(h0:T ,λ1:T , θ |y0:T ) does not have
closed form, we first sample the parameters θ , followed by the latent variables λ1:T
and h0:T using the Gibbs sampling algorithm (see Algorithm 1 for details of the
sampling scheme). Sampling the log-volatilities h0:T in step 4 of Algorithm 1 is the
most difficult task due to the nonlinear setup in the observational equation (3.1a).
In order to avoid the higher correlations due to the Markovian structure of the ht ’s,
in the next subsection we develop a multi-move block sampler to sample h0:T by
blocks (Abanto-Valle et al., 2010; Shephard and Pitt, 1997; Watanabe and Omori,
2004). Details on the full conditionals of θ and the latent variable λ1:T are given
in the Appendix.

Algorithm 1.

1. Set i = 0 and get starting values for the parameters θ (i) and the latent quantities
λ

(i)
1:T and h(i)

0:T .

2. Generate θ (i) in turn from its full conditional distribution, given y1:T , h(i−1)
0:T

and λ
(i−1)
1:T .

3. Draw λ
(i)
1:T ∼ p(λ1:T |θ (i),h(i−1)

0:T ,y0:T ).

4. Generate h0:T by blocks as follows:
(i) For l = 1, . . . ,K , the knot positions are generated as kl , the floor of [T ×

{(l + ul)/(K + 2)}], where the u′
ls are independent realizations of the

uniform random variable on the interval (0, 1).
(ii) For l = 1, . . . ,K , generate hkl−1+1:kl−1 jointly conditional on ykl−1:kl−1,

θ (i), λ
(i)
kl−1+1:kl−1, h

(i−1)
kl−1

and h
(i−1)
kl

.

(iii) For l = 1, . . . ,K , draw h
(i)
kl

conditional on y1:T , θ (i), h
(i)
kl−1 and h

(i)
kl+1.

5. Set i = i + 1 and return to 2 until convergence is achieved.

The prior distribution of the parameters in the SVM–SMN class are set as
β0 ∼ N (β̄0, σ

2
β0

), β1 ∼ N(−1,1)(β̄1, σ
2
β1

), β2 ∼ N (β̄2, σ
2
β2

), α ∼ N (ᾱ, σ 2
α), φ ∼
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N(−1,1)(φ̄, σ 2
φ) and σ 2

η ∼ I G(
T0
2 ,

M0
2 ), where N(a,b)(·, ·) denotes the truncated nor-

mal distribution in the interval (a, b). The prior distribution of ν is model specific
(see details in the Appendix).

3.2 A block sampler algorithm

In order to simulate h0:T = (h0, . . . , hT )′ in the SVML-SMN class of models,
we consider a two-step process: first, we simulate h0 conditional on h1:T , next
h1:T conditional on h0. To sample the vector h1:T , we develop a multi-move block
algorithm. In our block algorithm, we divide h1:T into K +1 blocks, hkl−1+1:kl−1 =
(hkl−1+1, . . . , hkl−1)

′ for l = 1, . . . ,K + 1, with k0 = 0 and kK+1 = T , where kl −
1 − kl−1 ≥ 2 is the size of the lth block. A suitable selection of K is important to
obtain an efficient sampler that can reduce the correlation imposed by the model
in the sampling process.

We sample the block of disturbances ηkl−1+1:kl−1 = (ηkl−1+1, . . . , ηkl−1)
′ given

the end conditions hkl−1 and hkl
instead of hkl−1+1:kl−1, exploiting the fact that

the innovations ηt are i.i.d. with N (0,1) distribution. To facilitate the exposition,
suppose that kl−1 = t and kl = t + k + 1 for the lth block. Then ηt+1:t+k are
sampled at once from their full conditional distribution, which omitting the de-
pendence on yt :t+k,λt+1:t+k, in order to facilitate the exposition is denoted by
f (ηt+1:t+k|ht , ht+k+1, θ) and expressed in the log scale as

logf (ηt+1:t+k|ht , ht+k+1, θ)

= const − 1

2

t+k∑
r=t+1

η2
r +

t+k∑
r=t+1

l(hr) (3.3)

− 1

2σ 2
η

(ht+k+1 − α − φht+k)
2
I(t + k < T ),

where I(·) denotes an indicator function. We denote the first and second derivatives
of l(hr) with respect to hr by l′ and l′′, where l(hr) = logp(yr |yr−1, β0, β1, β2,

λr , hr) is obtained from equation (3.1a). As (3.3) does not have closed form, we
use the Metropolis–Hastings acceptance-rejection algorithm (Tierney, 1994; Chib
and Greenberg, 1995) to sample from. We propose to use the following artificial
Gaussian state space model as a proposed density to simulate the block ηt+1:t+k:

ŷr = hr + εr , εr ∼ N (0, dr), r = t + 1, . . . , t + k, (3.4)

hr = α + φhr−1 + σηηr, ηr ∼ N (0,1), (3.5)

where the auxiliary variables dr and ŷr for r = t + 1, . . . , t + k − 1 and t + k = T

are defined as follows:

dr = − 1

l′′F (ĥr )
,

(3.6)
ŷr = ĥr + dr l

′
(ĥr ).
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For r = t + k < T ,

dr = σ 2
η

φ2 − σ 2
η l′′F (ĥt+k)

,

(3.7)

ŷr = dr

[
l
′
(ĥr ) − l′′F (ĥr )ĥr + φ

σ 2
η

(hr+1 − α)

]
.

We obtain the observational equation (3.4) by a second-order expansion of l(hr)

around some preliminary estimate of ηr , denoted by η̂r , where ĥr is the estimate
of hr equivalent to η̂r . Since l′′(hr) is

l′′(hr) = −1
2λr(yr − β0 − β1yr−1 − β2e

ht )2e−hr

− β2λr(yr − β0 − β1yr−1 − β2e
hr ) − β2

2λre
hr ,

which can be positive for some values of hr , we define l′′F (hr) as

l′′F (hr) = E[l′′(hr)] = −1
2 − β2

2λre
hr , (3.8)

which is strictly negative everywhere. The expectation (3.8) is taken with respect to
yr conditional on hr and λr , β0, β1, β2 and yr−1. Since (3.4)–(3.5) define a Gaus-
sian state space model, we can apply the simulation smoother (de Jong and Shep-
hard, 1995) to perform the sampling. Let g be the density based on the model given
by equations (3.4)–(3.5). Since f is not bounded by g, we use the Metropolis–
Hastings acceptance-rejection algorithm to sample from f , as recommended by
Chib and Greenberg (1995). In the SVM-N case, we use the same procedure with
λt = 1 for t = 1, . . . , T .

We select the expansion block ĥt+1:t+k as follows. Once an initial expan-
sion block ĥt+1:t+k is selected, we can calculate the auxiliary ŷt+1:t+k by using
equations (3.6) and (3.7). In the MCMC implementation, the previous sample of
ht+1:t+k can be taken as an initial value of ĥt+1:t+k . Then, applying the Kalman
filter and a disturbance smoother to the linear Gaussian state space model con-
sisting of equations, (3.4) and (3.5), with the artificial ŷt+1:t+k yields the mean of
ht+1:t+k conditional on ĥt+1:t+k in the linear Gaussian state space model, which
is used as the next ĥt+1:t+k . By repeating the procedure until the smoothed esti-
mates converge, we obtain the posterior mode of ht+1:t+k . This is equivalent to
the method of scoring to maximize the logarithm of the conditional posterior den-
sity. Although we have just noted that iterating the procedure achieves the mode,
this will slow our simulation algorithm if we have to iterate this procedure until full
convergence. Instead we suggest using only five iterations of this procedure to pro-
vide reasonably good sequence ĥt+1:t+k instead of an optimal one. The procedure
is summarized in Algorithm 2.
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Algorithm 2.

1. Initialize ĥt+1:t+k .
2. Evaluate recursively l

′
(ĥr ) and l′′F (ĥr ) for r = t + 1, . . . , t + k.

3. Conditional on the current values of the vector of parameters θ , λt+1:t+k , ht

and ht+k+1, define the auxiliary variables ŷr and dr using equations (3.6) or
(3.7) for r = t + 1, . . . , t + k.

4. Consider the linear Gaussian state–space model in (3.4) and (3.5). Apply the
Kalman filter and a disturbance smoother (Koopman, 1993) and obtain the pos-
terior mean of ηt :t+k (ht :t+k) and set η̂t :t+k (ĥt :t+k) to this value.

5. Return to step 2 and repeat the procedure until achieving convergence.

Finally, we describe the updating procedure for h0 and the knot conditions
hkl

, for l = 1, . . . ,K . We simulate h0|h1, θ ∼ N (α + φh1, σ
2
η ). As the density

p(hkl
|hkl−1, hkl+1) does not have a closed form, we use the Metropolis–Hastings

algorithm with proposal N (
α(1−φ)+φ(hkl−1+hkl+1)

1+φ2 ,
σ 2

η

1+φ2 ). Let h
p
kl

and h
(i−1)
kl

denote
the proposal value and the previous iteration value. Thus, the acceptance probabil-

ity is given by αMH = min{1,
Q(h

p
kl

)

Q(h
(i−1)
kl

)
}, where Q(hkl

) is the conditional density of

ykl
|λkl

, ykl−1, hkl
.

4 Empirical application

This section analyzes the daily closing prices of the IBOVESPA, which is an in-
dex of about 50 stocks that are traded on the São Paulo Stock, Mercantile & Fu-
tures Exchange. The index is composed of a theoretical portfolio with the stocks
that accounted for 80% of the volume traded in the last 12 months and that were
traded on at least 80% of the trading days. It is revised quarterly, to keep it rep-
resentative of the volume traded. On average, the components of the IBOVESPA
represent 70% of all the stock value traded. The data set was obtained from the
Yahoo finance web site, available to download at “http://finance.yahoo.com.” The
period of analysis is January 5, 1998–October 3, 2005, which yields 1917 obser-
vations. Throughout, we work with the compounded return expressed as a percent-
age, yt = 100 × (logPt − logPt−1), where Pt is the closing price on day t .

The compounded IBOVESPA returns are plotted in Figure 1 as a time series
plot and also as a histogram. The mean and standard deviation of returns are 0.06
and 2.34, respectively. As can be easily seen in Figure 1, the returns are slight skew
(0.83) with heavy tails. Note also that the returns have a large range (minimum,
−17.21 and maximum, 28.83). Some extreme observations, explained by turbu-
lences in financial markets that occurred by August 1998 and January 1999 (the
Russian and Brazilian exchange rate crises, respectively), contribute to the large
kurtosis (19.18) of the IBOVESPA returns. As a result, the IBOVESPA returns

http://finance.yahoo.com
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Figure 1 Compounded IBOVESPA returns from January 5, 1998 to September 3, 2005. The left
panel shows the plot of the raw series and the right panel the histogram of returns.

likely depart from the underlying normality assumption. Thus, we reanalyze this
data with the aim of providing robust inference by using the SMN class of distri-
butions. In our analysis, we compare the SVM-N, SVM-t, SVM-S and SVM-CN
models.

In all cases, we simulated the ht ’s in a multi-move fashion with stochastic
knots based on the method described in Section 3.1. We set the prior distri-
butions of the common parameters as β0 ∼ N (0,100), β1 ∼ N(−1,1)(0.1,100),
β2 ∼ N (−0.1,100), α ∼ N (0.0,100), φ ∼ N(−1,1)(0.95,100) and σ 2

η ∼ I G(2.5,

0.025). The prior distributions on the shape parameters were chosen as ν ∼
G(12.0,0.8) and ν ∼ G(2.0,0.25) for the SVM-t model and the SVM-S model,
respectively. For the SVM-CN, we set δ ∼ Be(2,2) and γ ∼ Be(2,4). The pri-
ors’ means for φ and β1, are, respectively, 0.0032 and 0.0003, and their variances,
0.3328 and 0.3329. In both cases, the priors are equivalent to the uniform distribu-
tion on interval (−1,1), which gives zero mean and variance of 0.3333. Thus, it is
clear that the priors considered for φ and β1 are noninformative.

The initial values of the parameters were randomly generated from the prior
distributions. We set all the log-volatilities, ht , to be zero. Finally, the initial λ1:T
were generated from the prior p(λt |ν). All the calculations were performed run-
ning stand-alone code developed by us using an open source C++ library for
statistical computation, the Scythe statistical library (Pemstein et al., 2011), which
is available for free download at http://scythe.wustl.edu.

For the block sampler algorithm, we set the number of blocks K to be 60 in such
a way that each block contained 32 h′

t s on average. For the SVM-N, SVM-t and the
SVM-S models, we conducted the MCMC simulation for 50,000 iterations. How-
ever, for the SVM-CN model, we used 210,000 iterations. In both cases, the first
10,000 draws were discarded as a burn-in period. In order to reduce the autocorre-
lation between successive values of the simulated chain, only every 10th (SVM-N,

http://scythe.wustl.edu
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Table 1 Estimation results for the IBOVESPA returns. First row: Posterior mean. Second row:
Posterior 95% credible interval in parentheses. Third row: CD statistics

Parameter SVM-N SVM-t SVM-S SVM-CN

β0 0.2491 0.3004 0.3205 0.2798
(0.1050, 0.3976) (0.1419, 0.4627) (0.1589, 0.4889) (0.0783, 0.4824)

−0.37 0.29 0.12 −0.92

β1 0.0313 0.0289 0.0298 0.0396
(−0.0122, 0.0763) (−0.0162, 0.0746) (−0.0148, 0.0750) (−0.0051, 0.0833)

−0.12 −0.34 −0.70 1.80

β2 −0.0402 −0.0616 −0.0959 −0.0612
(−0.0772, −0.0046) (−0.1086, −0.0158) (−0.1701, −0.0297) (−0.1245, −0.0024)

1.12 −0.14 0.08 0.79

α 0.0235 0.0047 0.0116 0.0025
(0.0093, 0.0408) (0.0056, 0.0321) (0.0032, 0.0225) (0.0002, 0.0059)

−1.03 0.12 1.56 −1.32

φ 0.9814 0.9851 0.9858 0.9977
(0.9686, 0.9919) (0.9735, 0.9944) (0.9745, 0.9947) (0.9950, 0.9996)

1.05 0.02 −1.57 1.06

σ 2
η 0.0173 0.0122 0.0109 0.0008

(0.0102, 0.0272) (0.0070, 0.0198) (0.0061, 0.0182) (0.0006, 0.0012)
−0.91 0.60 1.72 −0.71

ν – 16.2892 2.4657 –
– (10.7400, 24.0800) (2.0880, 2.7380) –
– 0.22 −0.55 –

δ – – – 0.1188
– – – (0.0277, 0.3321)
– – – 1.64

γ – – – 0.2952
– – – (0.1488, 0.4371)
– – – 0.10

SVM-t and SVM-S models) and 100th (SVM-CN model) values of the chain were
stored. With the resulting 4000 (2000) values, we calculated the posterior means,
the 95% credible intervals and the convergence diagnostic (CD) statistics (Geweke,
1992). If the sequence of the recorded MCMC output is stationary, it converges in
distribution to the standard normal. According to the CD, the null hypothesis that
the sequence of 4000 (2000) draws is stationary was accepted at the 5% level [CD
∈ (−1.96,1.96)] for all the parameters in all the models considered here. Table 1
summarizes the results.

From Table 1, the posterior mean and 95% interval of φ in the SVM-CN are
higher than those of the other three models. However, for all the models, we found
that the posterior means of φ are above 0.9814, showing higher persistence. We
found that the persistence of the SVM-t and the SVM-S are slightly different from
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the SVM-N model. The posterior mean of σ 2
η is smaller in the SVM-CN than those

of the SVM-N, SVM-t and the SVM-S models, indicating that the volatility of the
SVM-CN is less variable than those of the other three models. We also found that
the posterior mean of σ 2

η of the SVM-t and the SVM-S model are smaller than the
SVM-N case, too.

The posterior means together with the posterior 95% intervals of the three pa-
rameters, which govern the mean process for each of the four models, are reported
in Table 1. We observed that in all the cases the posterior mean of β0 is always pos-
itive and statistically significant, because the 95% interval does not contain zero.
We found that the posterior mean of β1 is positive and similar to the first-order
autocorrelation (not reported here). Since the 95% posterior interval contains zero,
this coefficient could be not significant. The β2 parameter, which measures both
the ex ante relationship between returns and volatility and the volatility feedback
effect, has a negative posterior mean for all the models. We found β2 is statistically
significant because in all cases the 95% posterior credibility interval does not con-
tain zero. This result confirms previous results in the literature and indicates that
when investors expect higher persistent levels of volatility in the future they re-
quire compensation for this in the form of higher expected returns. The magnitude
of the tail fatness is measured by the shape parameter ν in the SVM-t and SVM-S
models. In the SVM-CN case it is measured by δ. The posterior means of ν are,
respectively, 16.3 and 2.5 in the SVM-t and SVM-S models. In the SVM-CN the
parameter δ can be interpreted as the proportion of outliers present in the data set,
and its posterior mean is equal to 0.12. The parameter γ is a scale factor, and it
is estimated as 0.29. These results suggest that the measurement error of the stock
returns are better explained by heavy-tailed distributions.

The reason why the estimated volatility of the SVM-SMN models is more per-
sistent and less variable can be understood by comparing the densities of these
distributions. To illustrate the tail behavior, we plot the normal (N (0,1)) density,
Student-t (T (0,1, ν)) density with ν degrees of freedom, the slash (S(0,1, ν))

density with shape parameter ν and the contaminated normal (C N (0,1, δ, γ )). We
set ν, δ and γ as the posterior mean of the respective SVM model (see Table 1 for
details). Figure 2 depicts the four density curves (the Student-t, slash and contam-
inated normal distributions have been rescaled to be comparable. See Wang and
Genton, 2006). All the distributions have fatter tails than the normal distribution.
Note that the slash distribution has a fatter tail than the other distributions that
we have considered (see Figure 2, right panel). Therefore, the SVM-SMN class
of models considered here attributes a relatively larger proportion of extreme re-
turn values to εt instead of ηt than the SVM-N model, making the volatility of the
SVM-t, SVM-S and SVM-CN models less variable. It also increases the persis-
tence of these models’ volatility.

The magnitudes of the mixing parameter λt are associated with extremeness of
the corresponding observations. In the Bayesian paradigm, the posterior mean of
the mixing parameter can be used to identify a possible outlier (see, for instance,
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Figure 2 Density curves of the univariate normal, Student-t, slash, variance gamma and contami-
nated normal distributions using the estimated tail-fatness parameter from the respective SVM model.

Figure 3 IBOVESPA data set: posterior smoothed mean of mixture variable λt for the SVM-t (left
panel), SVM-S (middle panel) and SVM-CN (right panel) models.

Rosa et al., 2003). The heavy-tailed SV-SMN models can accommodate an outlier
by inflating the variance component for that observation in the conditional normal
distribution with smaller λt value. This fact is shown in Figure 3 where we depicted
the posterior mean of the mixing variable λt for the SVM-t (left panel), SVM-S
(middle panel) and SVM-CN (right panel) models, respectively.

In Figure 4, we plot the smoothed mean of eht /2. The posterior smoothed mean
of eht /2 of the SVM-t, SVM-S and SVM-CN models show smoother movements
than that from the SVM-N model (solid line). Extreme returns, such as during the
Brazilian exchange rate crises in January 1999, make the differences clear. The
models with heavy tails accommodate possible outliers in a somewhat different
way by inflating the variance eht /2 by λ−1

t eht /2. This can have a substantial im-
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Figure 4 IBOVESPA data set. Posterior smoothed mean of eht /2. SVM-N (solid line), SVM-T (dot-
ted line), SVM-S (pointed line) and SVM-CN (pointed-dotted line).

pact, for instance, in the valuation of derivative instruments and several strategic
or tactical asset allocation topics.

To assess the goodness of the estimated models, we calculate the deviance in-
formation criteria, DIC (Spiegelhalter et al., 2002), and the Bayesian predictive
information criteria, BPIC (Ando, 2006, 2007). The DIC is defined as

DIC = −2Eθ |y1:T [logp(y1:T |θ)] + pD. (4.1)

The second term in (4.1) measures the complexity of the model by the effective
number of parameters, pD , defined as the difference between the posterior mean
of the deviance and the deviance evaluated at the posterior mean of the parameters:

pD = 2
[
logp(y1:T |θ̄) − Eθ |y1:T [logp(y1:T |θ)]]. (4.2)

To calculate the DIC in the context of SVM-SMN models, we use the con-
ditional likelihood p(y1:T |α,φ,σ 2

η , ν′,λ1:T ,h0:T ), in this case θ encompasses
(α,φ,σ 2

η , ν′)′, λ1:T and h0:T .
The BPIC criterion is defined as

BPIC = −2Eθ |y1:T [log{p(y1:T |θ)}] + 2T b̂, (4.3)

where b̂ is given by

b̂ ≈ 1

T

{
Eθ |y1:T [log{p(y1:T |θ)p(θ)}]

(4.4)
− log[p(y1:T |θ̂)p(θ̂)] + tr{J−1

T (θ̂)IT (θ̂)} + 0.5q
}
.

Here q is the dimension of θ , Eθ |y1:T [·] denotes the expectation with respect to the

posterior distribution, θ̂ is the posterior mode, and

IT (θ̂) = 1

T

T∑
t=1

(
∂ηT (yt , θ)

∂θ

∂ηT (yt , θ)

∂θ ′
)∣∣∣∣

θ=θ̂
,
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Table 2 IBOVESPA return data set. DIC: deviance informa-
tion criterion, BPIC: Bayesian predictive information criterion

DIC BPIC

Model Value Ranking BPIC Ranking

SVM-N 8055.53 3 8229.62 4
SVM-t 8054.90 2 8165.19 2
SVM-S 8038.64 1 7960.33 1
SVM-CN 8076.36 4 8222.54 3

JT (θ̂) = 1

T

T∑
t=1

(
∂2ηT (yt , θ)

∂θ ∂θ ′
)∣∣∣∣

θ=θ̂
,

with ηT (yt , θ) = logp(yt |y1:t−1, θ) + logp(θ)/T . In the SVM-SMN class of
models, the log-likelihood function, logp(y1:T |θ), is estimated using the auxiliary
particle filter (see, e.g., Pitt and Shephard, 1999) with 10,000 particles.

Next, we use the deviance information criterion (DIC) and the Bayesian pre-
dictive information criterion (BPIC) to compare all the competing models. In both
cases, the best model has the smallest DIC (BPIC). From Table 2, the BPIC crite-
rion indicates that the SVM-SMN models with heavy tails present a better fit than
the basic SVM-N model, with the SVM-S model relatively better among all the
considered models, suggesting that the IBOVESPA return data demonstrate suffi-
cient departure from underlying normality assumptions. As expected, the DIC also
selects the SVM-S model as the best.

We evaluate the SVM-SMN models by using the out-of-sample forecasting of
the squared returns aggregated over a certain period of time. Based on the 1917
observations of returns used previously, we calculate the forecast over the follow-
ing 1,2, . . . ,10 days as described by Abanto-Valle et al. (2010). Figure 5 plots the
posterior means and 95% posterior credibility interval of the aggregated squared
returns together with the observed values. The 95% posterior intervals of the ag-
gregated volatility, eht , are also plotted. For all models, the 95% intervals of the
aggregated squared returns are much wider than those for the aggregated volatil-
ity. The 95% posterior credibility interval of the aggregated squared returns for the
SVM-S model does not include the observed values for days from 3, 4 and 10. The
SVM-t model shows different forecasts, and days 3, 4, 5, 7 and 10 are outside the
95% credibility intervals. The SVM-CN model includes all the observed values of
the aggregated squared returns for days from 1 to 10. The SVM-N model shows
the worst behavior: it includes only the observed values for day 1.

The robustness aspects of the SVM-SMN models can be studied through the
influence of outliers on the posterior distribution of the parameters. We con-
sider only the SVM-t and the SVM-S models for illustrative purposes. We study
the influence of three contaminated observations on the posterior estimates of
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Figure 5 IBOVESPA data set. Out-of-sample forecast of the aggregated squared returns for the
(a) SVM-N, (b) SVM-t, (c) SVM-S and (d) SVM-CN models.

mean and 95% credible interval of model parameters. The observations in t =
1861,1870 and 1887, which correspond to July 5, 2005, July 28, 2005 and August
22, 2005, respectively, are contaminated by kyt , where k varies from −6 and 6 with
increments of 0.5 units. In Figure 6, we plot the posterior mean and 95% credible
interval of φ and σ 2

η , respectively, for the SVM-N, the SVM-t and the SVM-S
models. Clearly, the SVM-S and the SVM-t models are less affected by variations
of k than the SVM-N model, meaning substantial robustness of the estimates over
the usual normal process in the presence of outlying observations.

5 Conclusions

A Bayesian implementation of a robust alternative to estimation in the stochastic
volatility in mean model (Koopman and Uspensky, 2002) via MCMC methods was
presented in this article. The SVM enabled us to investigate the dynamic relation-
ship between returns and their time-varying volatility. The Gaussian assumption of
the mean innovation was replaced by univariate thick-tailed processes, known as
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Figure 6 Posterior mean (solid line) and 95% credible interval (dashed line) for fitting the SVM-N,
SVM-t and SVM-S models to the IBOVESPA data set. top: φ, bottom: σ 2

η . The observations, which
correspond to July 5, 2005, July 28, 2005 and August 22, 2005, respectively, are contaminated by
kyt , where k varies from −6 and 6 with increments of 0.5 units.

scale mixtures of normal distributions. We studied three specific subclasses, viz.
the Student-t, slash and the contaminated normal distributions, and compared pa-
rameter estimates and model fit with the default normal model. Under a Bayesian
perspective, we constructed an algorithm based on Markov chain Monte Carlo
(MCMC) simulation methods to estimate all the parameters and latent quantities in
our proposed SVM-SMN model. We illustrated our methods through an empirical
application of the IBOVESPA return series, which showed that the SVM-S model
provides better fit than the SVM-N model in terms of parameter estimates, inter-
pretation, robustness aspects and out-of-sample forecast of the aggregated squared
returns. The β2 estimate, which measures both the ex ante relationship between re-
turns and volatility and the volatility feedback effect, was found to be negative. The
results are in line with those of French (1987), who found a similar relationship
between unexpected volatility dynamics and returns, and confirm the hypothesis
that investors require higher expected returns when unanticipated increases in fu-
ture volatility are highly persistent. This is consistent with our findings of higher
values of φ combined with larger negative values for the in-mean parameter.

Our SVM-SMN models showed considerable flexibility to accommodate out-
liers, however, their robustness aspects could be seriously affected by the prior of
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the ν parameter and the presence of skewness. In this setup, two natural exten-
sions are still possible. The first would be to study different objective priors for
form parameter in the Student-t and slash models in the same spirit of the works
of Fonseca et al. (2008) and Salazar et al. (2009). The second would be to in-
corporate skewness and heavy-tailedness simultaneously using scale mixtures of
skew-normal (SMSN) distributions, as proposed in Lachos et al. (2010). Never-
theless, a deeper investigation of these modifications is beyond the scope of the
present paper, but provides stimulating topics for further research.

Appendix: The full conditionals

In this appendix we describe the full conditional distributions for the parameters
and the mixing latent variables λ1:T of the SVM-SMN class of models.

Full conditional distribution of β0, β1 and β2

For parameters β0, β1 and β2, we set the prior distributions as β0 ∼ N (β̄0, σ
2
β0

),

β1 ∼ N(−1,1)(β̄1, σ
2
β1

), β2 ∼ N (β̄2, σ
2
β2

). The full conditionals are given by

β0|y0:T ,h1:T ,λ1:T , β1, β2 ∼ N
(

bβ0

aβ0

,
1

aβ0

)
, (A.1)

β1|y0:T ,h1:T ,λ1:T , β0, β1 ∼ N(−1,1)

(
bβ1

aβ1

,
1

aβ1

)
, (A.2)

β2|y0:T ,h1:T ,λ1:T , β0, β1 ∼ N
(

bβ2

aβ2

,
1

aβ2

)
, (A.3)

where aβ0 = ∑T
t=1 λte

−ht + 1
σ 2

β0

, bβ0 = ∑T
t=1 λte

−ht (yt − β1yt−1 − β2e
ht ) + β̄0

σ 2
β0

,

aβ1 = ∑T
t=1 λte

−ht y2
t−1 + 1

σ 2
β1

, bβ1 = ∑T
t=1 λte

−ht (yt − β0 − β2e
ht )yt−1 + β̄1

σ 2
β1

,

aβ2 = ∑T
t=1 λte

ht + 1
σ 2

β0

, bβ2 = ∑T
t=1 λt (yt − β0 − β1yt−1) + β̄2

σ 2
β2

.

Full conditional distribution of α, φ and σ 2
η

The prior distributions of the common parameters are set as α ∼ N(ᾱ, σ 2
α), φ ∼

N(−1,1)(φ̄, σ 2
φ), σ 2

η ∼ I G(
T0
2 ,

M0
2 ). We have the following full conditional for α:

α|h0:T ,φ,σ 2
η ∼ N

(
bα

aα

,
1

aα

)
(A.4)
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aα = 1
σ 2

α
+ T

σ 2
η

+ 1+φ

σ 2
η (1−φ)

and bα = ᾱ
σ 2

α
+ (1+φ)

σ 2
η

h0 +
∑T

t=1(ht−φht−1)

σ 2
η

. In a similar way,

the conditional posterior of φ is given by

p(φ|h0:T ,α, σ 2
η ) ∝ Q(φ) exp

{
− aφ

2σ 2
η

(
φ − bφ

aφ

)2}
I|φ|<1, (A.5)

where Qφ =
√

1 − φ2 exp{− 1
2σ 2

η
[(1 − φ2)(h0 − α

1−φ
)2}, aφ = ∑T

t=1 h2
t−1 + σ 2

η

σ 2
φ

,

bφ = ∑T
t=1 ht−1(ht − α) + φ̄

σ 2
η

σ 2
φ

and I|φ|<1 is an indicator variable. As p(φ|h0:T ,

α, σ 2
η ) in (A.5) does not have closed form, we sample from it by using the

Metropolis–Hastings algorithm with truncated N(−1,1)(
bφ

aφ
,

σ 2
η

aφ
) as the proposal

density.
Finally, the full conditional of σ 2

η is I G(T1
2 , M1

2 ), where T1 = T0 + T + 1 and

M1 = M0 + [(1 − φ2)(h0 − α
1−φ

)2] + ∑T
t=1(ht − α − φht−1)

2.

Full conditional of λt and ν

SV-t case. As λt ∼ G(ν
2 , ν

2 ), then λt |yt , yt−1, ht , θ ∼ G(ν+1
2 , ([yt −β0 −β1yt−1 −

β2e
ht ]2e−ht + ν)/2). We assume the prior distribution of ν as G(aν, bν)I2<ν≤40.

Then, the full conditional of ν is

p(ν|λ1:T ) ∝ [ν/2]T ν/2νaν−1e−(ν/2)[∑T
t=1(λt−logλt )+2bν ]

[�(ν/2)]T I2<ν≤40. (A.6)

As (A.6) does not have closed form, we sample ν by using the Metropolis–
Hastings acceptance-rejection algorithm (Tierney, 1994; Chib and Greenberg,
1995). Let ν∗ denote the mode (or approximate mode) of p(ν|λ1:T ), and let �(ν) =
logp(ν|λ1:T ). As �(ν) is concave, we use the proposal density N(2,40)(μν, σ

2
ν ),

where μν = ν∗ − �′(ν∗)/�′′(ν∗) and σ 2
ν = −1/�′′(ν∗). �′(ν∗) and �′′(ν∗) are the

first and second derivatives of �(ν) evaluated at ν = ν∗ (see, Abanto-Valle et al.,
2010, for details to prove the concavity of �(ν)).

SV-S case. Using the fact that λt ∼ Be(ν,1), then

λt |yt , yt−1, ht , θ ∼ G(0<λt<1)

(
ν + 1

2
,

1

2
[yt − β0 − β1yt−1 − β2e

ht ]2e−ht

)
,

the right truncated gamma distribution. Assuming that a prior distribution of ν ∼
G(aν, bν), the full conditional distribution of ν is Gν>1(T + aν, bν − ∑T

t=1 logλt ),
that is, the left truncated gamma distribution.
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SVM-CN case. Here λt is a discrete random variable and ν = (δ, γ )′. To sample
from λt , we introduce an auxiliary variable, St , such that P(St = 1) = δ and λt =
γ St + 1 − St . The full conditional of St is given by

p(St |δ, γ,β0, β1, β2, ht , yt , yt−1)

∝ δSt (1 − δ)1−St γ St /2 (A.7)

× e−(1/2)[e−ht (γ St+1−St )(yt−β0−β1yt−1−β2e
ht )2].

That is, St |δ, γ,β0, β1, β2, ht has a Bernoulli distribution. We assume that
δ ∼ Be(δ0, δ1) and γ ∼ Be(γ0, γ1). Then, the full conditional of δ|γ,S1:T ∼
Be(δ∗

0 , δ∗
1), where δ∗

0 = δ0 + ∑T
t=1 St and δ∗

1 = δ1 + T − ∑T
t=1 St . Thus, the full

conditional of γ is given by

p(γ |β0, β1, β2,S1:T ,h1:T ,y0:T )

∝ (1 − γ )γ1−1γ γ0−1+∑T
t=1 St /2 (A.8)

× e−(γ /2)
∑T

t=1 e−ht St (yt−β0−β1yt−1−β2e
ht )2

.

As (A.8) does not have closed form, we can sample from it by using the
Metropolis–Hastings algorithm. Then the right truncated gamma distribution
G0<γ<1(γ0 + ∑T

t=1
St

2 ,−1
2

∑T
t=1 e−ht St (yt − β0 − β1yt−1 − β2e

ht )2) can be used
as a proposal density.
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