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Abstract

In this paper, stochastic Volterra equations driven by cylindrical Wiener pro-
cess in Hilbert space are investigated. Sufficient conditions for existence of strong
solutions are given. The key role is played by convergence of α-times resolvent
families.

1 Introduction

Let H be a separable Hilbert space with a norm | · |H and A be a closed linear unbounded

operator with dense domain D(A) ⊂ H equipped with the graph norm | · |D(A). The

purpose of this paper is to study the existence of strong solutions for a class of stochastic

Volterra equations of the form

X(t) = X0 +

∫ t

0

a(t− τ)AX(τ)dτ +

∫ t

0

Ψ(τ) dW (τ), t ≥ 0, (1)

where a(t) =
tα−1

Γ(α)
, α > 0, and W, Ψ are appropriate stochastic processes. It is well known

that there are several situations that can be modeled by stochastic Volterra equations (see

e.g. [7, Section 3.4 ] and references therein). We note that stochastic Volterra equations

driven by white noise have been studied in [3] among other authors. A similar equation

and very related to our case appears first studied in [2]. Here we are interested in the

study of strong solutions when equation (1) is driven by a cylindrical Wiener process W .
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When a(t) is a completely positive function, sufficient conditions for existence of strong

solutions for (1) were obtained in [9]. This was done using a method which involves the

use of a resolvent family associated to the deterministic version of equation (1):

u(t) =

∫ t

0

a(t− τ) Au(τ)dτ + f(t), t ≥ 0, (2)

where f is an H-valued function.

However, there are two kinds of problems that arise when we study (1). On the

one hand, the kernels tα−1

Γ(α)
are α-regular and απ

2
-sectorial but not completely positive

functions for α > 1, so e.g. the results in [9] cannot be used directly for α > 1. On the

other hand, for α ∈ (0, 1), we have a singularity of the kernel in t = 0. This fact strongly

suggests the use of α-times resolvent families associated to equation (2). This new tool

appears carefully studied in [1] as well as their relationship with fractional derivatives.

For convenience of the reader, we provide below the main results on α-times resolvent

families to be used in this paper.

Our second main ingredient to obtain strong solutions of (1) relies on approximation

of α-times resolvent families. This kind of result was very recently formulated by Li

and Zheng [10]. It enables us to prove a key result on convergence of α-times resolvent

families (see Theorem 2 below). Then we can follow the methods employed in [9] to obtain

existence of strong solution for the stochastic equation (1) (see Theorem 4).

Our plan for the paper is the following. In section 2 we formulate the deterministic

results which will play the key role for the paper. Section 3 is devoted to weak and mild

solutions while in section 4 we provide strong solution to (1). More precisely, we give

sufficient condition for a stochastic convolution to be a strong solution to (1).

2 Convergence of α-times resolvent families

In this section we formulate the main deterministic results on convergence of resolvents.

We denote

gα(t) =
tα−1

Γ(α)
, α > 0, t > 0,

where Γ is the gamma function.

By Sα(t), t ≥ 0, we denote the family of α-times resolvent families corresponding to

the Volterra equation (2), if it exists, and defined as follows.

Definition 1 (see [1])

A family (Sα(t))t≥0 of bounded linear operators in a Banach space B is called α-times

resolvent family for (2) if the following conditions are satisfied:

1. Sα(t) is strongly continuous on R+ and Sα(0) = I;
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2. Sα(t) commutes with the operator A, that is, Sα(t)(D(A)) ⊂ D(A) and ASα(t)x =

Sα(t)Ax for all x ∈ D(A) and t ≥ 0;

3. the following resolvent equation holds

Sα(t)x = x +

∫ t

0

gα(t− τ)ASα(τ)xdτ (3)

for all x ∈ D(A), t ≥ 0.

Necessary and sufficient conditions for existence of the α-times resolvent family have

been studied in [1]. Observe that the α-times resolvent family corresponds to a C0-

semigroup in case α = 1 and a cosine family in case α = 2. In consequence, when

1 < α < 2 such resolvent families interpolate C0-semigroups and cosine functions. In

particular, for A = ∆, the integrodifferential equation corresponding to such resolvent

family interpolates the heat equation and the wave equation (see [6]).

Definition 2 An α-times resolvent family (Sα(t))t≥0 is called exponentially bounded

if there are constants M ≥ 1 and ω ≥ 0 such that

‖Sα(t)‖ ≤ Meωt, t ≥ 0. (4)

If there is the α-times resolvent family (Sα(t))t≥0 for A and satisfying (4), we write

A ∈ Cα(M,ω). Also, set Cα(ω) := ∪M≥1Cα(M,ω) and Cα := ∪ω≥0Cα(ω).

Remark 1 It was proved by Bazhlekova [1, Theorem 2.6] that if A ∈ Cα for some α > 2,

then A is bounded.

The following subordination principle is very important in the theory of α-times re-

solvent families (see [1, Theorem 3.1]).

Theorem 1 Let 0 < α < β ≤ 2, γ = α/β, ω ≥ 0. If A ∈ Cβ(ω) then A ∈ Cα(ω1/γ) and

the following representation holds

Sα(t)x =

∫ ∞

0

ϕt,γ(s)Sβ(s)xds, t > 0, (5)

where ϕt,γ(s) := t−γΦγ(st
−γ) and Φγ(z) is the Wright function defined as

Φγ(z) :=
∞∑

n=0

(−z)n

n! Γ(−γn + 1− γ)
, 0 < γ < 1. (6)
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Remark 2 (i) We recall that the Laplace transform of the Wright function corresponds to

Eγ(−z) where Eγ denotes the Mittag-Leffler function. In particular, Φγ(z) is a probability

density function.

(ii) Also we recall from [1, (2.9)] that the continuity in t ≥ 0 of the Mittag-Leffler

function together with the asymptotic behavior of it, imply that for ω ≥ 0 there exists a

constant C > 0 such that

Eα(ωtα) ≤ Ceω1/αt, t ≥ 0, α ∈ (0, 2). (7)

As we have already written, in this paper the results concerning convergence of α-

times resolvent families in a Banach space B will play the key role. Using a very recent

result due to Li and Zheng [10] we are able to prove the following theorem.

Theorem 2 Let A be the generator of a C0-semigroup (T (t))t≥0 in a Banach space B

such that

‖T (t)‖ ≤ Meωt, t ≥ 0. (8)

Then, for each 0 < α < 1 we have A ∈ Cα(M,ω1/α). Moreover, there exist bounded opera-

tors An and α-times resolvent families Sα,n(t) for An satisfying ||Sα,n(t)|| ≤ MCe(2ω)1/αt,

for all t ≥ 0, n ∈ N, and

Sα,n(t)x → Sα(t)x as n → +∞ (9)

for all x ∈ B, t ≥ 0. Moreover, the convergence is uniform in t on every compact subset

of R+.

Proof Since A is the generator of a C0 semigroup satisfying (8), we have A ∈ C1(ω).

Hence, the first assertion follows directly from Theorem 1, that is, for each 0 < α < 1

there is an α-times resolvent family (Sα(t))t≥0 for A given by

Sα(t)x =

∫ ∞

0

ϕt,α(s)T (s)xds, t > 0. (10)

Since A generates a C0-semigroup, the resolvent set ρ(A) of A contains the ray [w,∞)

and

||R(λ,A)k|| ≤ M

(λ− w)k
for λ > w, k ∈ N.

Define

An := nAR(n,A) = n2R(n, A)− nI, n > w, (11)

the Yosida approximation of A.

Then

||etAn || = e−nt||en2R(n,A)t|| ≤ e−nt

∞∑

k=0

n2ktk

k!
||R(n,A)k||

≤ Me(−n+ n2

n−w
)t = Me

nwt
n−w .
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Hence, for n > 2w we obtain

||eAnt|| ≤ Me2wt. (12)

Next, since each An is bounded, it follows also from Theorem 1 that for each 0 < α < 1

there exists an α-times resolvent family (Sα,n(t))t≥0 for An given as

Sα,n(t) =

∫ ∞

0

ϕt,α(s)esAnds, t > 0. (13)

By (12) and Remark 2(i) it follows that

‖Sα,n(t)‖ ≤
∫ ∞

0

ϕt,α(s)‖esAn‖ds

≤ M

∫ ∞

0

ϕt,α(s)e2ωsds = M

∫ ∞

0

Φα(τ)e2ωtατdτ = MEα(2ωtα), t ≥ 0.

This together with Remark 2(ii), gives

‖Sα,n(t)‖ ≤ MCe(2ω)1/αt, t ≥ 0. (14)

Now, we recall the fact that R(λ, An)x → R(λ,A)x as n → ∞ for all λ sufficiently

large (see e.g. [11, Lemma 7.3]), so we can conclude from [10, Theorem 4.2] that

Sα,n(t)x → Sα(t)x as n → +∞ (15)

for all x ∈ B, uniformly for t on every compact subset of R+ .

An analogous result can be proved in the case when A is the generator of a strongly

continuous cosine family.

Theorem 3 Let A be the generator of a C0-cosine family (T (t))t≥0 in a Banach space B.

Then, for each 0 < α < 2 we have A ∈ Cα(M,ω2/α). Moreover, there exist bounded opera-

tors An and α-times resolvent families Sα,n(t) for An satisfying ||Sα,n(t)|| ≤ MCe(2ω)1/αt,

for all t ≥ 0, n ∈ N, and

Sα,n(t)x → Sα(t)x as n → +∞

for all x ∈ B, t ≥ 0. Moreover, the convergence is uniform in t on every compact subset

of R+.

In the following, we denote by Σθ(ω) the open sector with vertex ω ∈ R and opening

angle 2θ in the complex plane which is symmetric with respect to the real positive axis,

i.e.

Σθ(ω) := {λ ∈ C : |arg(λ− ω)| < θ}.
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We recall from [1, Definition 2.13] that an α-times resolvent family Sα(t) is called

analytic if Sα(t) admits an analytic extension to a sector Σθ0 for some θ0 ∈ (0, π/2]. An

α-times analytic resolvent family is said to be of analyticity type (θ0, ω0) if for each

θ < θ0 and ω > ω0 there is M = M(θ, ω) such that

‖Sα(t)‖ ≤ MeωRet, t ∈ Σθ.

The set of all operators A ∈ Cα generating α-times analytic resolvent families Sα(t) of

type (θ0, ω0) is denoted by Aα(θ0, ω0). In addition, denote Aα(θ0) :=
⋃{Aα(θ0, ω0); ω0 ∈

R+}, Aα :=
⋃{Aα(θ0); θ0 ∈ (0, π/2]}. For α = 1 we obtain the set of all generators of

analytic semigroups.

Remark 3 We note that the spatial regularity condition R(Sα(t)) ⊂ D(A) for all t > 0

is satisfied by α-times resolvent families whose generator A belongs to the set Aα(θ0, ω0)

where 0 < α < 2 (see [1, Proposition 2.15]). In particular, setting ω0 = 0 we have that

A ∈ Aα(θ0, 0) if and only if −A is a positive operator with spectral angle less or equal to

π − α(π/2 + θ). Note that such condition is also equivalent to the following

Σα(π/2+θ) ⊂ ρ(A) and ‖λ(λI − A)−1‖ ≤ M, λ ∈ Σα(π/2+θ). (16)

The above considerations give us the following remarkable corollary.

Corollary 1 Suppose A generates an analytic semigroup of angle π/2 and α ∈ (0, 1).

Then A generates an α-times analytic resolvent family.

Proof Since A generates an analytic semigroup of angle π/2 we have

‖λ(λI − A)−1‖ ≤ M, λ ∈ Σπ−ε.

Then the condition (16) (see also [1, Corollary 2.16]) implies A ∈ Aα(min{2−α
2α

π, 1
2
π}, 0),

α ∈ (0, 2), that is A generates an α-times analytic resolvent family.

In the sequel we will use the following assumptions concerning Volterra equations:

(A1) A is the generator of C0-semigroup and α ∈ (0, 1); or

(A2) A is the generator of a strongly continuous cosine family and α ∈ (0, 2).

Observe that (A2) implies (A1) but not vice versa.
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3 Weak vs. mild solutions

Assume that H and U are separable Hilbert spaces. Let the cylindrical Wiener process W

be defined on a stochastic basis (Ω,F , (F)t≥0, P ), with the positive symmetric covariance

operator Q ∈ L(U). This is known that the process W takes values in some superspace

of U . (For more details concerning cylindrical Wiener process we refer to [4] or [8].)

We define the subspace U0 := Q1/2(U) of the space U , endowed with the inner product

〈u, v〉U0 := 〈Q−1/2u,Q−1/2v〉U . The set L0
2 := L2(U0, H) of all Hilbert-Schmidt operators

from U0 into H, equipped with the norm |C|L2(U0,H) := (
∑+∞

k=1 |Cfk|2H)1/2, where {fk} ⊂ U0

is an orthonormal basis of U0, is a separable Hilbert space. We assume that Ψ belongs to

the class of measurable L0
2-valued processes.

By N 2(0, T ; L0
2) we denote a Hilbert space of all L0

2-predictable processes Ψ such that

||Ψ||T < +∞, where

||Ψ||T :=

{
E

(∫ T

0

|Ψ(τ)|2L0
2
dτ

)} 1
2

=

{
E

∫ T

0

[
Tr(Ψ(τ)Q

1
2 )(Ψ(τ)Q

1
2 )∗

]
dτ

} 1
2

.

We shall use the following Probability Assumptions (abbr. (PA)):

1. X0 is an H-valued, F0-measurable random variable;

2. Ψ ∈ N 2(0, T ; L0
2) and the interval [0, T ] is fixed.

Definition 3 Assume that (PA) hold. An H-valued predictable process X(t), t ∈ [0, T ],

is said to be a strong solution to (1), if X takes values in D(A), P -a.s.,

for any t ∈ [0, T ],

∫ t

0

|gα(t− τ)AX(τ)|H dτ < +∞, P − a.s., α > 0, (17)

and for any t ∈ [0, T ] the equation (1) holds P -a.s.

Let A∗ denote the adjoint of A with a dense domain D(A∗) ⊂ H and the graph norm

| · |D(A∗).

Definition 4 Let (PA) hold. An H-valued predictable process X(t), t ∈ [0, T ], is said to

be a weak solution to (1), if P (
∫ t

0
|gα(t− τ)X(τ)|Hdτ < +∞) = 1, α > 0, and if for all

ξ ∈ D(A∗) and all t ∈ [0, T ] the following equation holds

〈X(t), ξ〉H = 〈X0, ξ〉H + 〈
∫ t

0

gα(t− τ)X(τ) dτ, A∗ξ〉H + 〈
∫ t

0

Ψ(τ)dW (τ), ξ〉H , P−a.s.
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Definition 5 Assume that X0 is F0-measurable random variable. An H-valued pre-

dictable process X(t), t ∈ [0, T ], is said to be a mild solution to the stochastic Volterra

equation (1), if E(
∫ t

0
|Sα(t − τ)Ψ(τ)|2

L0
2
dτ) < +∞, α > 0, for t ≤ T and, for arbitrary

t ∈ [0, T ],

X(t) = Sα(t)X0 +

∫ t

0

Sα(t− τ)Ψ(τ) dW (τ), P − a.s. (18)

where Sα(t) is the α-times resolvent family.

We will use the following result.

Proposition 1 (see, e.g. [4, Proposition 4.15])

Assume that A is a closed linear unbounded operator with the dense domain D(A) ⊂ H.

Let Φ(t), t ∈ [0, T ], be an L2(U0, H)-predictable process. If Φ(t) ∈ D(A), P − a.s. for

all t ∈ [0, T ] and

P

(∫ T

0

|Φ(s)|L0
2
ds < ∞

)
= 1, P

(∫ T

0

|AΦ(s)|L0
2
ds < ∞

)
= 1,

then P

(∫ T

0

Φ(s) ds ∈ D(A)

)
= 1 and

A

∫ T

0

Φ(s) dW (s) =

∫ T

0

AΦ(s) dW (s), P − a.s.

We define the stochastic convolution

WΨ
α (t) :=

∫ t

0

Sα(t− τ)Ψ(τ) dW (τ), (19)

where Ψ ∈ N 2(0, T ; L0
2). Because α-times resolvent families Sα(t), t ≥ 0, are bounded,

then Sα(t− ·)Ψ(·) ∈ N 2(0, T ; L0
2), too.

Analogously like in [8], we can formulate the following result.

Proposition 2 Assume that Sα(t), t ≥ 0, are the resolvent operators to (2). Then, for

any process Ψ ∈ N 2(0, T ; L0
2), the convolution WΨ

α (t), t ≥ 0, α > 0, given by (19) has a

predictable version. Additionally, the process WΨ
α (t), t ≥ 0, α > 0, has square integrable

trajectories.

Under some conditions a mild solution to Volterra equations is a weak solution and

vice versa, see [8, Propositions 4 and 5].

Now, we can prove that a mild solution to the equation (1) is a weak solution to (1).
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Proposition 3 If Ψ ∈ N 2(0, T ; L0
2) and Ψ(·, ·)(U0) ⊂ D(A), P -a.s., then the stochastic

convolution WΨ
α (t), t ≥ 0, α > 0, given by (19), fulfills the equation

〈WΨ
α (t), ξ〉H =

∫ t

0

〈gα(t− τ)WΨ
α (τ), A∗ξ〉H +

∫ t

0

〈ξ, Ψ(τ)dW (τ)〉H , α ∈ (0, 2), (20)

for any t ∈ [0, T ] and ξ ∈ D(A∗).

Proof Let us notice that the process WΨ
α has integrable trajectories. For any ξ ∈ D(A∗)

we have∫ t

0

〈gα(t− τ)WΨ
α (τ), A∗ξ〉Hdτ ≡ (from (19))

≡
∫ t

0

〈gα(t− τ)

∫ τ

0

Sα(τ − σ)Ψ(σ)dW (σ), A∗ξ〉Hdτ =

(from Dirichlet’s formula and stochastic Fubini’s theorem)

=

∫ t

0

〈
[∫ t

σ

gα(t− τ)Sα(τ − σ)dτ

]
Ψ(σ)dW (σ), A∗ξ〉H

= 〈
∫ t

0

[∫ t−σ

0

gα(t− σ − z)Sα(z)dz

]
Ψ(σ)dW (σ), A∗ξ〉H

(where z := τ − σ and from definition of convolution)

= 〈
∫ t

0

A[(gα ? Sα)(t− σ)]Ψ(σ)dW (σ), ξ〉H =

(from the resolvent equation (3) because A(gα ? Sα)(t− σ)x = (Sα(t− σ)− I)x,

where x ∈ D(A))

= 〈
∫ t

0

[Sα(t− σ)− I]Ψ(σ)dW (σ), ξ〉H =

= 〈
∫ t

0

Sα(t− σ)Ψ(σ)dW (σ), ξ〉H − 〈
∫ t

0

Ψ(σ)dW (σ), ξ〉H .

Hence, we obtained the following equation

〈WΨ
α (t), ξ〉H =

∫ t

0

〈gα(t− τ)WΨ
α (τ), A∗ξ〉Hdτ +

∫ t

0

〈ξ, Ψ(τ)dW (τ)〉H

for any ξ ∈ D(A∗).

Immediately from the equation (20) we deduce the following result.

Corollary 2 If A is a bounded operator and Ψ ∈ N 2(0, T ; L0
2), then the following equality

holds

WΨ
α (t) =

∫ t

0

gα(t− τ)AWΨ
α (τ)dτ +

∫ t

0

Ψ(τ)dW (τ), (21)

for t ∈ [0, T ], α > 0.

Remark 4 The formula (21) says that the convolution WΨ
α (t), t ≥ 0, α > 0, is a strong

solution to (1) with X0 ≡ 0 if the operator A is bounded.
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4 Strong solutions

In this section we provide sufficient conditions under which the stochastic convolution

WΨ
α (t), t ≥ 0, α > 0, defined by (19) is a strong solution to the equation (1).

Lemma 1 Let A be a closed linear unbounded operator with dense domain D(A) equipped

with the graph norm | · |D(A). Assume that (A1) or (A2) holds. If Ψ and AΨ belong to

N 2(0, T ; L0
2) and in addition Ψ(·, ·)(U0) ⊂ D(A), P-a.s., then (21) holds.

Proof Because formula (21) holds for any bounded operator, then it holds for the Yosida

approximation An of the operator A, too, that is

WΨ
α,n(t) =

∫ t

0

gα(t− τ)AnWΨ
α,n(τ)dτ +

∫ t

0

Ψ(τ)dW (τ),

where

WΨ
α,n(t) :=

∫ t

0

Sα,n(t− τ)Ψ(τ)dW (τ).

By Proposition 1, we have

AnWΨ
α,n(t) = An

∫ t

0

Sα,n(t− τ)Ψ(τ)dW (τ).

By assumption Ψ ∈ N 2(0, T ; L0
2). Because the operators Sα,n(t) are deterministic and

bounded for any t ∈ [0, T ], α > 0, n ∈ N, then the operators Sα,n(t − ·)Ψ(·) belong to

N 2(0, T ; L0
2), too. In consequence, the difference

Φα,n(t− ·) := Sα,n(t− ·)Ψ(·)− Sα(t− ·)Ψ(·) (22)

belongs to N 2(0, T ; L0
2) for any t ∈ [0, T ], α > 0 and n ∈ N. This means that

E
(∫ t

0

|Φα,n(t− τ)|2L0
2
dτ

)
< +∞ (23)

for any t ∈ [0, T ].

Let us recall that the cylindrical Wiener process W (t), t ≥ 0, can be written in the

form

W (t) =
+∞∑
j=1

fj βj(t), (24)

where {fj} is an orthonormal basis of U0 and βj(t) are independent real Wiener processes.

From (24) we have

∫ t

0

Φα,n(t− τ) dW (τ) =
+∞∑
j=1

∫ t

0

Φα,n(t− τ) fj dβj(τ). (25)
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In consequence, from (23)

E

[∫ t

0

(
+∞∑
j=1

|Φα,n(t− τ) fj|2H
)

dτ

]
< +∞ (26)

for any t ∈ [0, T ]. Next, from (25), properties of stochastic integral and (26) we obtain

for any t ∈ [0, T ],

E
∣∣∣∣
∫ t

0

Φα,n(t− τ) dW (τ)

∣∣∣∣
2

H

= E

∣∣∣∣∣
+∞∑
j=1

∫ t

0

Φα,n(t− τ) fj dβj(τ)

∣∣∣∣∣

2

H

≤

E

[
+∞∑
j=1

∫ t

0

|Φα,n(t− τ) fj|2Hdτ

]
≤ E

[
+∞∑
j=1

∫ T

0

|Φα,n(T − τ) fj|2Hdτ

]
< +∞.

By Theorem 2, the convergence (9) of α-times resolvent families is uniform in t on

every compact subset of R+, particularly on the interval [0, T ]. Now, we use (9) in the

Hilbert space H, so (9) holds for every x ∈ H. Then, for any fixed α and j,

∫ T

0

|[Sα,n(T − τ)− Sα(T − τ)] Ψ(τ) fj|2Hdτ (27)

tends to zero for n → +∞. So, summing up our considerations, particularly using (26)

and (27) we can write

sup
t∈[0,T ]

E
∣∣∣∣
∫ t

0

Φα,n(t− τ)dW (τ)

∣∣∣∣
2

H

≡ sup
t∈[0,T ]

E
∣∣∣∣
∫ t

0

[Sα,n(t− τ)− Sα(t− τ)]Ψ(τ)dW (τ)

∣∣∣∣
2

H

≤

≤ E
[

+∞∑
j=1

∫ T

0

|[Sα,n(T − τ)− Sα(T − τ)]Ψ(τ) fj|2Hdτ

]
→ 0

as n → +∞ for any fixed α > 0.

Hence, by the Lebesgue dominated convergence theorem we obtained

lim
n→+∞

sup
t∈[0,T ]

E
∣∣WΨ

α,n(t)−WΨ
α (t)

∣∣2
H

= 0. (28)

By Proposition 1, P (WΨ
α (t) ∈ D(A)) = 1.

For any n ∈ N, α > 0, t ≥ 0, we have

|AnW
Ψ
α,n(t)− AWΨ

α (t)|H ≤ Nn,1(t) + Nn,2(t),

where

Nn,1(t) := |AnW
Ψ
α,n(t)− AnWΨ

α (t)|H ,

Nn,2(t) := |AnW
Ψ
α (t)− AWΨ

α (t)|H = |(An − A)WΨ
α (t)|H .
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Then

|AnW
Ψ
α,n(t)− AWΨ

α (t)|2H ≤ N2
n,1(t) + 2Nn,1(t)Nn,2(t) + N2

n,2(t). (29)

Let us study the term Nn,1(t). Note that, either in cases (A1) or (A2) the unbounded

operator A generates a semigroup. Then we have for the Yosida approximation the

following properties:

Anx = JnAx for any x ∈ D(A), sup
n
||Jn|| < ∞ (30)

where Anx = nAR(n,A)x = AJnx for any x ∈ H, with Jn := nR(n,A). Moreover

(see [5, Chapter II, Lemma 3.4]):

lim
n→∞

Jnx = x for any x ∈ H,

lim
n→∞

Anx = Ax for any x ∈ D(A). (31)

Note that ASα,n(t)x = Sα,n(t)Ax for all x ∈ D(A), since etAn commutes with A and A is

closed (see (13)). So, by Proposition 1 and again the closedness of A we can write

AnW
Ψ
α,n(t) ≡ An

∫ t

0

Sα,n(t− τ)Ψ(τ)dW (τ)

= Jn

∫ t

0

ASα,n(t− τ)Ψ(τ)dW (τ) = Jn

[∫ t

0

Sα,n(t− τ)AΨ(τ)dW (τ)

]
.

Analogously,

AnWΨ
α (t) = Jn

[∫ t

0

Sα(t− τ)AΨ(τ)dW (τ)

]
.

By (30) we have

Nn,1(t) = |Jn

∫ t

0

[Sα,n(t− τ)− Sα(t− τ)]AΨ(τ)dW (τ)|H

≤ |
∫ t

0

[Sα,n(t− τ)− Sα(t− τ)]AΨ(τ)dW (τ)|H .

From assumptions, AΨ ∈ N 2(0, T ; L0
2). Then the term [Sα,n(t − τ) − Sα(t − τ)]AΨ(τ)

may be estimated like the difference Φα,n defined by (22).

Hence, from (30) and (28), for the first term of the right hand side of (29) we obtain

lim
n→+∞

sup
t∈[0,T ]

E(N2
n,1(t)) → 0.

For the second and third terms of (29) we can follow the same steps as above for proving

(28). We have to use the properties of Yosida approximation, particularly the convergence

(31). So, we can deduce that

lim
n→+∞

sup
t∈[0,T ]

E|AnWΨ
α,n(t)− AWΨ

α (t)|2H = 0,

what gives (19). ¥
Now, we are able to formulate the main result of this section.
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Theorem 4 Suppose that assumptions of Lemma 1 hold. Then the equation (1) with

X0 ≡ 0 has a strong solution. Precisely, the convolution WΨ
α defined by (19) is the strong

solution to (1) with X0 ≡ 0.

Proof We have to show only the condition (17). By Proposition 2, the convolution

WΨ
α (t), t ≥ 0, α > 0, has integrable trajectories, that is, WΨ

α (·) ∈ L1([0, T ]; H), P-a.s. The

closed linear unbounded operator A becomes bounded on (D(A), |·|D(A)), see [12, Chapter

5]. So, we obtain AWΨ
α (·) ∈ L1([0, T ]; H), P-a.s. Hence, the function gα(T − τ)AWΨ

α (τ)

is integrable with respect to τ , what finishes the proof.

The following result is an immediate consequence of Corollary 1 and Theorem 4.

Corollary 3 Assume that A generates an analytic semigroup of angle π/2 and α ∈ (0, 1).

If X0 = 0, then the equation (1) has a strong solution.
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