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Abstract

Holm (Proc R Soc A Math Phys Eng Sci 471(2176):20140963, 2015) introduced a vari-

ational framework for stochastically parametrising unresolved scales of hydrodynamic

motion. This variational framework preserves fundamental features of fluid dynamics,

such as Kelvin’s circulation theorem, while also allowing for dispersive nonlinear wave

propagation, both within a stratified fluid and at its free surface. The present paper

combines asymptotic expansions and vertical averaging with the stochastic variational

framework to formulate a new approach for developing stochastic parametrisation

schemes for nonlinear waves in fluid dynamics. The approach is applied to two

sequences of shallow water models which descend from Euler’s three-dimensional

fluid equations with rotation and stratification under approximation by asymptotic

expansions and vertical averaging. In the entire family of nonlinear stochastic wave–

current interaction equations derived here using this approach, Kelvin’s circulation

theorem reveals a barotropic mechanism for wave generation of horizontal circulation

or convection (cyclogenesis) which is activated whenever the gradients of wave ele-

vation and/or topography are not aligned with the gradient of the vertically averaged

buoyancy.

Introduction

Weather forecasting, climate change prediction and global ocean circulation all face

the same fundamental challenge to create models which incorporate the effects of

measurement error and uncertainty due to unresolved scales, unknown physical phe-

nomena and incompleteness of observed data. We tackle this issue of modelling effects

of unknown causes in observational science by applying new methods in stochastic
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data-driven modelling which are designed to predict both future measurements and

their uncertainty, based on analysing the available data for the problem at hand.

For example, a common approach for modelling and simulating climate and weather

is based on stochastic parametrisation. For recent reviews of stochastic parametrisa-

tion in geophysical fluid dynamics (GFD), see e.g. Berner et al. (2012, 2017), Gottwald

et al. (2016). The fundamental conclusions of Berner et al. (2012) are twofold:

A posteriori addition of stochasticity to an already tuned model is simply not

viable.

Stochasticity must be incorporated at a very basic level within the design of

physical process parametrisations and improvements to the dynamical core.

A new approach (Holm 2015) which meets the challenge of incorporating stochastic

parametrisation at the fundamental level enunciated in Berner et al. (2012) introduces

stochastic transport directly into the loop velocity in Kelvin’s circulation theorem.

The dynamical quantities of physical interest are then modelled together with their

statistical uncertainty, and data assimilation is used to reduce that uncertainty. This is

the SALT approach.

The SALT (stochastic advection by Lie transport) approach combines stochasticity

in the velocity of the fluid material loop in Kelvin’s circulation theorem with ensemble

forecasting. The ensemble forecasting in SALT has been coordinated with the results

of the particle filtering method of data assimilation. A protocol for applying the SALT

approach in combination with data assimilation based on comparing fine-scale and

coarse-scale computational simulations has recently been established in Cotter et al.

(2018, 2019a). These results demonstrate the capability of the SALT approach to

successfully reduce forecast uncertainty in a variety of test problems for fluid dynamics

in two spatial dimensions. The three-dimensional SALT theory has been developed

and analysed to determine their existence, uniqueness and blow-up criterion in Crisan

et al. (2019), but it still awaits computational implementation at the present time.

The present paper aims to use the SALT approach for fluid dynamics described

above to provide a barotropic (vertically averaged) description of wave–current inter-

action (WCI) in a stratified incompressible fluid flow, by incorporating stochastic fluid

transport and circulation with nonlinear dispersive wave propagation internally and on

the free surface. In doing so, this paper combines a variational principle approach with

asymptotic analysis to derive simplified models. Historically in ocean modelling, the

rapid propagation of the barotropic (or external) mode representing disturbances on

the free surface, for example, has required special handling; because otherwise incor-

porating the simulation of its rapid time scale and multicomponent physical processes

would tend to occupy an inordinate amount of computer power (Dukowicz and Smith

1994; Fox-Kemper et al. 2019).

In addressing this challenge, the Camassa–Holm 1992 model (referred to as

CH92 hereafter) derived in Camassa and Holm (1992) used vertical averaging to

transform the 3D Euler–Boussinesq fluid equations into a family of 2D stratified

‘rotating shallow water equations’ which incorporate effects of weak deviations from

hydrostatic balance, weak stratification and strong topography. Through a series of

approximations and asymptotic limits, the CH92 model was found to contain the
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Fig. 1 The flow diagram of approximations via vertical averages and asymptotic expansions in Camassa

and Holm (1992)

Kadomtsev–Petviashvili (KP) and Korteweg–de Vries (KdV) equations in a rotating

frame, as shown in Fig. 1.

The present paper will develop two families of stochastic models of barotropic

wave–current interaction for mesoscale and submesoscale ocean dynamics based on

the deterministic CH92 model and its further development in Camassa et al. (1996,

1997). Our approach combines dimensional analysis, asymptotic expansions and ver-

tical averaging to obtain the barotropic component of the fluid motion, as done in

Camassa and Holm (1992), extended first to the Euler–Poincaré variational approach

of Holm et al. (1998) and then to the SALT approach (Holm 2015) for introducing

stochasticity. In the Euler–Poincaré version of the SALT approach, the approximation

of the Lagrangian is separate from the introduction of stochasticity. The asymptotic

expansions are applied to the Lagrangian first, and then, the stochasticity is introduced

in the variations of the Eulerian variables, which depend on spatially smooth maps

with stochastic time dependence. In the variational step to include stochasticity, one

also introduces the Strouhal number. In the process, we handle the barotropic effects

by vertically averaging, applied either to the equations of motion as in Wu (1981), or

to the variational principle for SALT (Holm 2015). Of course, the vertical averaging

procedure eliminates vertical buoyancy gradients. However, horizontal gradients of

the vertically averaged buoyancy remain. Here, the equations obtained after vertical

averaging which retain horizontal gradients of buoyancy will be called thermal equa-

tions. This name applies because the buoyancy plays the role of entropy per unit mass

in the equation of state for adiabatic compressible fluid flows. Likewise, the variation

of the energy with respect to the buoyancy plays the role of temperature in the adiabatic

compressible fluid case. Thus, the present paper aims to incorporate stochasticity into
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the theory of nonlinear dispersive water waves interacting with horizontal buoyancy

gradients, as governed by vertically averaged fluid equations. This stochastic theory of

wave–current interaction in thermal shallow water dynamics is expected to be useful

for quantifying uncertainty and perhaps even reducing it by using data assimilation in

the SALT approach (Holm et al. 2020).

Background. A framework for combining data with existing models in a probabilistic

manner was presented in Holm (2015), where a stochastic variational principle for

continuum mechanics was introduced. This stochastic variational principle enables

one to derive stochastic models of inviscid fluid dynamics which satisfy a Kelvin

circulation theorem, starting from the Lagrangian of the corresponding deterministic

fluid model and using a Clebsch constraint to introduce the stochastic advection by lie

transport (SALT). This approach decomposes the fluid velocity vector field into the

sum of a drift velocity and a Stratonovich stochastic velocity. The former is obtained

from the constrained variational principle, and the latter is determined by analysing

available data according to the protocol established in Cotter et al. (2019a, 2018).

The constraints may be introduced either by imposing the advection equations for the

relevant physical quantities of the model, or equivalently by imposing the advection

equation for the fluid labels.

Recently, in Bethencourt de Leon et al. (2020), the known Euler–Poincaré and

Hamilton–Pontryagin stochastic variational principles were reformulated and shown

to be equivalent to the Clebsch variant, by proving existence and uniqueness of the

solution of the SALT advection constraint. The noise used in the Holm (2015) approach

also appears in Cotter et al. (2017), where the decomposition for SALT of the fluid

velocity vector field into the sum of a drift velocity and a Stratonovich stochastic

velocity was derived by using multi-time homogenisation theory. Many subsequent

investigations of the properties of the equations of fluid dynamics with the SALT

modification have appeared in the literature over the last four years. In particular, the

SALT approach preserves most physical conservation laws by construction, while it

also possesses much of the analytical structure of the underlying deterministic model.

For example, in Crisan et al. (2019), the three-dimensional SALT Euler equations are

shown to have the same local-in-time existence and uniqueness analytical properties

as the deterministic version, as well as the same Beale–Kato–Majda (Beale et al. 1984)

criterion for blow-up of solutions. In Geurts et al. (2017), the Lorenz 63 equations are

derived from Rayleigh–Bénard convection with this type of stochasticity and the rate of

convergence towards the attractor is shown to be preserved by this type of noise. From

a more operational point of view, in Cotter et al. (2019a), SALT was introduced into

the two-dimensional Euler equations and it was shown that the stochastic equations,

which are solved on a coarse grid, mimic the deterministic equations, which are solved

on a fine grid, for a significant period of time. In Cotter et al. (2018), a similar result

was established for the flow in a channel of a two layer quasi-geostrophic system.

In this paper, we are concerned with consistency of SALT under asymptotic expan-

sion and analysis for the simulation of the barotropic mode in ocean dynamics. As

mentioned earlier, the barotropic mode in ocean dynamics is the fastest excitation

in the free-surface dynamics. It is treated separately (for example, by subcycling) in

most 3D simulations of large scale ocean circulation. The issue of the free-surface
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treatment which motivated the original investigation of the various types of nonlinear

wave behaviour in Camassa and Holm (1992) is still of current concern.

A motivating question for introducing SALT into nonlinear dispersive water wave

theory to be addressed in the present paper is: How can one use available data to

quantify the uncertainty due to the barotropic mode in the free-surface treatment

for computational simulations? This work is done in preparation for using the data

assimilation methods of Cotter et al. (2018, 2019a) to reduce that uncertainty e.g. by

using satellite data.

As in Camassa and Holm (1992), we will combine asymptotic analysis with the

vertical averaging principle of Wu (1981) to derive a sequence of two-dimensional

barotropic models. This averaging principle will be applied both on the equations and

also on the variational principle. The latter turns out to be advantageous in situations

where the Strouhal number (the ratio of the chosen time scale over the natural time

scale induced by the length and fluid velocity scales) is not equal to unity. The starting

point of these derivations is the three-dimensional rotating stratified Euler model,

a three-dimensional fluid model that includes the effects of rotation and buoyancy

stratification. By making assumptions about the buoyancy stratification, we transition

into the Euler–Boussinesq model. Here, we apply the averaging principle to derive

two-dimensional models with nonhydrostatic effects, rotation and stratification. The

two-dimensional models will be derived with respect to two different time scales: the

first time scale is the natural one, and the second is the time scale that corresponds

to gravity waves. When the time scale is the natural one, the Strouhal number is

equal to unity, which means that the asymptotic analysis applied to the equations

and the asymptotic analysis applied inside the variational principle lead to the same

result at each order in the asymptotic expansion. The assumption that the free surface

amplitude is very small leads to the Great Lake, Lake and Benney long wave equations,

first derived in Camassa et al. (1996, 1997); Benney (1973), respectively, although

in this paper we also include the effects of rotation, stratification and stochasticity.

The second scaling regime is where the Strouhal number is equal to the inverse of the

Froude number. This scaling regime leads to equations in the Green–Naghdi (Green

and Naghdi 1976) class, if the free surface amplitude is assumed to be small, rather

than very small. This derivation was first accomplished in Camassa and Holm (1992),

where also a Kadomtsev–Petviashvili equation is derived, augmented by the effects

of rotation and bathymetry. In the presence of stochasticity, however, this derivation

cannot be done directly. As we shall see, in the situation where the Strouhal number

is not equal to unity, asymptotic analysis applied to the equations fails to respect

the geometric structure of the problem, but the asymptotic analysis of the variational

principle does preserve the geometric structure.

In Holm (2015), the SALT vector field whose characteristic curves generate the

stochastic Lagrangian fluid trajectories is defined as

dχ t := u(x, t)dt +
M∑

i=1

ξ i (x) ◦ dW i
t .

Here, u(x, t) is the fluid velocity field, ξ i (x) are the vector fields that represent spatial

velocity–velocity correlations, W i
t denotes independent, identically distributed Wiener
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processes for each i = 1, . . . , M , and the symbol ◦ means Stratonovich integration.

The number M of eigenvectors ξ i (x) required for a given level of accuracy can be

determined via the amount of variance required from a principal component analysis,

or via empirical orthogonal function analysis. Via data assimilation procedures, in

particular via novel high-dimensional particle filtering methods, the uncertainty may be

controlled and reduced dramatically when even a small amount of new data is observed,

as shown in Cotter et al. (2018, 2019a). As we shall see, the variational approach of

SALT used here has the additional advantage of preserving the Kelvin circulation

theorem and the Hamiltonian framework, both of which have been fundamental in the

history of studying wave–current interaction and now can be made stochastic.

Overview of the Paper

The starting point, described in Sect. 1, will be the introduction of a number of tools

which are invaluable for this work. First we will introduce the stochastic Euler–

Poincaré variational principle, Kelvin’s circulation theorem and an averaging principle.

Then, starting with the rotating, stratified Euler equations, we will assume that the

buoyancy stratification is weak enough to allow us to work with the Euler–Boussinesq

equations. This is a justified assumption when the goal is to model the ocean. The

flow in wave–current interaction is primarily incompressible, so the models used here

will reflect this property. The ocean is shallow, compared to the horizontal distances

of interest. In particular, the characteristic height scale is much smaller than the char-

acteristic horizontal scales. This situation allows a reduction in spatial dimension by

vertically integrating the Euler–Boussinesq equations to find the vertical average of

the nonlinearity and an unknown vertically averaged pressure. Not surprisingly, these

are the two terms which we cannot determine from the averaged equations alone. In

order to derive a set of closed equations, we will turn to asymptotic analysis, which we

will execute in two different regimes. Within each of those two regimes, we will apply

asymptotic analysis in two different ways. In the first regime, called “long time-very

small wave scaling”, the time scale is determined by the ratio of the characteristic

velocity scale and horizontal length scale, and with very small wave amplitude. The

second regime, called the “short time-small wave scaling”, will employ the time scale

based on the gravity wave speed and a characteristic horizontal length. The vertical

averaging principle of Wu (1981) will be applied, both on the 3D equations and on the

corresponding Euler–Poincaré Lagrangian. We will show that in the first regime, the

approaches coincide and produce the same equations. In the second regime the asymp-

totic analysis requires special treatment, as the Strouhal number is not equal to unity

in that situation. This difference in Strouhal number means that the material deriva-

tive contributes at two different orders in the asymptotic expansion. We shall focus

on deriving two-dimensional stochastic fluid models in these two different time-scale

regimes, starting from a model for a three-dimensional stochastic fluid with rotation

and stratification in a shallow box with bathymetry and a free surface.

In Sect. 2, “the long time-very small wave scaling regime” of the Euler–Boussinesq

equations with negligible buoyancy stratification will be derived from asymptotics

applied to the equations and to the corresponding Lagrangian. At leading order, this
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will give rise to the Benney long wave equations, before making the columnar motion

assumption. It will produce the stochastic and rotating version of the Lake equations

after assuming that the motion is columnar. The Benney equations have an interest-

ing mathematical structure, such as an infinity of conservation laws, as presented in

Kupershmidt (2006). From a different perspective, the rotating Lake equations are

also obtained after assuming that the rotating shallow water equations have a rigid

lid. At the next order, we find the stochastic and rotating version of the Great Lake

equations (Camassa et al. 1996, 1997), which can be interpreted as the rigid lid ver-

sion of the Green–Naghdi equations. The deterministic versions of the Lake and Great

Lake equations are both globally well-posed in time, as shown in Levermore et al.

(1996a, b).

In Sect. 3, “the short time-small wave scaling” of the Euler–Boussinesq equa-

tions with non-negligible buoyancy will be considered. The results of the asymptotics

obtained in this regime are quite different from those obtained in the previous section.

In this regime, the Strouhal number is not unity and the asymptotics on the equations

provides us with a set of equations which does not satisfy the Kelvin circulation theo-

rem. The reader may refer to Camassa and Holm (1992) for the deterministic derivation

of these equations and their relation to the Kadomtsev–Petviashvili equation. The cor-

responding asymptotic analysis on the Lagrangian does give a set of equations that

satisfy Kelvin’s circulation theorem, though, as it results in a buoyant version of the

Green–Naghdi equations. As it turns out, a variational derivation of equations for the

free surface alone is not available. Hence, the corresponding Boussinesq-type water

wave equations are not available, unless model assumptions in the variational principle

were to be changed. It will be shown that a hierarchy of stochastic Camassa–Holm

equations can be derived from this point of view leading to the stochastic Korteweg–De

Vries equation, as well.

In Sect. 4, we summarise by diagramming the pathways which relate the sequences

of approximations leading to the results obtained in this paper for each of the two

families of nonlinear fluid wave equations.

1 Stochastic Variational Principle and Averaging Principle

Central to this work is the stochastic Euler–Poincaré variational principle, presented

in Bethencourt de Leon et al. (2020), which is equivalent to the variational principle

in Holm (2015). However, the Euler–Poincaré variational principle uses prescribed

variations, rather than variations induced by constraints used in Holm (2015). The

most general version of the Euler–Poincaré theorem is formulated on the Lie algebra

of a semidirect product Lie group and uses the language of differential geometry and

representation theory, which first appeared deterministically in Holm et al. (1998).

For fluids, the group of interest is the diffeomorphism group, which is the space of

differentiable maps whose inverse maps are equally differentiable. The group action

is composition of functions. The group of diffeomorphisms is a suitable group for

geometric mechanics in the sense of Ebin and Marsden (1970). In order to state the

Euler–Poincaré theorem, we first need to introduce some notation.

123



29 Page 8 of 56 Journal of Nonlinear Science (2021) 31 :29

Fig. 2 The 3D flow domain, �. The wavy green surface is the free surface ζ(x, y, t), and the wavy blue

surface is the bathymetry h(x, y). This figure is not to scale, as the horizontal length scale of an ocean

domain is typically much larger than its height scale. In the paper, we will assume that Lx = L y = L

Notation. The domain of interest for the paper is a three-dimensional box with

bathymetry specified by h(x, y) and a free surface ζ(x, y, t), as illustrated in Fig. 2.

The domain, which we will call �, is a subset of R
3 and equipped with Cartesian coor-

dinates. As we proceed, we will present the Euler–Poincaré theorem and its sequence

of implications in R
3 vector calculus, rather than using the more abstract differential

geometric notation.

Two-dimensional and three-dimensional objects will be distinguished by putting a

subscript on the three-dimensional objects, as follows:

x3 = (x, z), u3 = (u, w), ∇3 =
(

∇,
∂

∂z

)
. (1.1)

Here, x3 denotes the coordinate system, u3 is the fluid vector field, and ∇3 is the

gradient. In oceanographic terms, we will work primarily with mesoscale dynamics,

where the typical horizontal length scale L is in the order of one hundred kilometres,

or more, and the typical depth H is four kilometres. Hence, the domain will be shallow.

The rotation of the planet is included by introducing the vector potential R3(x3) =
(R(x), 0) for the Coriolis parameter, f (x)ẑ, so that

∇3 × R3(x) = f (x)ẑ (1.2)

and ẑ is the unit vector in the vertical direction.

By X(�), we denote the space of vector fields over � and by V ∗ we mean the

abstract vector space of advected quantities, which are usually tensor fields of different
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degrees. In this paper, the elements of V ∗ that we will consider are buoyancy b, which

is a scalar function, the density D, which is a volume form and later in the two-

dimensional setting, we will consider the depth η(x, t) := ζ(x, t) + h(x), which is

the volume form in that scenario. The stochastic vector fields which generate the

Lagrangian transport is given below. In this paper, we will always work with the same

stochastic basis, consisting of a set, a P-complete σ -algebra, a probability measure

P and a right-continuous filtration. All stochastic processes that we will consider are

adapted to the filtration. The stochastic vector field for three-dimensional transport is

given by

dχ3t := u3(x3, t)dt +
M∑

i=1

ξ3i (x3) ◦ dW i
t . (1.3)

The stochastic vector field χ3t in (1.3) is an example of a semimartingale.

Definition 1.1 (Semimartingale). A cádlág process Y is a semimartingale if it can be

written as

Yt = Y0 + Mt + Vt ,

where M is a cádlág local martingale, V is a cádlág process of finite variation and

M0 = V0 = 0.

The adjective cádlág stands for “right continuous with a limit on the left”. The pro-

cesses we will be considering will have continuous paths almost surely. Continuous

semimartingales can be decomposed into a martingale part and a finite variation part

uniquely. For more background on semimartingales and stochastic integration, see e.g.

Protter (2005). Semimartingales have several nice properties. In particular:

• For a suitably bounded predictable process X and a semimartingale Y , the stochas-

tic integral
∫

XdY is again a semimartingale.

• For a twice differentiable function f , the quantity f (Y ) is again a semimartingale.

Note that the stochastic integral is of the Stratonovich type. This stochastic integral

has the benefit that the stochastic calculus associated with it uses the usual chain

rule and product rule, which are both required to derive the coordinate free stochastic

Euler–Poincaré theorem. The Stratonovich integral relates to the Itô integral via the

following transformation. Let X and Y both be continuous semimartingales, then

∫ t

0

Xs ◦ dYs =
∫ t

0

XsdYs + 1

2
〈X , Y 〉t , (1.4)

where 〈X , Y 〉t denotes the quadratic covariation process of X and Y . In particular,

the Itô integral is an adapted process and also the quadratic covariation process is an

adapted process. This means that also the Stratonovich integral is an adapted process.

The two-dimensional version of (1.3) is given by

dχ t := u(x, t)dt +
M∑

i=1

ξ i (x) ◦ dW i
t . (1.5)
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Hereafter, we will use Einstein’s summation convention (summing repeated indices

over their range) to keep the notation compact.

Boundary conditions. Having defined these vector fields for fluid transport, we can

now specify the boundary conditions for the domain illustrated in Fig. 2 above. One

assumes that the free surface at the top is a Lagrangian surface, and that no fluid pene-

trates the bottom and vertical walls. Consequently, the following stochastic kinematic

boundary conditions hold for the vertical velocity

wdt + ẑ · ξ3i ◦ dW i
t = dζ + (dχ t · ∇)ζ at z = ζ(x, t), and

wdt + ẑ · ξ3i ◦ dW i
t = −(dχ t · ∇)h at z = −h(x) . (1.6)

Here, ẑ·ξ3i selects the vertical component of the data vector fields. Since the stochastic

flow does not penetrate the lateral boundaries, the horizontal velocity is taken to be

tangential to the lateral boundaries

dχ t · n̂ = 0, on any vertical lateral boundary, (1.7)

where n̂ is the unit vector normal to the lateral boundaries. Finally, we assume the

dynamic boundary condition for the pressure, namely,

p = 0 at z = ζ(x, t), (1.8)

or, alternatively, one can take p = ζ at z = 0. This condition means that at the free

surface the pressure is purely hydrostatic. In this formulation, surface tension has been

neglected and the ambient pressure has been set to be zero at the surface. The lateral

boundary condition is consistent with the incompressibility condition

∇3 · dχ3t = 0. (1.9)

We want to be able to recover the deterministic fluid equations upon removing the

stochastic terms in (1.3) and (1.5), each of which is the sum of a deterministic vector

and a stochastic vector. That is, the stochastic fluid equations must return to the deter-

ministic fluid equations when the noise term on the transport velocity is switched off.

This type of consideration will be repeated as a ‘sanity check’ throughout the paper.

For example, this consideration requires that both terms in the transport vector field

in (1.3) must be divergence-free,

∇3 · u3 = 0, and ∇3 · ξ i = 0, for all i = 1, . . . , M . (1.10)

We will assume that the free surface and the pressure are both semimartingales.
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1.1 Stochastic Euler–Poincaré Theorem and Averaging

Variational derivatives of functionals.

Definition 1.2 (Functionals and functional derivatives).

A functional F[ρ] is defined as a map F : B → R, where B is a Banach space. The

variational derivative of a functional F(ρ), denoted δF/δρ, is defined by

δF[ρ] := lim
ε→0

F[ρ + εφ] − F[ρ]
ε

=: d

dε
F[ρ + εφ]

∣∣∣∣
ǫ=0

=
∫

�

δF

δρ
(x)φ(x) dx =:

〈
δF

δρ
, φ

〉

(1.11)

where ε ∈ R is a real parameter, φ ∈ B is arbitrary and the angle brackets 〈 · , · 〉
indicate L2 pairing on B. The derivative itself can be interpreted as a Fréchet derivative.

The function φ(x) above is called the ‘variation of ρ’, and it will be denoted as δρ :=
φ(x). For notational convenience, we denote the functional derivative δ operationally

as

δF[ρ] =
〈
δF

δρ
, δρ

〉
.

Euler–Poincaré theorem. Given the boundary conditions and definitions above, the

following form of the Euler–Poincaré theorem with stochastic variations provides the

corresponding stochastic equations of motion derived from Hamilton’s principle with

a deterministic Lagrangian functional ℓ : X× V ∗ → R defined on the domain of flow,

�. Here, X denotes the Lie algebra of smooth vector fields whose action in three-

dimensional space by the Jacobi–Lie bracket is denoted as [ · , ·] : X × X → X, and

is defined for u, v ∈ X by the commutator relation, which in turn defines the minus

adjoint operator, ad, given by

[
u, v

]
:=

(
(u3 · ∇3)v3 − (v3 · ∇3)u3

)
· ∇3 =: − aduv . (1.12)

Theorem 1.1 (Stochastic Euler–Poincaré equations (Holm 2015; Bethencourt de Leon

et al. 2020)). The following two statements are equivalent:

i) Hamilton’s variational principle in Eulerian coordinates, with u3 ∈ X(�) and

b, D ∈ V ∗(�),

δS := δ

∫ t2

t1

ℓ(u3, b, D) dt = 0, (1.13)

holds on X(�) × V ∗, upon using variations of the form

δu3 dt = dv3 + [dχ3t , v3], δb dt = −(v3 · ∇3)b dt,

δD dt = −∇3 · (Dv3)dt , (1.14)

where the arbitrary vector field v3 is a semimartingale.
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ii) The stochastic Euler–Poincaré equations hold. These equations are

d
δℓ

δu3
+ (dχ3t · ∇3)

δℓ

δu3
+ (∇3dχ3t ) · δℓ

δu3
+ δℓ

δu3
(∇3 · dχ3t ) = − δℓ

δb
∇3b dt

+D∇3
δℓ

δD
dt (1.15)

or, equivalently,

d
δℓ

δu3
− dχ3t ×

(
∇3 × δℓ

δu3

)
+ ∇3

(
dχ3t · δℓ

δu3

)
+ δℓ

δu3
(∇3 · dχ3t )

= − δℓ

δb
∇3b dt + D∇3

δℓ

δD
dt , (1.16)

with advection equations

db = − dχ3t · ∇b and dD = −∇3 · (Ddχ3t ) . (1.17)

Remark 1.2 The abstract statement of the Euler–Poincaré Theorem 1.1, formulated on

general semidirect product Lie groups, is presented in Holm et al. (1998) determinis-

tically and in Holm (2015); Bethencourt de Leon et al. (2020) stochastically.

Remark 1.3 In Theorem 1.1, the operator δ in (1.13) is the functional derivative defined

in (1.11), the brackets [ · , · ] denote the commutator of vector fields defined in (1.12),

and v3 ∈ X(�) is an arbitrary semimartingale vector field in three dimensions which

vanishes at the endpoints in time, t1 and t2. Note that the stochasticity is introduced

in the variation of the Eulerian velocity in (1.14). This stochasticity in the variation is

inherited from the stochasticity in the Lagrangian particle paths, as in Holm (2015).

Remark 1.4 (Newton’s Law interpretation of Euler–Poincaré equation (1.15)). One

may interpret the stochastic Euler–Poincaré equation (1.15) as the Newton’s law of

motion for a stochastic process. That is, the stochastic rate of change of the covector

momentum P := δℓ/δu3 equals the sum of forces on the right hand side of Eq. (1.15).

Of course, when the stochasticity is removed from the vector field in (1.5), Eq. (1.15)

recovers its deterministic version.

Proof Hamilton’s variational principle implies

0 =
∫ t2

t1

[〈
δℓ

δu3
, δu3dt

〉

X

+
〈
δℓ

δb
, δbdt

〉

V ∗
+
〈

δℓ

δD
, δDdt

〉

V ∗

]

=
∫ t2

t1

[〈
δℓ

δu3
,dv3 + [dχ3t , v3]

〉

X

+
〈
δℓ

δb
,−(v3 · ∇3)bdt

〉

V ∗
+
〈

δℓ

δD
, −∇3 · (Dv3)dt

〉

V ∗

]

=
∫ t2

t1

[〈
−d

δℓ

δu3
− (dχ3t · ∇3)

δℓ

δu3
− (∇3dχ3t ) · δℓ

δu3
+ δℓ

δu3
(∇3 · dχ3t ), v3

〉

X

+
〈
− δℓ

δb
∇3bdt, v3

〉

X

+
〈

D∇3
δℓ

δD
dt, v3

〉

X

]
.
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The subscripts X and V ∗ on the L2 pairings indicate over which space that the pairing is

defined. Since the semimartingale v3 is arbitrary, except for vanishing at the endpoints

t1 and t2 in time, the following equation holds,

d
δℓ

δu3
+ (dχ3t · ∇3)

δℓ

δu3
+ (∇3dχ3t ) · δℓ

δu3
+ δℓ

δu3
(∇3 · dχ3t ) = − δℓ

δb
∇3b dt + D∇3

δℓ

δD
dt .

This finishes the proof of the stochastic Euler–Poincaré equation in (1.15). The equiv-

alent form in Eq. (1.16) follows by means of a standard vector identity. ⊓⊔

1.2 Stochastic Kelvin–Noether Circulation Theorem

A straight forward calculation combining equation (1.15) and the second advection

equation in (1.17) proves the following.

Lemma 1.5 (Circulation form of the stochastic Euler–Poincaré equation (Holm 2015;

Bethencourt de Leon et al. 2020)). The stochastic Euler–Poincaré equation in (1.15)

is equivalent to the following,

d

(
1

D

δℓ

δu3

)
+ (dχ3t · ∇3)

(
1

D

δℓ

δu3

)
+ (∇3dχ3t ) ·

(
1

D

δℓ

δu3

)

= − 1

D

δℓ

δb
∇3b dt + ∇3

δℓ

δD
dt . (1.18)

One of the main benefits of Theorem 1.1 is that its stochastic Euler–Poincaré equa-

tions satisfy the following Kelvin circulation theorem.

Theorem 1.6 (Stochastic Kelvin–Noether circulation theorem (Holm 2015; Bethen-

court de Leon et al. 2020)). For an arbitrary loop c(dχ3t ) which is advected by the

stochastic velocity field dχ3t , the following circulation dynamics holds

I :=
∮

c(dχ3t )

1

D

δℓ

δu3
· dx3 , dI = −

∮

c(dχ3t )

(
1

D

δℓ

δb

)
∇3b · dx3 dt . (1.19)

Proof The Kelvin circulation law (1.19) follows from Newton’s law of motion obtained

from the stochastic Euler–Poincaré equation (1.18) for the evolution of momen-

tum/mass D−1δℓ/δu3 concentrated on an advecting material loop, c(dχ3t ) = φt c(0),

where φt is the stochastic flow map generated by the stochastic vector field dχ3t

defined in Eq. (1.3). Upon changing variables to pull back the integrand to its initial

position, the stochastic differential can be moved inside and the Kunita–Itô-Wentzell

formula may be applied (Bethencourt de Leon et al. 2020). Then, by inverting the

pull-back we have the following
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d

∮

c(dχ3t )

1

D

δℓ

δu3
· dx3 =

∮

c(dχ3t )

(d + dχ3t · ∇3 + (∇3dχ3t )·)
(

1

D

δℓ

δu3

)
· dx3

= −
∮

c(dχ3t )

1

D

δℓ

δb
∇3b dt · dx3 +

∮

c(dχ3t )

∇3
δℓ

δD
· dx3 dt

= −
∮

c(dχ3t )

(
1

D

δℓ

δb

)
∇3b · dx3 dt .

In the second line, we have used the Euler–Poincaré equation (1.15) and the advection

equation for the density. The last step applies the fundamental theorem of calculus to

show vanishing of the last loop integral in the second line. For the corresponding proof

in the deterministic case, see Holm et al. (1998). For detailed discussion of pull-back

by stochastic flow maps, see Bethencourt de Leon et al. (2020). ⊓⊔
Corollary 1.7 (Generation of circulation, I). By Stokes Law, Eq. (1.19) in the stochastic

Kelvin–Noether circulation theorem 1.6 implies

dI = −
∫ ∫

∂S=c(dχ3t )

∇3

(
1

D

δℓ

δb

)
× ∇3b · dS3 dt . (1.20)

Therefore, circulation is created by misalignment of the gradients of buoyancy b and

its dual quantity D−1δℓ/δb.

Remark 1.8 (A mechanism for cyclogenesis). Formula (1.20) expresses the mecha-

nism for generation of circulation (i.e. convection) driven by misalignment of certain

potential gradients with gradients of scalar advected fluid quantities such as the buoy-

ancy, b. In particular, formula (1.20) is the fundamental mechanism for generation of

circulation or convection by wave–current interaction in stratified fluids. For the verti-

cally averaged stratified fluid models treated later in the present paper, this formula will

express a barotropic mechanism for generating horizontal circulation by misalignment

of horizontal gradients of certain barotropic fluid quantities (such as wave elevation

or bottom topography) with the horizontal gradient of vertically averaged buoyancy.

In three-dimensional stochastic fluid dynamics, the Lagrangian in the Euler–

Poincaré theorem is a functional defined over the volume of flow which, as we will

discuss below, involves the kinetic energy density of the fluid relative to the rotating

frame and the potential energy density. Our aims in the remainder of the paper are

to combine asymptotic expansions and vertical averaging with the stochastic Euler–

Poincaré variational theorem to formulate a new approach for developing stochastic

parametrisation methods. To achieve these aims, we will apply asymptotic expansions

in a vertically averaged (barotropic) stochastic Euler–Poincaré variational principle.

For this purpose, we will apply asymptotic expansions to the nondimensionalised

Lagrangian for 3D incompressible flows of a stratified and rotating Euler fluid and

then evaluate the vertical integral at an appropriate order in the expansion and finally

use the Euler–Poincaré theorem to derive the equations of motion and advection we

seek. We will then analyse and discuss their solution properties from the viewpoints

of Newton’s laws of motion and the Kelvin–Noether circulation theorem. We will also

discuss the conservation laws for these equations.
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1.3 Nondimensionalising the Lagrangian

The dimensional form of the Lagrangian in Hamilton’s principle for the rotating,

stratified Euler equations (rsE) is given by

ℓrs E (u3, b, ζ, D) :=
∫

�

ρ0(1 + b)

(
1

2
|u|2 + 1

2
w2 + u · R − gz

)
D dx dy dz.

(1.21)

Here, ρ0 represents the reference density and g represents gravity. The ocean has quite

a few small dimensionless numbers which can be used to simplify the rsE Lagrangian

and will allow one to access a hierarchy of simplified models. In particular, we want to

derive the Lagrangian for the Euler–Boussinesq equations, which requires assumptions

on the smallness of buoyancy, in terms of the Rossby number. To derive the equations

of motion associated with the Lagrangian, we introduce the following action

Srs E =
∫ t2

t1

ℓrs E dt − 〈dp, D − 1〉 =:
∫ t2

t1

cℓrs E , (1.22)

where dp is the Lagrange multiplier that enforces the density ratio D to be equal

to one, the times 0 ≤ t1 ≤ t2 are arbitrary, and the angle brackets refer to the L2

pairing over the domain �. The notation cℓrs E refers to constrained Lagrangian and

is introduced to keep the notation similar to the stochastic Euler–Poincaré theorem

1.1. This constraint implies incompressibility and is required because it affects the

measure D dx dy dz in the Lagrangian. The treatment of the stochastic pressure is

explained in the following remark.

Remark 1.9 (Semimartingale pressure). At this point one recognises a departure from

the stochastic Euler–Poincaré equations without constraints derived in the Euler–

Poincaré theorem 1.1. Namely, we have written the Lagrange multiplier dp which

imposes the constraint D − 1 = 0. The notation stresses that dp is imposing a con-

straint that is stochastic. Now, setting D = 1 in the advection equation for D by the

stochastic vector field dχ3t implies that ∇3 · (dχ3t ) = 0. Following the discussion

leading to (1.10), this in turn must also imply ∇3 · u3 = 0. By its definition in (1.5),

the quantity χ3t is a semimartingale. Therefore, accounting for both the deterministic

and stochastic parts of the motion equation in (1.33) will require that the pressure dp

must also be a semimartingale, hence the notation. The point is that the semimartin-

gale D cannot be enforced to be a constant by a deterministic Lagrange multiplier.

The Lagrange multiplier must also be obtained from a semimartingale equation. In

the present case, this can be accomplished by acknowledging that the pressure is a

semimartingale and writing its contribution in the motion equation as dp, in a notation

which implies a sum of both Lebesque and stochastic time integrations. Then, upon

imposing the consequence of D = 1 in the form ∇3 ·u3 = 0 we find a semimartingale

Poisson equation for dp which encompasses both the deterministic and stochastic

parts of the constrained motion equation. Finally, the time integration of the solution
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of the Poisson equation for dp determines the semimartingale p. For a treatment of

general semimartingale driven variational principles, see Street and Crisan (2020).

The nondimensional versions of all the relevant variables and parameters are given

below,

x3 = L(x′, σ z′), u3 = U (u′, σw′), ∇3 = 1

L

(
∇ ′,

1

σ

∂

∂z′

)
, t = T t ′, Wt = 1√

T
Wt ′ ,

h = Hh′, ζ = αHζ ′, R = f0 LR′, ρ = ρ0ρ′, dp = ρ0gHdp′,

σ = H

L
, α = ζ0

H
, Fr = U√

gH
, Ro = U

f0 L
, Sr = L

U T
.

(1.23)

Here L denotes the horizontal scale, H is the vertical scale, U is the typical hori-

zontal velocity, f0 is the rotation frequency, ζ0 is the typical free surface amplitude and

T is the time scale. The dimensionless numbers in the bottom row are, respectively,

the aspect ratio σ , the wave amplitude α, the Froude number Fr, the Rossby number

Ro and the Strouhal number Sr. Note that we have also scaled the Brownian motion

so that in the nondimensional setting, the noise is again a standard Brownian motion.

The dimensional factor that arises can be absorbed into the ξ3i for each i . The vertical

component of the data vector fields ξ3i is scaled with the aspect ratio as well, that is

ξ3i = (ξ ′
i , σ ẑ · ξ ′

3i ). In particular, this means that we can write

dχ3t = U (dχ ′
t , σ ẑ · dχ ′

3t ). (1.24)

We do not make any assumptions on the size of the data vector fields relative to the

velocity field itself. Last, but not least, the stratification parameter s is introduced.

Since the buoyancy is already dimensionless, it does not appear in the table, but it

works as follows

b = sb′. (1.25)

The purpose of the stratification parameter is to make sure that the buoyancy variable

b is an order O(1) variable. By controlling the size of the stratification parameter s, the

Boussinesq approximation can be introduced. The nondimensional rsE Lagrangian is

obtained by substituting (1.23) into (1.21) and dropping the primes, which yields

ℓrs E (u3, b, D) =
∫

�

(1 + sb)

(
1

2
|u|2 + σ 2

2
w2 + 1

Ro
u · R − 1

Fr2
z

)
D dx dy dz,

(1.26)

and the dimensionless action is given by

Srs E =
∫ t2

t1

ℓrs E dt −
〈

1

Fr2
dp, D − 1

〉
=:

∫ t2

t1

cℓrs E . (1.27)
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In the ocean, the horizontal scale L is of the order of hundreds of kilometres, whereas

the vertical scale H is typically about four kilometres. The free surface amplitude is

five metres and the horizontal velocity is about a tenth of a metre per second. Hence,

the aspect ratio σ ≪ 1, the wave amplitude α ≪ 1 and the Froude number Fr ≪ 1. The

Rossby number at these scales is also small, Ro ≪ 1. Also, the buoyancy stratification

is weak, which allows us to apply the Boussinesq approximation. This approximation

corresponds to s ≪ 1, that is, requiring the stratification parameter to be small. When

the dimensionless numbers satisfy O(α) = O(s) = O(Ro) = O(Fr) = O(σ 2), the

Lagrangian can be approximated. Consequently, the rsE Lagrangian simplifies, as the

remaining effect of buoyancy is restricted to the potential energy term. This yields the

Euler–Boussinesq (EB) Lagrangian, given by

ℓE B(u3, b, D) =
∫

�

(
1

2
|u|2 + σ 2

2
w2 + 1

Ro
u · R − 1

Fr2
(1 + sb)z

)
D dx dy dz.

(1.28)

The Euler–Boussinesq equations are obtained by applying the Euler–Poincaré theorem

to the action obtained by taking the Lagrangian in (1.28) with the pressure constraint,

as in (1.22). The action for the EB equations is then given by

SE B =
∫ t2

t1

ℓE B dt −
〈

1

Fr2
dp, D − 1

〉
=:

∫ t2

t1

cℓE B . (1.29)

Besides assuming the buoyancy is small, we will assume that the variations of the

Coriolis parameter and of the bathymetry profile are also small, of order O(Ro),

f (x) = 1 + Ro f1(x), h(x) = 1 + Ro h1(x). (1.30)

These assumptions are made because they are consistent with the assumptions for

quasi-geostrophy. The Lagrangian of interest in (1.28) is in dimensionless form, but

the constraints in theorem 1.1 are still dimensional. Since v3 is arbitrary, multiply-

ing it by some constant does not change its arbitrary nature. Hence, besides the δu3

constraint, nothing changes upon nondimensionalisation. As said earlier, the δu3 vari-

ational constraint does change, as follows,

δu3dt = Sr dv3 − [dχ3t , v3]. (1.31)

Time does not appear explicitly anywhere in the rsE and EB Lagrangians. Thus, the

Strouhal number has not appeared before; but time rescaling has a significant impact

on the behaviour of the model. In (1.31), one can see that if the Strouhal number

is not unity, advection will no longer be balanced. This observation will be crucial

later, when we look at the short time limit. So far, we have obtained a theorem which,

for a certain deterministic Lagrangian for three-dimensional fluids, provides us with

the corresponding stochastic equations. By explicitly evaluating the vertical integral,

when possible, in that theorem, we have a systematic way to obtain the vertically

averaged version of the three-dimensional fluid equations of interest. We also have
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introduced a general nondimensionalisation and identified the scales in the problem

which determine the small dimensionless numbers in the ocean. Now, an application

of theorem 1.1 to the EB Lagrangian (1.29), with variations given by

δcℓE B

δu
= D

(
u + 1

Ro
R

)
,

δcℓE B

δw
= σ 2 Dw,

δcℓE B

δD
= 1

2
|u|2 + σ 2

2
w2 + 1

Ro
u · R − 1

Fr2
(1 + sb)z − 1

Fr2
dp,

δcℓE B

δb
= − s

Fr2
Dz,

δcℓE B

δdp
= 1

Fr2
(D − 1).

(1.32)

implies the following stochastic Euler–Poincaré equations in circulation form (see

Lemma 1.5)

Sr du + (dχ3t · ∇3)u + (∇ξ3i ) · u3 ◦ dW i
t = − 1

Fr2
∇dp − 1

Ro
f ẑ × dχ t

− 1

Ro
∇(ξ i · R) ◦ dW i

t ,

σ 2

(
Sr dw + (dχ3t · ∇3)w +

( ∂

∂z
ξ3i

)
· u3 ◦ dW i

t

)
= − 1

Fr2

∂

∂z
dp + 1

Fr2
(1 + sb) dt,

Sr db + (dχ3t · ∇3)b = 0,

∇3 · (dχ3t ) = 0.

(1.33)

The Euler–Boussinesq equations satisfy the following Kelvin circulation theorem,

for any closed loop c(dχ3t ) which is advected with the stochastic velocity dχ3t in

Eq. (1.3),

Sr d

∮

c(dχ3t )

(
(u, σ 2w) + 1

Ro
(R, 0)

)
· dx3 = − s

Fr2

∮

c(dχ3t )

z∇3b · dx3dt

= − s

Fr2

∫ ∫

∂S=c(dχ3t )

ẑ × ∇3b · dSdt,

(1.34)

where the notation (u, σ 2w) denotes a three-dimensional vector field, two horizontal

components from u and the vertical component σ 2w. As R is strictly horizontal, the

vertical component is zero. Hence, the misalignment of the unit vector in the vertical

direction and the gradient of buoyancy creates vertical circulation, or convection.

Additionally, the Euler–Boussinesq equations satisfy the Silberstein–Ertel theorem

for potential vorticity. This theorem states that the potential vorticity, defined by

q := s∇3b · ∇3 ×
(

(u, σ 2w) + 1

Ro
(R, 0)

)
, (1.35)
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is conserved along particle trajectories and thus satisfies the following equation

Sr dq + (dχ3t · ∇3)q = 0. (1.36)

Since the buoyancy and the potential vorticity are constant along particle trajectories,

the spatially integrated quantity,

C� =
∫

�

�(b, q) dx dy dz, (1.37)

is also preserved in time for any differentiable function, �, for which the integral exists.

The proof is analogous to the deterministic case, which is shown in Holm et al. (1998,

1999). A special case of this statement is the preservation of the enstrophy, which is

defined as the L2 norm of the potential vorticity. Since the flow is divergence free,

one can also define the enstrophy in terms of the gradients of the velocity. This shows

that the Euler–Boussinesq equations, even in the presence of SALT, have an infinite

number of conservation laws. This structure must also be preserved by the vertical

averaging. The spatially integrated quantities C� are also referred to as Casimirs,

as they are the functions whose Lie–Poisson bracket corresponding to the Euler–

Boussinesq equations vanishes for any Hamiltonian expressed in the Eulerian fluid

variables.

1.4 Averaging of Newton’s Second Law

Besides evaluating the vertical integral in the variational principle, one can also choose

to use Newton’s second law to derive the equations of fluid motion in this domain,

rather than using the Euler–Poincaré theorem. By means of the method of control

volumes, it is possible to derive the equations and also come up with an averaging

principle. This is what is shown in Wu (1981) for the deterministic case. The stochastic

case is not that different, but there is one issue that requires careful treatment: there is

an additional advection term. Let us denote the vertical average by putting a bar over

the relevant quantity

f := 1

η

∫ αζ

−h

f dz. (1.38)

The stochastic vector field in the averaged situation is denoted

dχ t = u dt + ξ i ◦ dW i
t . (1.39)

For incompressible flows, the advection equation for a scalar and the continuity equa-

tion for a density can be written in the same form. That is, the average of a scalar

function f (x3, t) and that of a volume form f (x3, t)d3x , for incompressible flows,

are of the same form,
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Sr d

∫ ζ

−h

f (x3, t)dz + ∇ ·
∫ αζ

−h

f (x3, t)dχ t dz = 0. (1.40)

In the deterministic case, it is possible to substitute in the fluid velocity for f in (1.40)

and obtain the vertically averaged momentum equation after applying (1.38). The

formula above holds for scalars and densities, but fluid velocity is neither. However,

the fluid velocity equation obtained in this way is correct, but only in the deterministic

case. The explanation for this coincidence is the following. In the deterministic setting,

the advective terms in the equation for the fluid velocity for incompressible fluids are

(u · ∇)u + (∇u) · u. The latter term is equal to the gradient of the kinetic energy, so a

cancellation occurs in Newton’s second law. When SALT is introduced in this problem,

the kinetic energy is the same as in the deterministic situation, but the advective terms

are now stochastic; hence, this cancellation no longer occurs.

Applying (1.38) and (1.40) to the Euler–Boussinesq equations (1.33) yields the

following vertically averaged nonlinear equations,

Sr d(ηu) + ∇ · (ηdχ t ⊗ u) + η(∇ξ i ) · u ◦ dW i
t = − 1

Fr2
η∇dp − 1

Ro
η f ẑ × dχ t

− 1

Ro
η∇(ξ i · R) ◦ dW i

t ,

Sr d(ηb) + ∇ · (ηbdχ t ) = 0,

Sr dη + ∇ · (ηdχ t ) = 0.

(1.41)

The last equation is obtained by substituting unity into (1.40). It corresponds to conser-

vation of volume in the two-dimensional setting. As the problem is incompressible,

the vertical velocity can be expressed in terms of the horizontal velocity field and

the vertical component of the data vector fields ξ3i can be expressed in terms of the

horizontal components as

w(x, z) = −∇ ·
∫ z

−h

u(x, z′)dz′ = ∇ ·
∫ αζ

z

u(x, z′)dz′,

ẑ · ξ3i (x, z) = −∇ ·
∫ z

−h

ξ i (x, z′)dz′ = ∇ ·
∫ αζ

z

ξ i (x, z′)dz′.

(1.42)

This expression has been derived by vertically integrating the three-dimensional

incompressibility condition (1.9), using the uniqueness of the semimartingale decom-

position and using the boundary conditions on the vertical velocity to pull the

divergence outside of the integral. Importantly, the boundary conditions introduce

a dependence between the horizontal components of the vector fields and the vertical

component. A horizontal two-dimensional model with bathymetry and a free surface

will therefore give some information about what is happening in the vertical direction.

This holds also for the ξ i . Even though the Newtonian averaging approach is very

insightful, there is a drawback. Namely, the averaged equations (1.41) are not closed.

Indeed, they contain three terms which are unknown. In the momentum equation,

the average of the nonlinear term and the average of the pressure are unknown. In
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the buoyancy equation, the advection term is unknown. In order to close this set of

equation, we will use asymptotic analysis, which we shall employ in two different

scaling regimes. These are the long time - very small wave (LT-VSW) scaling regime

in Sect. 2 and the short time-small wave (ST-SW) scaling regime in Sect. 3. Here, ‘long

time scale’ is T = L/U , the time it takes for a fluid parcel to cross the horizontal

length scale; and ‘short time scale’ is T = L/
√

gH , the time it takes for a gravity

wave to cross the horizontal length scale. Likewise, ‘small wave’ means that the wave

amplitude is small, but not small enough to consider taking the rigid lid limit; while

‘very small wave’ means that the wave amplitude is the small parameter of interest.

2 Long Time—Very Small Wave Scaling Regime

Long time corresponds to choosing the time scale to be T = L/U and very small

wave means that the amplitude of the wave α is the small parameter of interest. In this

setting, we therefore have the following dimension-free parameters,

x3 = H

(
1

σ
x′, z′

)
, u3 = U (u′, σw′), ∇3 = 1

L

(
∇ ′,

1

σ

∂

∂z′

)
, t = L

U
t ′, Wt =

√
L

U
Wt ′ ,

h = Hh′, ζ = αHζ ′, R = f0 LR′, ρ = ρ0ρ
′, dp = ρ0gHdp′,

σ = H

L
, α = ζ0

H
, Fr = U√

gH
, Ro = U

f0 L
, Sr = 1.

(2.1)

In particular, the velocity field and the data vector fields are scaled in the same way;

hence, we have

dχ3t = U (dχ ′
t , σ ẑ · dχ ′

3t ). (2.2)

With these scaling relations and the stratification parameter s, the constrained EB

Lagrangian in Eq. (1.29) takes the following form

SE B(u3, b, D) =
∫ t2

t1

∫

�

(
1

2
|u|2 + σ 2

2
w2 + 1

Ro
(u · R) − 1

Fr2
(1 + sb)z

)
D dx dy dz dt

− 〈dp, D − 1〉,

=:
∫ t2

t1

cℓE B

(2.3)

Note that no information about the very small free surface amplitude appears in the

Lagrangian; it only contains the aspect ratio, which controls the size of the vertical

kinetic energy. However, information about the size of the free surface amplitude does

appear in the boundary conditions, which are
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p = ζ at z = 0,

wdt + ẑ · ξ3i ◦ dW i
t = α

(
dζ + (dχ t · ∇)ζ

)
at z = αζ(x, t),

wdt + ẑ · ξ3i ◦ dW i
t = −(dχ t · ∇)h at z = −h(x),

dχ t · n = 0 on lateral boundaries.

(2.4)

An application of the stochastic Euler–Poincaré Theorem 1.1 on the long time scale

Lagrangian in (2.3) now yields the following equations

du + (dχ3t · ∇3)u + (∇ξ3i ) · u3 ◦ dW i
t = − 1

Fr2
∇dp − 1

Ro
f ẑ × dχ t

− 1

Ro
∇(ξ i · R) ◦ dW i

t ,

σ 2

(
dw + (dχ3t · ∇3)w +

( ∂

∂z
ξ3i

)
· u3 ◦ dW i

t

)
= − 1

Fr2

∂

∂z
dp − 1

Fr2
(1 + sb)dt,

∇ · dχ3t = 0.

(2.5)

The equations in (2.5) satisfy the Kelvin circulation theorem as in (1.34) and have con-

servation of potential vorticity along particle trajectories as in (1.36). These equations

also conserve an infinity of integral quantities as in (1.37). In the long-time scaling in

(2.1) the Strouhal number is equal to one. In this scaling regime, the equations take a

particularly nice form. The dimensionless numbers of interest are the aspect ratio σ

and the wave amplitude α, the Rossby number Ro shall be left untouched. In particular,

we consider α ≪ σ ≪ 1, where we let the wave amplitude tend to zero while holding

the aspect ratio fixed.

Rigid lid approximation. The effect of sending the wave amplitude α to zero is

the rigid lid approximation, where the free surface is no longer allowed to vary and

becomes a rigid boundary, instead. This removes gravity waves from the problem.

However, the leading order dynamics can still be recovered from the dynamic boundary

condition on the pressure. The effect of sending α → 0 before touching the aspect

ratio is that one can derive equations that include the nonhydrostatic effect due to the

vertical velocity. The corresponding equations are the so-called Great Lake equations,

first derived in Camassa et al. (1996, 1997). Taking σ → 0 after the rigid lid limit

leads to the Lake equations. If one takes σ ≪ α ≪ 1, the result is the same, but

the route is slightly different. Upon sending σ → 0, the vertical component in the

Lagrangian (2.3) vanishes and upon assuming columnar motion, one can integrate the

Lagrangian vertically. This leads to the Lagrangian for rotating shallow water. Sending

α → 0 corresponds to putting a rigid lid on top of the rotating shallow water equations

and this leads to the Lake equations. Upon taking α → 0 while keeping σ fixed, the

equations (2.5) do not change, but the boundary conditions in (2.4) do:

p = ζ at z = 0,

w = 0 at z = 0,

wdt + ẑ · ξ3i ◦ dW i
t = −(dχ t · ∇)h at z = −h(x),

dχ t · n = 0 on lateral boundaries.

(2.6)
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In the limit α → 0, the depth η = h, as the contribution of the free surface vanishes.

Also, the expressions for the vertical velocity and the vertical component of the data

vector field simplify, as the free surface contribution vanishes, and take the form

w = ∇ ·
∫ 0

z

u dz′,

ẑ · ξ3i = ∇ ·
∫ 0

z

ξ i dz′.

(2.7)

Averaging with the Newtonian approach leads to the following vertically averaged

versions of the equations (2.5),

du + 1

h
∇ · (hdχ t ⊗ u) + (∇ξ i ) · u ◦ dW i

t = − 1

Fr2
∇dp − 1

Ro
f ẑ × dχ t

− 1

Ro
∇(ξ i · R) ◦ dW i

t ,

db + ∇ · (bdχ t ) = 0,

(2.8)

and

∇ · (hdχ t ) = 0. (2.9)

The continuity equation has become a weighted incompressibility condition (2.9),

where the weight is determined by the bathymetry profile. As in the discussion above

about the incompressibility condition (1.10), the weighted incompressibility must hold

for the velocity field and the ξ i independently. If the bathymetry is flat, one finds the

two-dimensional incompressibility condition. However, the momentum equation and

the buoyancy equation above still suffer from the problem that terms are present which

we, as yet, have not determined.

2.1 Leading Order Expansion in the Long Time: Very SmallWave Scaling Regime

As an initial approach, let us assume a leading order expansion in σ 2. Even though

the Rossby number is small as well, we will consider a single scale expansion in σ 2

for the variables:

u = u0 + o(1), w = w0 + o(1), ξ3i = ξ0,3i + o(1),

dχ3t = dχ0,3t + o(1), dp = dp0 + o(1), ζ = ζ0 + o(1),

b = 0 + o(1).

(2.10)

The buoyancy does not contribute in the leading order expansion, since the stratification

parameter is required to satisfy s ≪ 1 for the Boussinesq approximation. Also note

that the data vector fields ξ3i are expanded in the same way as the velocity itself. No

assumptions are made about the size of the data vector fields. Upon substituting (2.10)

into (2.5), the vertical velocity equation at leading order implies hydrostatic balance
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∂

∂z
dp0 + 1 dt = 0, (2.11)

and the dynamic boundary condition (1.8) implies that the leading order pressure is

equal to the leading order free surface elevation.

Remark 2.1 Note that there is no stochasticity entering (2.11) explicitly. Due to the

assumption of the pressure being a semimartingale, the pressure has the standard

semimartingale decomposition. When there is no stochasticity in the equation, the

martingale part of the pressure must vanish and we have the expression dp0 = p0dt

with a slight abuse of notation.

Interestingly, the substitution of the leading order expansion leads to a closed model

even before averaging, when one uses the expression (1.42) for the vertical velocity

as an additional equation. Given the boundary conditions in (2.6), the leading order

expansion leads to a set of equations reminiscent of the Benney long wave model

(Benney 1973). There are a few twists, though, since stochasticity and rotation are

also involved. Moreover, the wave amplitude α is very small, which enforces the

rigid lid approximation in the vertical integral. At leading order, there cannot be any

confusion as to which order of the expansion we are considering. Consequently, we

may drop the subscript o in writing the following set of equations,

du + (dχ3t · ∇3)u + (∇ξ i ) · u ◦ dW i
t = − 1

Fr2
∇dp − 1

Ro
f ẑ × dχ t − 1

Ro
∇(ξ i · R) ◦ dW i

t ,

w = ∇ ·
∫ 0

z
u dz′,

ẑ · ξ3i = ∇ ·
∫ 0

z
ξ i dz′.

(2.12)

Together with the weighted incompressibility condition in (2.9), the dynamic bound-

ary condition on the pressure (1.8) and the lateral boundary condition (1.7), the

Benney-like equations (2.12) form a closed set. The Benney long wave equations

are interesting because they have a very rich mathematical structure, including an

infinite hierarchy of conservation laws, as shown in Kupershmidt (2006). If we now

make the additional assumption that the leading order component of the horizontal

velocity field and the leading order component of the horizontal data vector field are

independent of the vertical coordinate; that is, if we assume that the leading order com-

ponent is columnar, then a considerable simplification of (2.12) occurs. Namely, the

derivative in the vertical direction drops out. Consequently, it is no longer necessary

to determine the vertical velocity and now every term in the equation is horizontal.

This set of equations we will refer to as the stochastic, rotating, Lake equations, given

by

du + (dχ t · ∇)u + (∇ξ i ) · u ◦ dW i
t = − 1

Fr2
∇dζ

− 1

Ro
f ẑ × dχ t − 1

Ro
∇(ξ i · R) ◦ dW i

t , (2.13)
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accompanied by the weighted incompressibility condition in (2.9) and the lateral

boundary condition (1.7). The dynamic boundary condition can now be used to deter-

mine the pressure at the free surface. The deterministic, irrotational version of these

equations has been shown by Levermore et al. (1996a, b); Levermore and Oliver (1997)

to be globally wellposed. These equations satisfy a Kelvin circulation theorem, namely

d

∮

c(dχ t )

(
u + 1

Ro
R

)
· dx = 0, (2.14)

where c(dχ t ) is any fluid loop that is advected by the stochastic vector field dχ t .

This means that circulation is conserved, as there are no terms on the right hand side

to generate circulation. Hence, the enstrophy in this model is conserved as well. The

proof of the Kelvin circulation theorem is either a direct computation, or a corollary of

the Euler–Poincaré theorem. We will derive these equations from a variational point

of view as well, which will prove the Kelvin circulation theorem above.

2.2 Higher-Order Expansion in the Long Time: Very SmallWave Scaling Regime

Let us now consider a higher-order perturbation expansion:

u = u0 + σ 2u1 + o(σ 2), w = w0 + σ 2w1 + o(σ 2), ξ3i = ξ0,3i + σ 2ξ1,3i + o(σ 2),

dχ3t = dχ0,3t + σ 2
dχ1,3t + o(σ 2), dp = dp0 + σ 2

dp1 + o(σ 2), ζ = ζ0 + σ 2ζ1 + o(σ 2),

sb = σ 2b + o(σ 2).

(2.15)

It is natural to assume that the leading order terms satisfy the Lake equations (2.13).

Note that the stratification parameter is assumed to satisfy O(s) = O(σ 2). This will

allow us to consider the buoyancy independently from the higher order terms that

will appear in the equations to come. Hence, at leading order in the vertical velocity

equation, we have hydrostatic balance (2.11) and in the horizontal component we have

columnar motion. At the next order, we substitute (1.42) for the vertical velocity and

obtain

∂

∂z
dp1 + b1 dt = z

(
d∇ · u0 + (dχ0,t · ∇)(∇ · u0) − (∇ · dχ0,t )(∇ · u0)

)
. (2.16)

On the right hand side, everything in the brackets is independent of the vertical coor-

dinate, so integration is particularly simple and leads to

dp1 = dζ1 − b1zdt + 1

2
z2
(
d∇ · u0 + (dχ0,t · ∇)(∇ · u0) − (∇ · dχ0,t )(∇ · u0)

)
.

(2.17)

This shows that the pressure deviates from hydrostatic balance at order σ 2, as the

pressure is a function of free surface elevation, buoyancy and horizontal velocity. The

vertical average of the horizontal gradient of the pressure above is
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d∇ p1 = ∇dζ1 + 1

2
h∇b1dt + 1

6
h2
(
d∇∇ · u0 + (dχ0,t · ∇)(∇∇ · u0) + (∇dχ0,t ) · (∇∇ · u0)

− (∇∇ · dχ0,t )(∇ · u0) − (∇ · dχ0,t )(∇∇ · u0)
)
.

(2.18)

By using the weighted incompressibility condition (2.9), the expression above can be

simplified and combined into

d∇ p1 = ∇dζ1 + 1

2
h∇b1dt +

(
d + (dχ0,t · ∇) + (∇dχ0,t ) ·

)(
1

6
h2(∇∇ · u0)

)
.

(2.19)

The following observation allows us to deal with the average of the nonlinear term.

Namely, if the leading order terms satisfy the stochastic, rotating Lake equations (2.13),

then the leading order component of the stochastic velocity field is independent of the

vertical coordinate. The higher order component of the stochastic vector field is not

independent of the vertical coordinate, though, so its average is not trivial. Hence, the

average of the full stochastic velocity field is

dχ t = dχ0,t + σ 2
dχ1,t + o(σ 2). (2.20)

From this expression, it is clear that the average of the product minus the product of

the average is a higher-order term:

dχ t ⊗ u − dχ t ⊗ u = O(σ 4). (2.21)

Therefore, by adding and subtracting the product of the average in (2.8), we can write

a closed system of equations. For notational convenience, we define

V(x, t) := u(x, t) + σ 2

6
h2∇(∇ · u) + o(σ 2), (2.22)

and use our expression for the average of the pressure (2.19) into (2.8) to write

dV + (dχ t · ∇)V + (∇dχ t ) · V = − 1

Fr2
∇dζ + 1

2
|u|2dt − s

2 Fr2
h∇bdt − 1

Ro
f ẑ × dχ t

− 1

Ro
∇(ξ i · R) ◦ dW i

t ,

db + (dχ t · ∇)b = 0.

(2.23)

The stratification parameter s is assumed to be of the same order as σ 2, the aspect ratio

squared. When the buoyancy becomes negligible, the stratification parameter tends to

zero. This removes the buoyancy from Eq. (2.23), but the nonhydrostatic pressure

terms stay. Taking the shallow water limit by letting the aspect ratio tend to zero also

removes the buoyancy contribution, since the buoyancy is linked to the aspect ratio
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in the expansions introduced in (2.15). Together with the weighted incompressibil-

ity condition (2.9) and lateral boundary condition (1.7), the set of equations (2.23)

comprises the stochastic, rotating, thermal Great Lake equations. The deterministic,

non-rotating version of these equations is presented in Camassa et al. (1996, 1997),

together with the elliptic operator that relates V and u. To solve for the pressure dζ ,

one uses the elliptic operator just mentioned, which is defined by

hV = hu +
[
−σ 2

3
∇(h3∇ · u) − σ 2

2
∇(h2u · ∇h) + σ 2

2
h2(∇ · u)∇h + σ 2h(u · ∇h)∇h

]
,

=: L(h)u.

(2.24)

This operator is positive-definite and self-adjoint since h > 0. An application of the

Lax–Milgram theorem guarantees the continuous dependence of u on V (Levermore

et al. 1996a, b). By operating with ∇ ·hL(h)−1h on the velocity equation in (2.23) and

using the weighted incompressibility condition (2.9), one finds an elliptic problem for

dζ . The Kelvin circulation theorem for the stochastic, rotating, thermal Great Lake

equations is given by

d

∮

c(dχ t )

(
V + 1

Ro
R

)
· dx = − s

2

∮

c(dχ t )

h∇b · dxdt . (2.25)

Here c(dχ t ) is any fluid loop that is being advected by the vertically averaged stochastic

vector field dχ t . The right hand side of the circulation theorem reveals that circulation

will be generated when the gradients of the buoyancy and the bathymetry are not

aligned. This term can be seen as a baroclinic torque. The proof that the rotating,

thermal, Great Lake equations satisfy this Kelvin theorem is postponed to end of the

next subsection, where we will derive the same set of equations from a variational

principle.

Remark 2.2 Note that the small aspect ratio limit σ → 0 reduces the Great Lake

equations in (2.23) to the Lake equations in (2.13). If the bathymetry is flat, then the

weighted incompressibility condition in (2.9) reduces to the usual two-dimensional

incompressibility condition. In this case, the nonhydrostatic pressure term that is part

of V vanishes and one obtains the two-dimensional version of the stochastic, rotating,

Euler equations.

2.3 Averaged Euler–Poincaré Lagrangian for Long Time: Very SmallWave Scaling

To apply vertical averaging in the Euler–Poincaré setting, we return to the dimen-

sionless Lagrangian (2.3) with boundary conditions given in (2.4). In line with the

derivation of the Great Lake equations from the Newtonian point of view above, we

assume that the horizontal velocity is independent of the vertical coordinate. This can

be guaranteed upon replacing the horizontal velocity by its vertical average. In that
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situation, the expression for the vertical velocity in terms of the horizontal velocity in

(1.42) can be integrated explicitly and we obtain as before

w = −∇ · (z + h)u = ∇ · (αζ − z)u. (2.26)

The same reasoning applies to the data vector fields, for which we obtain

ẑ · ξ3i = −∇ · (z + h)ξ i = ∇ · (αζ − z)ξ i . (2.27)

Note that in the limit α → 0, the expression on the right hand side in (2.26) and
(2.27) implies the free surface boundary condition when w and ẑ · ξ3i are evaluated
on the free surface. However, evaluation on the bottom boundary does not imply the
boundary condition (1.6) unless the weighted incompressibility condition (2.9) holds.
Substituting (2.26) into the Euler–Boussinesq Lagrangian (2.3) and replacing u by
u means that we can evaluate the vertical integral. Hence, we have the approximate
Euler–Boussinesq Lagrangian

ℓE B ≈
∫

C S

∫ αζ

−h

(
1

2
|u|2 + σ 2

2

(
(z + h)(∇ · u) + (u · ∇)h

)2 + 1

Ro
u · R − 1

Fr2
(1 + sb)z

)
dz dx dy.

(2.28)

This Lagrangian is an integral over the horizontal cross section of the domain �,

which we call C S. Evaluating the vertical integral leads to

ℓT RG N =
∫

C S

(
1

2
|u|2 + σ 2

6
η2(∇ · u)2 + σ 2

2
η(∇ · u)(u · ∇h) + σ 2

2
(u · ∇h)2 + 1

Ro
u · R

− 1

2 Fr2
(1 + sb)(η − 2h)

)
η dx dy.

(2.29)

The subscript on the Lagrangian in (2.29) stands for thermal rotating Green–Naghdi,

because the equations that this Lagrangian gives rise to are a thermal and rotating

extension to the usual Green–Naghdi equations (Green and Naghdi 1976). The incom-

pressibility constraint has been used to ensure that the expression for the vertical

velocity is valid and are thus no longer required. However, the weighted incompress-

ibility condition (2.9) must still hold; so, we introduce a new constraint to make the

total depth equal to the bathymetry. Weighted incompressibility has to be enforced via

a constraint because it affects the measure η dx dy in the Lagrangian above. The con-

straint is equivalent to saying that the free surface elevation is zero, that is, η − h = 0.

Thus, the action for the thermal rotating Great Lake equations is given by

ST RGL =
∫ t2

t1

ℓT RG N dt +
〈

1

Fr2
dπ, η − h

〉
=:

∫ t2

t1

cℓT RGL . (2.30)

The action in (2.30) has been suggestively called the thermal rotating Great Lake

action and defines the constrained thermal rotating Great Lake Lagrangian. Note that

this Lagrangian features the Hdiv Sobolev norm in the situation where the bathymetry

123



Journal of Nonlinear Science (2021) 31 :29 Page 29 of 56 29

is flat, which has interesting relations with integrable systems and geometric statistics,

as shown in Khesin et al. (2013). When the bathymetry is nontrivial, the norm is

more complicated. Here dπ is a semimartingale Lagrange multiplier, whose purpose

is to ensure that the weighted incompressibility condition holds. In order to apply the

Euler–Poincaré theorem 1.1 to this Lagrangian, we need to define the variations. By

substituting the higher order perturbation expansion (2.15) into the formulas for the

variations in the theorem, we obtain

δu dt = dv −
[
dχ t , v

]
, (2.31)

where the arbitrary vector field v is a vector field semimartingale. The variations of the

advected quantities are obtained by directly integrating the formulae for the variations

in the three-dimensional case. First we notice that the only advected quantities in this

problem are scalar functions and volume forms, which due to incompressibility, satisfy

the same form of advection equation, as we saw above in the Newtonian averaging

principle. The functional derivative and spatial derivatives commute. Hence, if u3 is

incompressible, then δu3 must be incompressible, as well. This argument implies that

the arbitrary vector field is also incompressible, which means that the constraints for

the variations of the buoyancy and the density can be shown to satisfy

δb dt = −(v · ∇)b dt,

δ

∫ αζ

−h

Ddz dt = −∇ ·
(∫ αζ

−h

Ddz v

)
dt .

(2.32)

In this paper, D = 1, so the vertical integral of D is the depth η = αζ + h, showing

that the depth η functions as a two-dimensional density; hence, its variation satisfies

δη dt = −∇ · (ηv) dt . (2.33)

In the α → 0 limit, the depth is given by the bathymetry η = h, which is the constraint

introduced to imply weighted divergence. The variations of the thermal rotating Great

Lake Lagrangian in (2.30) are

δcℓT RGL

δu
= ηu − σ 2

3
∇(η3∇ · u) − σ 2

2
∇
(
η2(u · ∇h)

)
+ σ 2

2
η2(∇ · u)∇h + σ 2η(u · ∇h)∇h + 1

Ro
ηR ,

δcℓT RGL

δη
= 1

2
|u|2 + σ 2

2
(η∇ · u + u · ∇h)2 + 1

Ro
(u · R) − 1

Fr2
(1 + sb)(η − h) − 1

Fr2
dπ,

δcℓT RGL

δb
= − s

2 Fr2
(η2 − 2ηh) ,

δcℓT RGL

δdπ
= 1

Fr2
(η − h) .

(2.34)

The variational derivative with respect to u of the thermal rotating Great Lake

Lagrangian shows that the elliptic operator that relates V and u that we encountered

in (2.24) arises naturally in the variational context upon evaluating η = h. Note that

the variational derivative with respect to η simplifies considerably upon evaluating
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η = h. The second term in the variational derivative with respect to η is the square

of the weighted incompressibility condition, which is equal to zero. Hence, this term

disappears. The fourth term in the variational derivative with respect to η vanishes

since η − h = 0. The variational derivative with respect to the buoyancy simpli-

fies. An application of the stochastic Euler–Poincaré theorem 1.1 to the Great Lake

Lagrangian in (2.30) with these variational derivatives and the variations in (2.31)

leads to the stochastic Great Lake equations (2.23), with rotation and buoyancy. For

notational convenience, let us use (2.24) to define V. Then, the thermal rotating Great

Lake equations are given by

dV+(dχ t · ∇)V+(∇dχ t ) · V=− 1

Fr2
∇dπ+ 1

2
|u|2dt − s

2 Fr2
h∇bdt − 1

Ro
f ẑ × dχ t −

1

Ro
∇(ξ i · R) ◦ dW i

t ,

db + (dχ t · ∇)b = 0,

∇ · (hdχ t ) = 0,

(2.35)

and with the boundary condition

dχ t · n = 0. (2.36)

The pressure dπ is solved for using the elliptic operator defined in (2.24). Hence,

one can make the identification π = ζ . This calculation shows that the Great Lake

equations with rotation, stratification and stochasticity can be obtained by averaging

the equations and using a perturbation series approach, or by taking a variational

approach. The results are identically equal. Since the Lagrangian framework implies

the Kelvin circulation theorem (2.25), the proof is now immediate that the circulation

theorem has the form

d

∮

c(dχ t )

(
V + 1

Ro
R

)
· dx = − s

2 Fr2

∮

c(dχ t )

h∇b · dx dt,

= − s

2 Fr2

∫ ∫

∂S=c(dχ t )

∇h × ∇b dS dt .

(2.37)

Thus, in this scaling regime, applying asymptotics to the equations implies the same

result as applying the asymptotics in the variational principle.

Remark 2.3 (Kelvin theorem result for generation of horizontal circulation). The

Kelvin circulation theorem in (2.37) shows that any misalignment of the horizontal

gradients of the bathymetry and of the vertically averaged buoyancy will generate hor-

izontal circulation in the material loop c(dχ t ) which follows the stochastic Lagrangian

flow velocity dχ t in the horizontal plane given in Eq. (1.5). The Kelvin circulation

theorem (2.37) implies an evolution equation for potential vorticity, as well.

In the next section, we will extend the comparative asymptotic expansion approach

to consider the short time-small wave limit. This extension will be accomplished by

first deriving equations using asymptotics in the Euler–Boussinesq equations and later

doing asymptotics in the Lagrangian and applying the Euler–Poincaré theorem.
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3 Short Time—Small Wave Scaling Regime

Short time corresponds to choosing the time scale to be T = L/
√

gH , the time it

takes for a gravity wave to traverse the horizontal length scale. ‘Small wave’ means

that the amplitude of the wave is small, but not small enough to consider taking the

rigid lid limit. In this setting, the scales are given by

x3 = L(x′, σ z′), u3 = U (u′, σw′), ∇3 = 1

L

(
∇ ′,

1

σ

∂

∂z′

)
, t = L√

gH
t ′, Wt =

√
L√
gH

Wt ′ ,

h = Hh′, ζ = αHζ ′, R = f0 LR′, ρ = ρ0ρ
′, dp = ρ0gHdp′,

σ = H

L
, α = ζ0

H
, Fr = U√

gH
, Ro = U

f0 L
, Sr = 1

Fr
.

(3.1)

In this scaling regime, the EB Lagrangian takes the form

ℓE B(u3, b, D) =
∫

�

D

(
1

2
|u|2 + σ 2

2
w2 + 1

Ro
u · R − 1

Fr2
(1 + b)z

)
dx dy dz,

(3.2)

so the corresponding action is given by

SE B =
∫ t2

t1

ℓE B dt −
〈

1

Fr2
dp, D − 1

〉
=:

∫ t2

t1

cℓE B, (3.3)

with boundary conditions given by

p = αζ at z = αζ(x, t),

wdt + ẑ · ξ3i ◦ dW i
t = α

(
1

Fr
dζ + (dχ t · ∇)ζ

)
at z = αζ(x, t),

wdt + ẑ · ξ3i ◦ dW i
t = −(dχ t · ∇)h at z = −h(x),

dχ t · n = 0 on lateral boundaries.

(3.4)

An application of the stochastic Euler–Poincaré theorem 1.1 on the short-time scaled

Lagrangian in (3.2) yields the following equations
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1

Fr
du + (dχ3t · ∇3)u + (∇ξ3i ) · u3 ◦ dW i

t = − 1

Fr2
∇dp − 1

Ro
f ẑ × dχ t

− 1

Ro
∇(ξ i · R) ◦ dW i

t ,

σ 2

(
1

Fr
dw + (dχ3t · ∇3)w +

( ∂

∂z
ξ3i

)
· u3 ◦ dW i

t

)
= − 1

Fr2

∂

∂z
dp − 1

Fr2
(1 + b)dt,

1

Fr
db + (dχ3t · ∇3)b = 0,

∇3 · dχ3t = 0. (3.5)

These equations satisfy the Kelvin circulation theorem, which for the Euler–

Boussinesq equations takes the form of (1.34), and also have conservation of potential

vorticity along fluid trajectories, as in (1.36), as well as conservation of an infin-

ity of integral quantities (1.37), but now the Strouhal number is explicitly given in

terms of the Froude number. In this scaling, the free surface is small rather than very

small. Hence, we will not take the limit of the Froude number going to zero explicitly.

Instead, we will introduce a regular perturbation expansion with small parameters ǫ

and γ whose magnitudes need to be determined with respect to α, Fr and σ .

u = u0 + ǫu1 + o(ǫ), w = w0 + ǫw1 + o(ǫ), ξ i = ξ0,i + ǫξ1,i + o(ǫ),

dχ t = dχ0,t + ǫdχ1,t + o(ǫ), p = p0 + γ p1 + γ 2 p2 + o(γ 2), b = sb1 + s
2b2 + o(γ 2).

(3.6)

Substitution of (3.6) into (3.5) provides equations of unknown order. By requiring

certain balances to hold, the order of the dimensionless numbers can be related to each

other. The boundary condition related to the vertical velocity at the free surface in (3.4)

implies that α = O(Fr). In the horizontal velocity equation, the leading order velocity

Fr du0 needs to be of the same order as γ∇dp1, which means that γ = O(Fr). At the

next order, Fr ǫ du1 is required to be of the same order as γ 2∇dp2, which implies that

ǫ = O(Fr). In the vertical velocity equation, we want hydrostatic balance to be broken

at O(γ 2), which means that Fr σ 2
dw0 has to be of the same order as γ 2 ∂

∂z
dp2. It also

implies for our ordering scheme that σ 2 = O(Fr). In the Boussinesq approximation,

we assumed that O(s) = O(Fr). To summarise, our ordering scheme is now fixed to

be

O(α) = O(s) = O(γ ) = O(ǫ) = O(Fr) = O(σ 2). (3.7)

3.1 Averaging of Newton’s second Law in the Short Time: SmallWave Scaling

Averaging in the Newtonian equations leads to the following vertically averaged ver-

sion of (3.5),
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1

Fr
du + 1

η
∇ · (ηdχ t ⊗ u) + (∇ξ i ) · u ◦ dW i

t = − 1

Fr2
∇dp − 1

Ro
f ẑ × dχ t

− 1

Ro
∇(ξ i · R) ◦ dW i

t ,

1

Fr
db + ∇ · (bdχ t ) = 0,

1

Fr
dη + ∇ · (ηdχ t ) = 0,

(3.8)

where dχ t is the vertical average of dχ t in equation (3.6); namely,

dχ t := dχ0,t + ǫdχ1,t + o(ǫ). (3.9)

In this part of our discussion, we will not consider a leading order expansion before

doing a higher order expansion. Instead, we work with directly with the expansion

introduced in (3.6) and use the ordering scheme (3.7) to apply single scale asymptotics.

Remark 3.1 It is possible to study the system (3.8) on its own. One can simplify the

system by dropping the Coriolis terms and assume that the flow is irrotational. The

equations (3.8) can then be written in the so-called Zakharov–Craig–Sulem formula-

tion. Alternatively, one can reformulate the system in terms of the free surface elevation

and the horizontal discharge. Both of these approaches are explained in great detail

in lecture notes by Lannes (2019). See also Lannes (2013) for a comprehensive and

complete treatment of the general water wave problem and Lannes (2005) for the

wellposedness results on the water wave problem in two and three dimensions.

At leading order in the vertical velocity equation one finds

∂

∂z
dp0 + 1 dt = 0, (3.10)

and from the horizontal velocity equation at the same order,

∇dp0 = 0, (3.11)

which implies hydrostatic balance. This information determines the leading order

pressure, upon integrating in the vertical direction, to find

dp0 = (const . − z)dt, (3.12)

for the leading order pressure. In Remark 2.1 we discussed how to deal with the

semimartingale equations when the stochasticity is absent. This allows us to compute

the expression for p0 above. The arbitrary constant is due to integration and will be

eliminated later using the boundary condition for the pressure. At the next order in the

vertical velocity equation, one finds

∂

∂z
dp1 + b1 dt = 0. (3.13)
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Vertical integration of the expression above leads to

dp1 =
(

−
∫ z

b1dz′ + ψ(x, t)

)
dt, (3.14)

where ψ(x, t) is an arbitrary function of horizontal coordinates and time, introduced

by the integration. From the horizontal velocity equation at the same order, we have

du0 = −∇dp1. (3.15)

By applying the gradient to (3.14) and taking the vertical derivative of (3.15), we can

derive a relation between the horizontal velocity field and the buoyancy,

∂

∂z
du0 = ∇b1 dt . (3.16)

From the buoyancy equation at order O(s), it is clear that b1 is independent of time.

Upon integrating (3.16) both vertically and in time, one finds

u0(x, z, t) = t

∫ z

∇b1(x, z)dz′ + u′
0(x, t) + ũ0(x, z). (3.17)

Unless ∇b1 = 0, the first term in (3.17) grows linearly in time. Consequently, we

choose the buoyancy b1 to have the following profile

b1(z) = b̃ − Sz, (3.18)

where b̃ is some constant background buoyancy and S is some O(1) positive constant.

Of course, one can choose a more complicated and more realistic dependence on the

vertical coordinate, at the cost of making some computations slightly more involved.

The first term in (3.17) now vanishes. The third term in (3.17) arose due to integration

with respect to time, hence ũ0 plays the role of the initial condition. It is also the only

term that has z-dependence. So, let us choose an initial condition which is independent

of the vertical coordinate. This choice leaves us with

u0(x, t) = u′
0(x, t) + ũ0(x). (3.19)

Hence, u0 has no vertical dependence. We can then use the incompressibility condition

(1.9) to obtain an expression for the vertical velocity as in (1.42), but now only looking

at the leading order component of this relation. This leads to

w0 = −(z + h)∇ · u0, (3.20)

provided the variations of the bathymetry are small enough. Substituting the expression

for the leading order vertical velocity into the vertical velocity equation at order O(γ 2)

yields
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− (z + h)d(∇ · u0) + ∂

∂z
dp2 + b2 dt = 0. (3.21)

From the equation above, we can determine an expression for p2. Rearranging and

taking a vertical integral yield

dp2 =
(

1

2
z2 + zh

)
d(∇ · u0) −

∫ z

b2dz′dt + ψ ′(x, t). (3.22)

Since the expressions for dp1 and dp2 in (3.14) and (3.22), respectively, involve the

unknown functions ψ(x, t) and ψ ′(x, t), we are not yet in the position to write down

the average of the pressure. By means of the dynamic boundary condition (1.8) and

the expansion for the pressure in (3.6), though, we can write

0 = [dp0 + γdp1 + γ 2
dp2 + O(γ 3)]|z=αζ dt

= (const . dt − αdζ + γ

(
−
∫ αζ

b1dz′ + ψ(x, t)

)
dt + γ 2

[(
1

2
α2ζ 2 + αζh

)
d(∇ · u0)

−
(∫ αζ

b2dz′ + ψ ′(x, t)

)]
dt + O(γ 3). (3.23)

The difference between the pressure at the free surface and elsewhere in the domain can

now be evaluated. In particular, functions that are independent of z will be eliminated

in this procedure and we are left with

dp = −z dt − αdζ + γ

∫ αζ

z

b1dz′dt

+ γ 2

[(
1

2
(z2 − α2γ 2) + (z − αγ )h

)
d(∇ · u0) +

∫ αζ

z

b2dz′dt

]
+ O(γ 3).

(3.24)

We can now determine the gradient of the pressure and collect terms that are of order

O(γ 3) or equivalent in the remainder. Since b1 does not depend on the horizontal

coordinates, the gradient of b1 vanishes and we have

∇dp = α(1 + b̃)∇dζ + γ 2

[(
1

2
z2 + zh

)
d∇(∇ · u0) +

∫ 0

z

∇b2dz′dt

]

+O(γ 3, α2γ, αγ 2), (3.25)

where the contribution of b̃ is due to the evaluation of b1 at the free surface boundary.

By taking the vertical average of the pressure gradient and switching the order of

integration on the b2 term, we obtain

∇dp = α(1 + b̃)∇dζ + γ 2

(
1

3
h2
d∇(∇ · u0) + (z + h)∇b2dt

)
+ O(γ 3, α2γ, αγ 2).

(3.26)
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At this stage, we can make a choice. We can use the averaged equation for the advection

of buoyancy (1.41), or we can use the expanded buoyancy equation and find an equation

for the evolution (z + h)∇b2. The latter choice dictates that we look at the expanded

buoyancy equation at order O(γ 2), where we have

db2 − S(z + h)(∇ · u0)dt = 0. (3.27)

Here we have used (3.18) and (3.20). By taking the gradient, then multiplying by

(z + h) and taking the average, we obtain after some algebra

d(z + h)∇b2 = S

(
1

3
h2∇(∇ · u0)

)
dt . (3.28)

Similar to the derivation of the Great Lake equations, the difference between the

average of the nonlinearity and the product of the average is of higher order, since

u0 is independent of the vertical coordinate. Therefore, we can also express u =
u0 + ǫu1 + O(ǫ2). At this stage, one follows (Camassa and Holm 1992) to introduce

the variables

A : = (z + h)∇b2,

D : = 1

3
h2∇(∇ · u),

(3.29)

and writes the following set of stochastic partial differential equations (SPDEs),

1

Fr
du + (dχ t · ∇)u + (∇ξ i ) · u ◦ dW i

t = − α

Fr2
(1 + b̃)∇dζ − Adt + dD

− 1

Ro
f ẑ × dχ t − 1

Ro
∇(ξ i · R) ◦ dW i

t ,

α

Fr
dζ + ∇ · (αζ + h)dχ t = 0,

dA = SDdt .

(3.30)

where dχ t is defined in Eq. (3.9).

Equation (3.30) comprises the stochastic version of those obtained in Camassa and

Holm (1992), provided one sets the dynamic boundary condition to p = p̃, rather

than zero.

In the special case of deterministic, irrotational motion around the quiescent state

u = 0, the covector quantities A and D form an oscillator pair which oscillates

with the Brunt-Väisälä frequency S. Also, in the deterministic case, an elimination

procedure allows one to derive the Kadomtsev–Petviashvili equation and subsequently

the Korteweg-De Vries equation for shallow water waves, as is done in Camassa and

Holm (1992). The direct approach for the derivations for water wave equations requires

the substitution of the velocity field into the free surface equation, which requires time

derivatives. In the stochastic case, however, one cannot take these time derivatives; so,
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the corresponding stochastic shallow water wave equations cannot be derived by using

SALT. If instead, one takes a pathwise approach so that at least one time derivative

can be taken, then the corresponding water-wave equations can be derived in this

framework. In the next subsection, a hierarchy of stochastic water-wave equations is

derived from the variational point of view.

The set of equations (3.30) can be solved by observing that the operator F , defined

by Fu := u− γ 2

3
h2∇(∇ ·u), is a positive definite, self-adjoint and invertible operator.

The Kelvin circulation theorem takes the following form for the equations in (3.30),

1

Fr
d

∮

c(dχ t )

(
u − D + 1

Ro
R

)
· dx

= − 1

Fr2

∮

c(dχ t )

(
(dχ t · ∇)D + (∇ξ i ) · D ◦ dW i

t − Adt
)

· dx. (3.31)

Note that besides the buoyancy term A, also transport terms show up on the right hand

side. These transport terms indicate that these fluid equations are not geometric, in

the sense that geometric fluid equations will only feature the relevant forces on the

right hand side. The reason that these transport terms appear is that strict asymptotics

sees the advection constraint (1.31) as two individual terms, rather than as two objects

that should always go together. Possibly, a multiscale analysis approach would be

able to resolve this problem. This issue is discussed extensively in Gjaja and Holm

(1996). We will resolve this issue by linking these two objects in a variational principle

for a system closely related to (3.30). First we will investigate the one-dimensional

equations related to (3.30).

3.2 Stochastic Benjamin–Bona–Mahony Equations

From the stochastic CH92 equations in (3.30), one cannot derive the stochas-

tic Kadomtsev–Petviashvili equation and further simplify to obtain the stochastic

Korteweg–De Vries equation. This is due to the fact that an elimination procedure

involving time derivatives was used. However, by restricting to one-dimensional

motion, we do obtain the stochastic versions of familiar one-dimensional water wave

models. To be able to restrict to one dimension, we ignore the effect of rotation. The

variable A is related to the buoyancy at higher order. By replacing b2 with the vertical

average b2 in the definition of A in (3.29), we can explicitly evaluate the integral. In

calculating the integral, we keep in mind that the equations are written up to order

O(γ 2). This requires us to drop the free surface terms that arise due to the vertical

integral. The equations that we obtain from (3.30) are

1

Fr
du − γ 2

3 Fr2
h2
duxx + dχ t ux + u (ξ i )x ◦ dW i

t = −α(1 + b̃)dηx − γ 2

2
h2(b2)x dt,

1

Fr
dη + (η dχ t )x = 0,

1

2
h2
db2 = S

3
h2uxx dt .

(3.32)
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The set of equations given by (3.32) can be interpreted as a non–unidirectional, stochas-

tic version of the Benjamin–Bona–Mahony (BBM) equation, first derived in Benjamin

et al. (1972), that includes the effects of depth and buoyancy stratification. Since this

set (3.32) consists of three equations, we will refer to this set as BBM3. Upon ignor-

ing the effect of buoyancy stratification, we will obtain the two component version of

BBM3, which we will call BBM2. This set of equations is given by

1

Fr
du − γ 2

3 Fr2
h2
duxx + dχ t ux + u (ξ i )x ◦ dW i

t = −α(1 + b̃)dηx ,

1

Fr
dη + (η dχ t )x = 0,

(3.33)

The two component version (3.33) still is affected by the variations of the free surface.

We assume that the bathymetry is flat, which means that we let h �→ h0 and h0 is

constant in space and in time. We also assume that the free surface elevation is zero.

These assumptions lead to the stochastic BBM equation, given by

1

Fr
du − γ 2

3 Fr2
h2

0duxx + dχ t ux + u (ξ i )x ◦ dW i
t = 0. (3.34)

Upon including linear wave speed in formulation of (3.34) and ignoring stochasticity,

we arrive at the celebrated BBM equation (Benjamin et al. 1972),

1

Fr
ut − γ 2

3 Fr2
h2

0uxxt + u ux + κux = 0. (3.35)

Here κ is a positive constant that enforces unidirectionality. The deterministic unidi-

rectional BBM equation (3.35) is similar in shape to the Korteweg–De Vries equation,

but is not completely integrable. Next, we consider the averaging procedure in this

section from the Euler–Poincaré perspective.

3.3 Averaged Euler–Poincaré Lagrangian for Short Time: SmallWave Scaling

In the previous section, we used direct asymptotics to derive the stochastic version

of the equations in Camassa and Holm (1992). These equations failed to satisfy the

Kelvin circulation theorem in a reasonable form. This difficulty will be overcome in

the Euler–Poincaré approach, because the variational approach is able to cope with

arbitrary Strouhal number. The starting point is the thermal rotating Green–Naghdi

Lagrangian in (2.29). This time, we are not interested in the rigid lid limit, so our

action is given by

ST RG N =
∫ t2

t1

ℓT RG N dt . (3.36)

We will now take variations in much the same way as done for the Great Lake equations

in the Euler–Poincaré approach. However, there is a crucial difference. In the present
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scaling regime, the Strouhal number Sr is not equal to unity. Instead, we have Sr =
1/Fr, which is the inverse Froude number. Consequently, in the present case, the

Euler–Poincaré variations of the velocities are taken as,

δu dt = Sr dv − [dχ t , v] = 1

Fr
dv − [dχ t , v]. (3.37)

The averaging has already occured in deriving the Lagrangian (2.29), where the

Strouhal number does not explictly appear. In the variational approach, the Strouhal

number appears in the variation of the velocity field. We stick with the Sr notation

to show the flexibility that one has with the variational approach. By selecting the

value of the Strouhal number later, the results of the previous section can be recovered

by truncating higher order terms. The variational derivatives of the nondimensional

Lagrangian ℓr tG N in equation (2.29) are the following:

δℓT RG N

δu
= ηu − σ 2

3
∇(η3∇ · u) − σ 2

2
∇
(
η2(u · ∇h)

)
+ σ 2

2
η2(∇ · u)∇h + σ 2η(u · ∇h)∇h + 1

Ro
ηR ,

δℓT RG N

δη
= 1

2
|u|2 + σ 2

2
(η∇ · u + u · ∇h)2 + 1

Ro
(u · R) − 1

Fr2
(1 + sb)(η − h) − 1

Fr2
dπ,

δℓT RG N

δb
= − s

2 Fr2
(η2 − 2ηh) ,

(3.38)

For notational convenience, we define

hV = hu +
[
−σ 2

3
∇(η3∇ · u) − σ 2

2
∇(η2u · ∇h) + σ 2

2
η2(∇ · u)∇h + σ 2η(u · ∇h)∇h

]
.

(3.39)

In the rigid lid case, one recovers (2.24). A careful application of the Lax–Milgram

theorem is able to show that u depends continuously on V. Using this notation, an

application of the stochastic Euler–Poincaré theorem 1.1 with the velocity variations

given in (3.37) and the variational derivatives in (3.38) of the Lagrangian ℓT RG N in

(2.29) yields the following SPDEs,

Sr dV + (dχ t · ∇)V + (∇dχ t ) · V = − α

Fr2
∇
(
(1 + sb)ζ

)
dt + 1

2
∇|u|2dt + σ 2

2
∇(η∇ · u + u · ∇h)2 dt

+ s

2 Fr2
(αζ − h)∇b dt − 1

Ro
f ẑ × dχ t

− 1

Ro
∇(ξ i · R) ◦ dW i

t ,

Sr αdζ + ∇ ·
(
(αζ + h)dχ t

)
= 0,

Sr db + dχ t · ∇b = 0.

(3.40)

where dχ t is defined in equation (3.9). It is useful to note that η−1δℓT RG N /δb =
(s/2)(η−2h) = (s/2)(αζ −h), since η = αζ +h. These equations do satisfy a Kelvin
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circulation theorem, as they have been derived from the Euler–Poincaré variational

principle. The circulation theorem takes the following form

Sr d

∮

c(dχ t )

(
V + 1

Ro
R

)
· dx =

∮

c(dχ t )

s

2 Fr2
(αζ − h)∇b · dx

=
∫ ∫

∂S=c(dχ t )

s

2 Fr2
∇(αζ − h) × ∇b · dS dt .

(3.41)

As expected from equations (1.20) and (1.34) for the Kelvin circulation theorem

which follows from the Euler–Poincaré equation (1.15) in three dimensions, circula-

tion is created by misalignment of the gradients of vertically averaged buoyancy b and

its dual quantity η−1δℓT RG N /δb, for the thermal rotating Green–Naghdi Lagrangian

in equation (2.29). This is a balanced statement, because gradients of the bathymetry

are assumed to be small. Interestingly, the misalignment of the gradient of vertically

averaged buoyancy b and the difference (αζ − h) generates horizontal circulation

(vertical vorticity). This represents a barotropic mechanism for cyclogenesis (emer-

gence of horizontal circulation, or eddies) in the ocean. The dispersion relation that

corresponds to the linearised, deterministic version of equations (3.40) is discussed

in Appendix A. A Kelvin circulation theorem similar to that in (3.41) holds for the

thermal rotating shallow water (TRSW) equations, as discussed in Appendix B.

Remark 3.2 (Comparison with JEBAR for ocean currents). For the deterministic case,

one replaces c(dχ t ) → c(u) and the circulation theorem in (3.41) recalls an aspect of

the JEBAR (Joint Effect of Baroclinicity and Bottom Relief) approach for modelling

the dynamics of ocean currents (Sarkisyan and Ivanov 1971; Cane et al. 1998; Mellor

1999; Sarkisyan 2006; Colin de Verdière and Ollitrault 2016). Namely, the creation

of circulation in (3.41) occurs when the gradients of certain fluid properties are not

aligned with the gradient of the bottom topography, ∇h(x).

There are also may differences of (3.41) from JEBAR. In particular, the circulation

dynamics in (3.41) represents Kelvin’s theorem as derived from a vertically aver-

aged and asymptotically expanded Hamilton’s principle for Euler’s fluid equations

for the stochastic dynamics of an incompressible, thermal, rotating fluid flow with a

free upper surface moving under the influence of gravity. Nonetheless, many of the

physical principles underlying the derivation of (3.41) also relate to principles which

could be applied in the oceanographic setting for JEBAR. Hence, it may be advis-

able to investigate the utility of the present stochastic, asymptotic, vertically averaged

variational approach for some applications in oceanography.

Potential vorticity. In the circulation theorem for the rotating, thermal, Great Lake

equations in equation (2.25), the circulation is generated by the misalignment between

the horizontal gradient of the bathymetry and the horizontal gradient of the buoyancy.

Here, we have seen that the misalignment of horizontal gradients of the free surface

height with the horizontal gradient of the buoyancy also contributes to the generation

of circulation. In terms of the potential vorticity given by

q := η−1
(
ẑ · ∇ × (V + Ro−1R)

)
, (3.42)
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the generation of circulation is accompanied by the following

Sr dq + (dχ t · ∇)q = s

2Fr2η
ẑ · ∇(αζ − h) × ∇b. (3.43)

This shows that PV will also be generated by this misalignment of horizontal gradi-

ents. Equations (3.40) also possess an infinity of conserved integral quantities of the

following form

C f ,g =
∫

C S

(
f (b) + qg(b)

)
η dxdy, (3.44)

for arbitrary differentiable functions f , g and for boundary conditions dχ t · n = 0,

∇b × n = 0. Invariance of the vertically averaged buoyancy b as it is advected along

the tangential stochastic flow on the boundary is consistent with the latter condition,

which requires the boundary to be a level set of b. This can be shown by means of a

direct computation using the equations of motion and the boundary conditions.

3.4 Stochastic Camassa–Holm Equations

This section considers a sequence of reductions of the Lagrangian ℓT RG N (u, η, b) in

equation (2.29) in one spatial dimension which will eventually lead to the stochastic

Camassa–Holm (CH) equation, considered in Holm and Tyranowski (2016), Crisan

and Holm (2018)

Sr dm +
(
m∂x + ∂x m

)
dχt = 0 . (3.45)

In one dimension, we assume a flat bathymetry profile h0 and ignore the effect of

rotation. Applying these approximations to the thermal Green–Naghdi Lagrangian

ℓT RG N (u, η, b) in equation (2.29) yields the following Lagrangian at order O(σ 2),

ℓC H3 =
∫ ∞

−∞

(
1

2
u2 + σ 2

6
η2u2

x − 1

2 Fr2
(1 + sb)(η − 2h0)

)
η dx, (3.46)

where we have completed the square on the potential energy term. The domain of

flow is taken to be the entire real line, rather than a compact line between two lateral

boundaries as illustrated in Fig. 2. Boundary conditions on the real line require the

vertically averaged velocity u and its horizontal spatial derivative ux to vanish in the

limit |x | → ∞. The variational derivatives of the Lagrangian ℓC H3 in (3.46) are given

by
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m := δℓC H3

δu
= ηu − σ 2

3
(η3ux )x ,

δℓC H3

δη
= 1

2
u2 + σ 2

2
η2u2

x − 1

Fr2
(1 + sb)(η − h0),

δℓC H3

δb
= − s

2 Fr2
(η2 − 2ηh0).

(3.47)

An application of the stochastic Euler–Poincaré theorem 1.1 then leads to the following

set of three stochastic equations

Sr dm +
(
m∂x + ∂x m

)
dχ t = − 1

Fr2
η
(
(1 + sb)(η − h0)

)
x

dt + s

2 Fr2
(η2 − 2ηh0)bx dt

+ η

(
1

2
u2 + σ 2

2
η2u2

x

)

x

dt,

Sr dη + (η dχ t )x = 0,

Sr db + dχ t bx = 0.

(3.48)

The set of equations (3.48) defines the three-component stochastic Camassa–Holm

system (CH3). The stochastic evolution equation for momentum m includes the effects

of varying depth and horizontal variations of the buoyancy. There follows a continuity

equation for depth, η, and a scalar advection equation for buoyancy, b.

Remark 3.3 (Is the deterministic CH3 case completely integrable?). An investigation

is underway elsewhere to determine whether the Lie–Poisson Hamiltonian system of

CH3 equations in (3.48) is completely integrable in the deterministic case, where it

simplifies to

Sr ∂t m +
(
m∂x + ∂x m

)
u = − 1

Fr2
η
(
(1 + sb)(η − h0)

)
x

+ s

2 Fr2
(η2 − 2ηh0)bx

+ η

(
1

2
u2 + σ 2

2
η2u2

x

)

x

,

Sr ∂tη + (η u)x = 0,

Sr ∂t b + u bx = 0.

(3.49)

We proceed farther now in the stochastic case by assuming that the vertically

averaged buoyancy b is constant in both space and time, so that we may replace

b(x, t) �→ b0; a constant, or equivalently, by letting the stratification parameter tend

to zero, s → 0. Under this assumption, the Lagrangian ℓC H3 simplifies, since the

buoyancy term no longer contributes to the dynamics, and we arrive at the following

Lagrangian ℓC H2 for the stochastic two component Camassa–Holm (CH2) system:

ℓC H2 =
∫ ∞

−∞

(
1

2
u2 + σ 2

6
η2u2

x − 1

2 Fr2
(η − 2h0)

)
η dx . (3.50)

123



Journal of Nonlinear Science (2021) 31 :29 Page 43 of 56 29

The variational derivatives of the Lagrangian ℓC H2 in (3.50) are given by

m := δℓC H2

δu
= ηu − σ 2

3
(η3ux )x ,

δℓC H2

δη
= 1

2
u2 + σ 2

2
η2u2

x − 1

Fr2
(η − h0).

(3.51)

An application of the stochastic Euler–Poincaré theorem 1.1 with these variational

derivatives yields the following motion equation and advection law,

Sr dm + (m∂x + ∂x m)dχ t = − 1

Fr2
ηηx dt + η

(
1

2
u2 + σ 2

2
η2u2

x

)

x

dt,

dη + (η dχ t )x = 0.

(3.52)

The set of equations (3.52) is closely related to the stochastic two component Camassa–

Holm (CH2) system. The difference is that the usual CH2 system does not include the

kinetic energy term, that is, the last term in on the right hand side of the momentum

equation in (3.52). Moreover, the definition of the momentum variable m in (3.51)

features an η3-weighted Helmholtz operator, whereas in the usual CH2 equations, the

Helmholtz operator does not include a weight. In the deterministic case, this set of

equations is a completely integrable Hamiltonian system, as shown first by Chen et al.

(2006).

Finally, we will assume that the free surface elevation in the CH2 Lagrangian ℓC H2

in (3.50) is negligible. This assumption neglects the potential energy term in ℓC H2,

which then reduces to

ℓC H =
∫ ∞

−∞

(
1

2
u2 + σ 2

6
h2

0u2
x

)
h0 dx . (3.53)

The variation of the CH Lagrangian (3.53) with respect to the velocity u yields

m := δℓC H

δu
= h0u − σ 2

3
h3

0uxx (3.54)

An application of the stochastic Euler–Poincaré theorem 1.1 then implies the SPDE,

Sr dm +
(
m∂x + ∂x m

)
dχ t = 0. (3.55)

Equation (3.55) is the dispersionless stochastic Camassa–Holm equation, whose sin-

gular ‘peakon’ solutions have been studied in Holm and Tyranowski (2016); Crisan

and Holm (2018). Including cubic linear dispersion in the stochastic Camassa–Holm

equation yields

Sr dm +
(
m∂x + ∂x m + γ ∂3

x

)
dχ t = 0 . (3.56)
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The solution properties of this equation has been studied in Holm and Tyranowski

(2016); Bendall et al. (2019). When terms of order O(σ 2) are neglected in equation

(3.56), it reduces further to the stochastic KdV equation,

Sr du +
(
u∂x + ∂x u + γ ∂3

x

)
dχ t = 0 , (3.57)

which has been studied in Woodfield (2019). The deterministic CH equation was first

derived in Camassa and Holm (1993); Camassa et al. (1994), by using asymptotics

on the Hamiltonian side. Here, the stochastic CH equation has been derived by means

of asymptotics in the Lagrangian for the rotating, thermal, Green–Naghdi equations

(2.29) followed by applying the stochastic Euler–Poincaré theorem to the approxi-

mated Lagrangian at a variety of levels.

3.5 Differences Between the Newtonian andVariational Approaches

There are several striking differences between the equations that one derives from

the Newtonian approach and from the Euler–Poincaré approach, as illustrated with

underbraces below. The most important difference is that the time derivative of D

no longer appears explicitly in the equations above. Instead, the dynamical variable

V appears naturally, as it did for the Great Lake equations in (2.25). The pressure

and the buoyancy term also take slightly different forms. The averaged equations (3.8)

indicate that the usage of the buoyancy equation is natural. In the Newtonian approach,

the buoyancy only has dynamics at order σ 4, since b1 was calculated explicitly and

shown only to depend on the vertical coordinate. This explains the sole appearance

of b2 in the buoyancy equation. In the variational approach, we do not calculate the

explicit profile of b1, but instead we introduce a vertically averaged buoyancy in the

Lagrangian. This means that the buoyancy is still allowed to vary horizontally, which

can be seen in the equation for the buoyancy. The effect of the horizontal dependence

of the buoyancy is important for the generation of horizontal circulation, as noticed

in (3.41). Below we have expressed the two sets of equations in terms of the same

variables so that the differences and similarities are clear.

CH92 equations:

1

Fr
du − σ 2

3 Fr
h2
d∇(∇ · u) + (dχ t · ∇)u + (∇dχ t ) · u

= − α

Fr2
∇
(
(1 + b̃)ζ

)
dt + 1

2
∇|u|2dt − (z + h)∇b2 dt

− 1

Ro
f ẑ × dχ t − 1

Ro
∇(ξ i · R) ◦ dW i

t ,

α

Fr
dζ + ∇ ·

(
(αζ + h)dχ t

)
= 0,

d(z + h)∇b2 = S

3
h2∇(∇ · u)dt .

(3.58)
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Thermal rotating Green–Naghdi equations:

hV = hu +
[
−σ 2

3
∇(η3∇ · u) −σ 2

2
∇(η2u · ∇h) + σ 2

2
η2(∇ · u)∇h + σ 2η(u · ∇h)∇h

]
,

Sr dV + (dχ t · ∇)V + (∇dχ t ) · V = − α

Fr2
∇
(
(1 + sb)ζ

)
dt + 1

2
∇|u|2dt + σ 2

2
∇(η∇ · u + u · ∇h)2 dt

+ s

2 Fr2
(αζ − h)∇b dt − 1

Ro
f ẑ × dχ t − 1

Ro
∇(ξ i · R) ◦ dW i

t ,

Sr αdζ + ∇ ·
(
(αζ + h)dχ t

)
= 0,

Sr db + dχ t · ∇b = 0.

(3.59)

where dχ t is defined in equation (3.9). Evaluating the Strouhal number Sr = 1
Fr

and

truncating at order O(1) in (3.59) provides the following set of equations

1

Fr
du − σ 2

3 Fr
h2

d∇(∇ · u) + (dχ t · ∇)u + (∇dχ t ) · u

= − α

Fr2
∇
(
(1 + sb)ζ

)
dt + 1

2
∇|u|2dt + s

2 Fr2
(αζ − h)∇b dt

− 1

Ro
f ẑ × dχ t − 1

Ro
∇(ξ i · R) ◦ dW i

t ,

α

Fr
dζ + ∇ ·

(
(αζ + h)dχ t

)
= 0,

1

Fr
db + dχ t · ∇b = 0.

(3.60)

There are still some differences between (3.58) and (3.60). In the variational approach,

we introduce the vertically averaged buoyancy which gives rise to terms that create

horizontal circulation, rather than introducing an explicit profile. The original CH92

equations in (3.58) were derived in Camassa and Holm (1992) by applying verti-

cal averaging and strict asymptotics in the unapproximated equations in the form of

Newton’s force law for the fluid. Asymptotics in Strouhal number breaks the Kelvin

circulation theorem. The thermal rotating Green–Naghdi equations in (3.59) have the

following advantages over the CH92 equations

1. They introduce a dynamical equation for the vertically averaged buoyancy, b;

2. The dynamics of the vertically averaged buoyancy, b, contributes to the pressure

terms;

3. They restore the Kelvin circulation theorem seen in equation (3.40);

4. They reveal a barotropic mechanism for horizontal circulation (cyclogenesis), as

seen in equation (3.40); and

5. They allow for a hierarchy of Camassa–Holm equations to be derived, see Secti. 3.4.

4 Conclusion

Summary. This paper has extended the work of Camassa and Holm (1992) and

Camassa et al. (1996, 1997) by casting it into the framework of Hamilton’s varia-
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tional principle and including the multi-time effects of the Strouhal number and the

barotropic effects of vertically integrated buoyancy with horizontal gradients. As a

result, a variety of new terms representing new effects relative to Camassa and Holm

(1992) and Camassa et al. (1996, 1997) have appeared in the resulting equations. For

example, in the variational CH92 equations (3.40) written in Kelvin circulation form

in (3.41) one sees how horizontal circulation (convection) is generated by an mis-

alignment of horizontal gradient of vertically averaged buoyancy with the horizontal

gradients of bathymetry and/or surface elevation.

Having extended the earlier work of Camassa and Holm (1992) and Camassa et al.

(1996, 1997) in a variational setting and expressed the results in Kelvin circulation

form, the paper has also taken advantage of the variational framework of Holm (2015)

to include the effects of stochastic advective Lie transport (SALT). Including the

effects of SALT introduces a new capability to quantify the uncertainty and then

use data assimilation to reduce the uncertainty of the solutions of these equations

due to unmodelled, or unresolved effects. A protocol for doing this has been been

developed in Cotter et al. (2018, 2019a, b). This protocol regards SALT as a type of

‘informed randomness’ described by spatially correlated noise obtained from observed

or simulated high-resolution data. This protocol may be applied to the present class of

fluid equations. In order to reduce the investigation of these equations to their simplest

form, the paper has derived the unidirectional version of the equation set in (3.40) in

the variational setting. This reduction has yielded stochastic versions of a family of

CH equation, including the one derived in Camassa and Holm (1993); Camassa et al.

(1994). These stochastic CH equations describe the interaction of solitons with noise.

The first developments in this direction for the stochastic CH equation have already

been studied in Holm and Tyranowski (2016, 2018), Crisan and Holm (2018) and

Bendall et al. (2019).

Two diagrams sketched below provide ‘roadmaps’ of the two routes of simplifica-

tion we have taken in this paper by using asymptotic expansions in the various small

parameters for the ordering scheme in equation (3.7). The Newtonian approach is

shown in Fig. 3. The corresponding road map for the variational approach is shown in

Fig. 4.

In Sect. 1, we investigated whether the SALT approach was compatible with the

asymptotic expansions. It was shown that an additional assumption on the magnitude

of the gradient of the bathymetry was required for the SALT version to be consistent

with the deterministic situation. Except for this additional assumption, SALT was

verified to be compatible with the methods of asymptotic analysis. From the variational

point of view, this was to be expected. Any fluid model which has a corresponding

Lagrangian can be made stochastic with the approach of Holm (2015). However,

boundary conditions need to be made consistent with the derivation of the equations. A

simpler, but also important ‘sanity check’ was passed, by confirming that the stochastic

Lake and Great Lake equations successfully recover the deterministic Lake and Great

Lake equations when the noise terms are absent.

In Sect. 2, we showed that the Great Lake equations in (2.25) may be derived using

a direct approach, by combining vertical averaging of the nondimensional Euler–

Boussinesq equations with asymptotic analysis in a long time - very small wave scaling

regime. The resulting averaged equations can be closed. One may also derive the same
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Fig. 3 Diagram of derivations from the direct (or Newtonian) point of view. Each blue box refers to the set

of equations that corresponds to the model referred to in the box. Clicking on the box will take the reader to

the corresponding section. Above each arrow is the approximation that is necessary to transition from one

set of equations to the next. Note that the short time-small wave approximation does not lead to rotating

thermal Green–Naghdi, but to the CH92 equations. These lead to Benjamin-Bona-Mahony type equations

when restricted to one-dimensional motion. The rotating, stratified Euler equations are not linked because

these equations have not been written down in this document

Fig. 4 Diagram of derivations from the variational point of view. Each blue box refers to the Lagrangian

that corresponds to the model referred to in the box. By clicking on the box the reader is taken to the

corresponding section. Above each arrow is the approximation that is necessary to transition from one

Lagrangian to the next
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equations by vertically averaging the Lagrangian and applying the Euler–Poincaré the-

orem. In both situations, an averaging principle is required which respects the boundary

conditions for the Euler–Boussinesq equations. The road map of these derivations is

sketched on the right-hand branches of Figs. 3 and 4.

In Sect. 3, we worked in a short time - small wave scaling regime, following the left-

hand branches of Figs. 3 and 4. In this scaling regime, the Strouhal number does not

equal unity. Instead, the Strouhal number is the inverse of the Froude number, which

was taken to be small in this scaling regime. Consequently, the material derivative was

no longer balanced in the asymptotic expansion. Because of this imbalance, the direct

asymptotic expansion approach failed to derive the rotating thermal Green–Naghdi

equations in this scaling regime. However, the variational approach was able to take an

arbitrary Strouhal number into account. In this scaling regime, the variational approach

provided a set of equations reminiscent of the Green–Naghdi equations, and which

had the geometric structure required to possess a Kelvin circulation theorem. Thus, the

Strouhal number played a crucial role in determining the differences between the direct

approach and the variational approach in the short time - small wave scaling regime. In

addition, by further approximating the asymptotic expansion of the wave Lagrangian

in Hamilton’s principle, in Sect. 3.4 we derived several stochastic variants of the

Camassa–Holm equation and the Korteweg–de Vries equation for one-dimensional

unidirectional propagation. Finally, in Sect. 3.5 we discussed the differences between

the Newtonian and variational approaches in this scaling regime by making a detailed

comparison of the equations and explaining the implications of the additional terms

in the variational approach which were missing in the direct approach.

4.1 Outlook and Open Problems:What to Do?

This paper has integrated several methodologies into a research framework for investi-

gating the various effects of wave–current interaction in thermal shallow water flows.

Several methodologies were required because wave–current interaction involves sev-

eral elements. Different time scales exist for flow and wave propagation, as indicated

by the different regimes of Strouhal number. This means that simultaneous interactions

take place among various physical effects with different times scales. For example,

we have seen that nonlinear interactions arise among advective transport, dispersive

nonlinear wave propagation, stratification and generation of circulation in the inter-

play of waves, topography and stratification. This is not to even mention the effects of

shear on the propagation of waves and the effects of wave perturbations on unstable

flow equilibria.

Because of these various interacting elements, modelling the wave–current inter-

action process involves many uncertainties. These uncertainties arise from the

combination of incomplete sparse observations and the ‘irreducible imprecision’ of

numerical simulations arising because of under-resolution and the wide variety of

choice in numerical simulation algorithms. In the hopes of providing a methodology

for systematically quantifying these uncertainties, this paper has introduced stochas-

tic advection by Lie transport (SALT) in the derivation of the various new equations

arising in the ramifications of the asymptotic expansions studied here. We believe that
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the SALT approach could eventually be made useful for stochastic parameterisation

and uncertainty quantification of wave–current interaction, for example, in describ-

ing the effects of sub-mesoscale unresolved ocean dynamics on the larger, slower,

resolvable oceanic flow. Combined with judicious data assimilation approaches based

on the earlier work of Cotter et al. (2018, 2019a, b), one can hope that in some cases

these uncertainties may even be reduced. The progress made here suggests that further

pursuit of the SALT approach for stochastic parameterisation may soon be fruitful in

the context of wave–current interaction of dispersive nonlinear waves in shallow water

with horizontal buoyancy gradients. In the mean time, the present paper has combined

asymptotic expansions and vertical averaging with the stochastic variational frame-

work to formulate the SALT approach for the various thermal shallow water equations

which descend from Euler’s three-dimensional fluid equations under approximation

by asymptotic expansions and vertical averaging.
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A Linear Dispersion Relations for Deterministic Equilibria of
Green–Naghdi Equations

In the coupled set of stochastic Green–Naghdi equations (3.40), there are no time-

independent solutions. That is, there are no equilibria in the presence of noise. Hence,

in order to investigate the wave behaviour of the solutions of these equations near a

steady state, we must switch off the noise and investigate the equilibria of the deter-

ministic equations. By writing the equations in componentwise form, assuming that

the bathymetry h0 is flat and assuming that the Coriolis parameter f0 is constant,

linearising around (u, v, ζ, b) = (0, 0, 0, 0) yields a set of equations with constant
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coefficients, given by

1

Fr
ut − σ 2

3 Fr
h2

0uxxt = − α

Fr2
ζx − σ 2

2Fr2
h0bx + f0

Ro
v,

1

Fr
vt − σ 2

3 Fr
h2

0vyyt = − α

Fr2
ζy − σ 2

2Fr2
h0by − f0

Ro
u,

1

Fr
ζt = −h0(ux + vy),

1

Fr
bt = 0.

(3.1)

We can now substitute the travelling wave Ansatz (u, v, ζ, b) = (u0, v0, ζ0, b0)e
i(k·x−ωt)

into (3.1). Standard procedures in linear algebra then imply the dispersion relation as

the roots of a quartic polynomial; namely,

ω(k) = 0,

ω(k) = ±

√√√√√
Fr2 f 2

0

Ro2 + αh0|k|2 + 2ασ 2h3
0

3
k2l2

1 + σ 2h2
0

3
|k|2 + σ 4h4

0
9

k2l2

.
(3.2)

In the dispersion relation, ω(k), the quantity k = (k, l) is the wave vector in

two horizontal dimensions. The zero frequency dispersion relation corresponds to

geostrophically balanced motion; uniform in time. When the aspect ratio goes to zero

the second expression for the frequency yields dispersion relation for inertio-gravity

(or Poincaré) waves. At high wave numbers, the wave oscillation frequency tends to

a limiting constant; regularised by nonhydrostatic dispersion.

Upon further restricting to one-dimensional motion without rotation, the dispersion

relation (3.2) takes the form

ω(k) = 0,

ω(k) = ±
√

αh0k√
1 + σ 2h2

0
3

k2

,
(3.3)

and we can compute the phase velocity vp = ω/k and the group velocity vg = dω/dk

to be

vp(k) = ±
√

αh0√
1 + σ 2h2

0
3

k2

,

vg(k) = ±
√

αh0

(1 + σ 2h3
0

3
k2)3/2

.

(3.4)

Equation (3.4) shows the dispersion of shallow water waves, as excitations of longer

wavelength travel faster than excitations of shorter wavelength.
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B The Stochastic Thermal Rotating ShallowWater (TRSW)Model

The thermal rotating shallow water (TRSW) model describes an upper active layer of

fluid motion with horizontally varying buoyancy and an inert lower layer. The TRSW

model is an extension of the RSW model and a simplification of the various models we

have discussed in the text. This TRSW model comprises an upper active layer of fluid

motion with horizontally varying buoyancy and an inert lower layer. Since the lower

layer is inert, the TRSW model is sometimes called a 1.5 layer model (Warneford

and Dellar 2013). For a discussion of a fully multilayer model with nonhydrostatic

pressure, see Cotter et al. (2010).

The TRSW equations are expressed using the following definition for the (nonneg-

ative) buoyancy b(x, t) = (ρ̄ −ρ(x, t))/ρ̄, where ρ is the (time and space dependent)

mass density of the active upper layer, ρ̄ is the uniform mass density of the inert lower

layer. We let η = η(x, t) be the thickness of the active layer, where x = (x, y) is the

horizontal vector position, and t is time. The nondimensional deterministic TRSW

equations are

D

Dt
u + 1

Ro
f ẑ × u + 1

Fr2
∇(bζ ) − 1

2 Fr2
(ζ − h)∇b = 0 ,

∂η

∂t
+ ∇ · (ηu) = 0 ,

Db

Dt
= 0 , (3.1)

with notation Ro for Rossby number and the standard advective time derivative D
Dt

=
∂t + u · ∇. The boundary conditions are

n · u = 0 and n × ∇b = 0 , (3.2)

meaning that fluid velocity u is tangential and buoyancy b is constant on the boundary

of the domain of flow.

Upon introducing the following stochastic vector field in R
2 for fluid transport

dχ t := u(x, t)dt +
M∑

i=1

ξ i (x) ◦ dW i
t , (3.3)

we can derive the stochastic TRSW equations. The deterministic equations in (3.1)

follow as Euler–Poincaré equations for the action integral

S =
∫ T

0

ℓT RSW (u, η, b)

dt =
∫ T

0

∫

C S

(
1

2
|u|2 + 1

Ro
u · R(x) − 1

2 Fr2
b(η − 2h)

)
η dx dy dt ,

(3.4)

where C S denotes the horizontal cross-section. The stochastic TRSW equations are

derived by first evaluating the variational derivatives for the Lagrangian in the action

123



29 Page 52 of 56 Journal of Nonlinear Science (2021) 31 :29

integral (3.4) as

1

η

δl

δu
= u + 1

Ro
R(x) =: V(x, t),

δl

δη
= 1

2
|u|2 + 1

Ro
u · R(x) − 1

Fr2
b(η − h),

δl

δb
= − 1

Fr2
(η2 − 2ηh).

(3.5)

Next, we apply the stochastic Euler–Poincaré theorem 1.1 with the variational deriva-

tives as above and obtain

du + (dχ t · ∇)u + (∇ξ i ) · u ◦ dW i
t = − 1

Fr2
∇(bζ ) dt + 1

2 Fr2
(ζ − h)∇b dt − 1

Ro
f ẑ × dχ t

− 1

Ro
∇(ξ i · R) ◦ dW i

t ,

dη + ∇ · (ηdχ t ) = 0,

db + (dχ t · ∇)b = 0.

(3.6)

In (3.6), we used ζ = η − h for the free surface elevation.

Remark A The stochastic Euler–Poincaré equation may be written in three-dimensional

vector notation as,

d

(1

η

δl

δu

)
− dχ t × curl

(1

η

δl

δu

)
+ ∇

(
dχ t · 1

η

δl

δu
− δl

δη
dt
)

+ 1

η

δl

δb
∇b dt = 0 .

(3.7)

For the Lagrangian in (3.4) with variational derivatives given in (3.5) the stochastic

Euler–Poincaré equation in (3.7) implies

dV − dχ t × curl V + ∇
(

V · ξ i (x) ◦ dW i
t

+1

2
|u|2 dt

)
+ 1

Fr2
∇(bζ ) dt − 1

2 Fr2
(ζ − h)∇b dt = 0 . (3.8)

Remark B The stochastic TRSW equations (3.6) imply the following Kelvin circula-

tion law

d

∮

c(dχ t )

1

η

δl

δu
· dx = −

∮

c(dχ t )

1

η

δl

δb
∇b · dx , (3.9)

where c(dχ t ) is a closed loop moving with stochastic horizontal fluid velocity

dχ t (x, t) in two dimensions. Evaluating for the variational derivatives for TRSW
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in (3.5) yields

d

∮

c(dχ t )

V · dx = 1

2 Fr2

∮

c(dχ t )

(ζ − h)∇b · dx

= 1

2 Fr2

∫ ∫

∂S=c(dχt )

∇(ζ − h) × ∇b dS dt . , (3.10)

One sees in equation (3.10) that misalignment of the horizontal gradients of free

surface elevation ζ , bathymetry h and buoyancy γ 2 will generate circulation, cf. the

corresponding Kelvin circulation theorems in equations (2.37) and (3.41).

Remark C The evolution of potential vorticity on fluid parcels for the TRSW equations

in (3.6) is given by

dq + (dχ t · ∇)q = 1

2 Fr2 η
J (η, b), (3.11)

where the potential vorticity is defined by

q := ̟

η
, and ̟ := ẑ · ∇ × V, (3.12)

and

J (η, b) = ẑ · ∇η × ∇b = −∇ · (ηẑ × ∇b) (3.13)

is the Jacobian of the depth η.

Remark D The stochastic TRSW equations (3.6) have an infinite number of conserved

integral quantities

C f ,g =
∫

C S

(
f (b) + qg(b)

)
η dxdy, (3.14)

for the boundary conditions given in (3.2) and any differentiable functions f and g.

Remark E The Legendre transform which determines the Hamiltonian dh for the

stochastic TRSW equations is defined as 1

dh(μ, η, b) :=
〈
μ,dχ t

〉
− ℓT RSW (u, η, b)dt , (3.15)

in which the angle brackets in the definition of the Legendre transform denote the L2

pairing over the horizontal cross-section C S. The Hamiltonian form of the stochastic

1 Notice that the Hamiltonian dh in (3.15) is a semimartingale. Recall the definition 1.1.
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TRSW equations is given by

1

Fr
dF =

{
F,dh

}
= −

∫

�

⎡
⎣

δF/δμ j

δF/δη

δF/δb

⎤
⎦

T ⎡
⎣

μ j∂i + ∂ jμi η∂i − b,i

∂ jη 0 0

b, j 0 0

⎤
⎦

⎡
⎣

δ(dh)/δμ j = dχ
j

t

δ(dh)/δη = − δℓT RSW /δη

δ(dh)/δb = − δℓT RSW /δb

⎤
⎦ dx dy . (3.16)

The conserved integral quantities C f ,g defined in (3.14) are Casimirs of the Lie–

Poisson bracket in (3.16) which persist when the Hamiltonian is made stochastic. This

means that these equations describe stochastic coadjoint motion in function space on

level sets of the Casimir functionals C f ,g . Thus, the SALT introduction of stochasticity

into the TRSW equations preserves their Lie–Poisson bracket and thereby preserves

their geometric interpretation.
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