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Abstract: Averaging neural network weights sampled by a backbone stochastic gradient descent
(SGD) is a simple-yet-effective approach to assist the backbone SGD in finding better optima, in terms
of generalization. From a statistical perspective, weight-averaging contributes to variance reduction.
Recently, a well-established stochastic weight-averaging (SWA) method was proposed, which featured
the application of a cyclical or high-constant (CHC) learning-rate schedule for generating weight
samples for weight-averaging. Then, a new insight on weight-averaging was introduced, which stated
that weight average assisted in discovering a wider optima and resulted in better generalization.
We conducted extensive experimental studies concerning SWA, involving 12 modern deep neural
network model architectures and 12 open-source image, graph, and text datasets as benchmarks.
We disentangled the contributions of the weight-averaging operation and the CHC learning-rate
schedule for SWA, showing that the weight-averaging operation in SWA still contributed to variance
reduction, and the CHC learning-rate schedule assisted in exploring the parameter space more widely
than the backbone SGD, which could be be under-fitted due to a lack of training budget. We then
presented an algorithm termed periodic SWA (PSWA) that comprised a series of weight-averaging
operations to exploit such wide parameter space structures as explored by the CHC learning-rate
schedule, and we empirically demonstrated that PSWA outperformed its backbone SGD remarkably.

Keywords: deep neural network; stochastic gradient descent; stochastic weight-averaging; generalization;
wide optima; learning rate

1. Introduction

A stochastic gradient descent (SGD) equipped with a decaying learning-rate schedule
is the de facto approach for training modern deep neural networks (DNNs). Averaging
neural network (NN) weights sampled by a backbone SGD has shown to be a simple-yet-
effective approach to assist the backbone SGD in identifying better optima, in terms of
generalization. The concept of weight-averaging, also referred to as iterate-averaging or
tail-averaging [1], was introduced by [2,3]. A weight-averaging procedure averages the
final few iterates of an SGD. From a statistical perspective, it has been proved that the
weight-averaging operation contributed to decreasing the variance in the final iterate of its
backbone SGD, resulting in a stabilizing effect in terms of regularization properties and
prediction guarantees [4]. We referred to this view as variance reduction in this article.

Recently, a stochastic weight-averaging (SWA) method was proposed that attracted
much attention in the field. It was easy to implement yet could improve SGD in order
to achieve better generalization results without significant computational demand [5–7].
SWA starts after a converged SGD (namely, the backbone SGD), which outputs a local
optimum wSGD of the loss function f (w), where w denotes the NN weights. In the SWA
process, another backbone SGD procedure is run, starting at wSGD. This new SGD process
employs a cyclical or high-constant (CHC) learning-rate schedule. The application of the
CHC learning-rate schedule is a major feature that discriminates SWA from other weight-
averaging methods. Novel local optima are sampled along the trajectory of this new SGD
process. Then, a weight-averaging operation is used, which outputs the mean of the optima,
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denoted by wSWA, as the final output of SWA. A pseudo-code to implement SWA is shown
in Algorithm 1, which outputs a running average of the sampled weights per c iterations.

Algorithm 1 Stochastic Weight Averaging (SWA)
Input: weights wSGD, learning-rate schedule, cycle length c, number of iterations n
Output: wSWA

1: w← wSGD; wSWA ← w.
2: for i← 1, 2, . . . , n do
3: Compute current learning rate α according to the learning-rate schedule.
4: w← w− α5Li(w) (stochastic gradient update).
5: if mod(i,c)=0 then
6: nmodels ← i/c (number of models averaged).
7: wSWA ← (wSWA · nmodels + w)/(nmodels + 1).
8: end if
9: end for

10: return wSWA

A common insight to explain SWA’s success is that the local optima it discovers are
located at the boundary of a high-quality basin region in the DNN weight parameter
space. Conducting weight-averaging over such optima then resulted in a wider optimum
that is closer to the center of the basin region [5], and a wider optimum leads to better
generalization [5,8].

1.1. Limitations

As mentioned previously, there are two seemingly independent views on the role of
weight-averaging: one is statistical, namely, the variance-reduction perspective; and the
other is geometric, namely, the wider-optimum perspective. However, we were unaware of
nature of the relationship between these two views, and how to reconcile them. After a
detailed inspection of SWA [5], we discovered that its behavior resulted from a combined
effect of several possible intertwined factors, namely the convergence rate of the SGD that
processed before SWA, the CRC learning-rate schedule, the weight-averaging operation,
and finally, the application of the momentum technique and weight-decaying. The common
geometric view could not explain the specific role of each factor. For example, it could not
answer the following questions:

1. If we did not use the momentum technique in its backbone SGD, how would SWA
behave?

2. If the SGD that processed before SWA could not converge or converged to a bad
optimum, could SWA still work?

3. What was the actual function of the weight-averaging operation in SWA, either
variance reduction, the identification of a wider optimum, or both?

1.2. Contributions

The previous concerns motivated us to revisit SWA. As SWA is a fundamental, generic,
architecture-agnostic technique for training DNNs, any new findings or insights from
this re-inspection could provide a broad potential impact on deep learning. The major
contributions of this paper could be summarized, as follows:

1. We disentangled the contributions of the weight-averaging operation, the CHC
learning-rate schedule, the application of momentum and weight decaying, and
the rate at which the preceding SGD converged, to the behavior of SWA.

2. We found that the actual function of the weight-averaging operation in SWA was
variance reduction, similar to tail-averaging [1].

3. We found cases in which SWA failed to discover better optima than its backbone SGD.
4. We found that SWA explored the parameter space more widely than its backbone SGD

algorithm, which could be under-fitted due to a lack in the training budget. Inspired
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by this finding, we proposed a novel algorithm design, termed periodic SWA (PSWA),
and demonstrated that it was preferable to SGD when the training budget was limited
to the point it could not support the convergence of SGD.

2. Related Work

Here, we briefly introduce related works in the literature. A summary of their respec-
tive advantages and disadvantages is presented in Table 1.

Table 1. A summary of advantages and disadvantages of related works on IA (iterates averaging),
CLR (cyclical learning rates), ensemble, and LL (loss landscape), and this work. We reviewed whether
they provided statistical or geometric insights and practical algorithms.

Statistical Insight Geometric Insight Algorithm

IA
√

×
√

CLR [9,10] × ×
√

Ensemble [11–14] ×
√ √

LL [6,8,15–19] ×
√ √

this work
√ √ √

2.1. Iterate Averaging

The basic concept of iterate averaging, also referred to as tail-averaging in [1], was
introduced by [2,3]. The tail-averaging method averages the final few iterates of SGD.
Therefore, it decreases the variance in the final iterate of SGD and stabilizes the regu-
larization properties and prediction guarantees [4]. A generalization error boundary for
tail-averaging within the context of least squares regression with the stochastic approxima-
tion was derived in [1].We show in this paper that the weight-averaging operation is a type
of tail-averaging, which provides a stabilizing effect and the function of variance reduction
for SWA.

2.2. Cyclical Learning Rates

The benefits of employing cyclical learning rates (CLRs) in an SGD procedure were
demonstrated in [9,10]. In addition, a CLR strategy has been widely used for developing ad-
vanced DNN optimizers, such as fast geometric ensembles (FGE) [11], snapshot ensembles
[12], super-convergence training [13], or exploring the loss landscape of DNNs [14]. In this
paper, we discovered that the CLR strategy also plays a significant role in SWA’s success.

2.3. Convergence Theory

In [20], Zhu et al. presented a convergence theory for training DNNs, based on two
assumptions: the input data points were distinct and the DNN architecture was over-
parameterized. This theory suggests that, at least for fully connected NNs, convolutional
NNs (CNNs), and residual NNs (ResNets), an SGD with a random weight initialization
could attain 100% accuracy in classification tasks if the number of SGD iterations scales
polynomially in the number of training samples and that of NN layers. Cheridito et al.
demonstrated that for ReLU networks that had a much larger depth than their width,
SGD failed to converge if the number of restarted SGD trajectories did not increase to
infinity within a certain time frame [21]. Here, we investigated the specific roles of the
CHC learning-rate schedule and the weight-averaging operation for promoting SGD’s
convergence. While our results were empirical, they could promote more theoretical
research on DNN convergence.

2.4. Loss Landscape Study & Sharpness-Aware Minimization

Another commonly used way to investigate the convergence problem has been through
a loss-landscape analysis. The Hessian spectrum analysis was shown to be an effective
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approach to inspect smoothness, curvature, and sharpness in NN loss landscapes [15,16].
Yao et al. developed an open-source scalable framework for the fast computation of
Hessian information in DNNs [17]. Typically, at least for some cases, NNs generalize
better when they converge to a wider local optimum, and vice versa [8]. However, the
correlation between the local sharpness of the loss landscape and a global property, such as
generalization performance, could be only relational, instead of causative [18].

The empirical finding of the relationship between local sharpness and global gener-
alization motivated the design of practical approaches for improving the generalization
property of an SGD. For example, the sharpness-aware-minimization (SAM) method seeks
NN weights that exist in a wider loss basin by optimizing the objective function to be
sharpness-aware [19]. An SWA could be seen as a type of wideness-aware solver for DNN
optimization. It was reported that SWA could find wider minima than SAM [6]. Our work
characterized the root cause that led to SWA’s success and provided additional empirical
evidence for an in-depth understanding of the loss landscape of DNNs.

2.5. Application Scenarios

Iterate-averaging, cyclical learning rates, loss-landscape studies, and SWA are all fun-
damental, generic, architecture-agnostic concepts that have been used for training DNNs.
Therefore, potential application scopes of the aforementioned theories and techniques,
along with this work, cover all scenarios to which deep-learning methods could contribute,
such as speech recognition, image classification, information retrieval, reinforcement learn-
ing, etc.

3. Main Results

Our goal was to inspect the actual cause that led to SWA’s behavior. Towards this goal,
we experimented with different DNN architectures on different datasets. We presented
the main results indexed with questions concerning our interests. All details regarding the
experimental settings are described in Appendix A.1.

Here, we adopted test accuracy as a measure of an algorithm’s generalization capa-
bility, according to [5]. In concept, test accuracy and an algorithm’s ability to generalize
were not equivalent, since the latter denoted the difference between the test error and the
training error. Nevertheless, for evaluating the generalization of SWA-type algorithms,
test errors (or test accuracy) could act as qualified measures of generalization performance,
since SWA and its backbone SGD, share the same training errors.

3.1. Does SWA Always Identify Wider Optima Than SGD?

The results reported in the SWA paper [5] showed that SGD generally converged to a
boundary of a wide basin region and SWA assisted in finding an optimum exactly located
in that wide basin region. All experiments conducted there used image datasets, such as
CIFAR-{10, 100} [22] and ImageNet ILSVRC-2012 [23,24]. We speculated whether SWA
would always lead to a better generalization than an SGD. We conducted experiments on
graph- and text-based datasets.The results showed that the answer was no, which further
indicated that for these cases, SWA could not locate wider optima than an SGD. Specifically,
on the graph dataset MUTAG, we used SWA to train a graph isomorphism network (GIN)
for graph classification. The baseline optimizer selected was Adam, which is an advanced
SGD method that performs better for graph-data-based tasks. We found that if we applied
Adam with 300 epochs, then we obtained a test accuracy value of 89%; however, when we
replaced Adam with SWA for the last 30 epochs, we obtained a smaller test accuracy value
of 84%.

We considered the graph-node-classification task using graph-neural-network (GNN)
models, such as a graph convolutional network (GCN) [25], GraphSAGE [26], and a graph
attention network (GAT) [27], on public open-source datasets Cora, Citeseer, and Pubmed.
The parameter setting for the experiment is shown in Table A1 in Appendix A.4. The test
accuracy comparison result is presented in Table 2.
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We also considered a graph-classification task using models MinCutPool [28] and
SAGPool [29], on public open-source datasets NCI1 (https://paperswithcode.com/dataset
/nci1, accessed on 1 November 2021), D&D (https://paperswithcode.com/sota/graph-clas
sification-on-dd, accessed on 1 November 2021), and PROTEINS (https://paperswithcode
.com/sota/graph-classification-on-proteins, accessed on 1 November 2021). The parameter
settings are shown in Tables A2–A4 in Appendix A.4. The test accuracy comparison result
is shown in Table 3.

Table 2. Test accuracy (%) comparison between Adam and SWA for the graph-node-classification
task on datasets Cora, Citeseer, and Pubmed. Best results are bolded.

Cora Citeseer Pubmed
Adam SWA Adam SWA Adam SWA

GCN 81.2±0.47 81.3±0.21 70.5±0.45 70.8±0.41 79.5±0.29 79.6±0.26
GraphSAGE 80.2±0.22 79.3±0.49 69.8±0.54 69.7±0.16 77.8±0.17 77.7±0.29

GAT 81.6±0.43 81.7±0.52 70.6±0.26 70.4±0.25 76.1±0.43 76.2±0.28

Table 3. Test accuracy (%) comparison between Adam and SWA for the graph-classification task on
datasets NCI1, D&D, and PROTEINS. Best results are bolded.

NCI1 D&D PROTEINS
Adam SWA Adam SWA Adam SWA

MinCutPool 74.78±0.42 75.25±0.14 79.67±0.69 80.86±0.85 76.44±1.50 77.34±1.83
SAGPool 71.63±0.88 72.57±0.49 71.89±0.33 70.87±0.45 77.73±1.16 78.37±1.10

The experimental results for the graph datasets showed that using SWA did not always
lead to a better generalization than other advanced SGD optimizers, such as Adam.

On a text dataset termed Microsoft Research Paraphrase Corpus (MRPC), we used
an SGD with momentum to fine-tune the pre-trained model RoBERTa for testing whether
two sentences were semantically equivalent. See details about the experimental setting in
Appendix A.1.1. On average, the SGD provided a test accuracy value of 87.98% while SWA
only achieved 87.50%.

We found that, even for image datasets, an SGD did not always converge to a boundary
of a wide basin region, especially when we removed the momentum module from its
backbone SGD. In such cases, we found that SWA could converge to a deep loss valley,
where the averaged gradients over mini-batch training samples were all close to zero. Then,
the products of such gradients and the learning rate were close to zero. In such cases, SWA
failed to find a wider optimum with better generalization. See details of the experimental
results in Appendix A.3.

To understand why removing the momentum module could result in SWA failing to
find wider optima, we reviewed the working mechanism of the momentum technique. As
we know, a momentum optimizer accelerated an SGD by adding a fraction of the update
vector of the past iterations to the current update vector. Even if the backbone SGD had
converged to a local minimum, resulting in an update vector close to zero, the update vector
of the previous iteration could be large, which could then introduce unwanted oscillations
in the resulting weight samples. This could explain the phenomenon that a converged
SGD enhanced by momentum only found weight samples located at the boundary of a
flat valley, as reported by [5]. However, when we removed the momentum module, SWA
could lose its advantages. As for our experimental results on the graph datasets, they were
consistent with those reported in [30], which showed that the training loss minimizer and
the test loss minimizer were not correlated in graph-based datasets.

https://paperswithcode.com/dataset/nci1
https://paperswithcode.com/dataset/nci1
https://paperswithcode.com/sota/graph-classification-on-dd
https://paperswithcode.com/sota/graph-classification-on-dd
https://paperswithcode.com/sota/graph-classification-on-proteins
https://paperswithcode.com/sota/graph-classification-on-proteins
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3.2. What Is the Real Function of the Weight-Averaging Operations in SWA?

To answer the question in the title of this section, we conducted ablation studies on
different DNN models and datasets. As mentioned previously, the SWA procedure consist
of a re-started SGD process that uses a CHC learning-rate schedule. Using this process, a
set of NN weights are sampled, and a weight-averaging operation is performed to yield
the average of these sampled weights. We refer to the sampled weights as SWA samples,
hereafter. The momentum and weight decaying operations were not included here to
simplify the investigation.

First, we considered image classification with DNN structures, such as VGG16 [31],
preactivation ResNet-164 (PreResNet-164) [32], and WideResNet-28-10 [33], using dataset
CIFAR-{10,100}. For each model, SWA started after a previous converged SGD process.
The results are presented in Figure 1. The effect of the weight-averaging was determined
by comparing the test accuracy value of SWA to those of separate SWA samples. As was
shown, neither using the CHC learning-rate schedule nor performing weight-averaging
resulted in a significant increase in test accuracy. This result coincides with that revealed in
the previous subsection.

Figure 1. Ablation study of the CHC learning-rate schedule and the weight-averaging operation
for DNNs that converge well. The legend “SGD" denotes the test accuracy value associated with
the NN weight as provided by the backbone SGD at the time point when SWA was started. The
legend “SWA samples” denotes test accuracy values associated with NN weights sampled during
the SWA procedure. The legend “SWA” denotes the test accuracy value associated with the mean of
NN weights sampled during the SWA procedure. The sub-figures in the left/middle/right columns
correspond to VGG16/PreResNet-164/WideResNet-28-10. The sub-figures in the top/bottom rows
correspond to dataset CIFAR-10/100.

We then considered cases in which the backbone SGD that ran before SWA had
converged to a bad optimum, corresponding to Case II in Appendix A.1.2. In this case, we
did not provide a sufficient budget for DNN training. The number of training epochs was
only 30. The results based on CIFAR-{10,100} are presented in Figure 2. In this case, it
is shown that the application of the CHC learning-rate schedule results in a significantly
improved test accuracy by comparing test accuracy values of the SWA samples to that of
the backbone SGD that ran before SWA. We also found that weight-averaging increased the
test accuracy by comparing the test accuracy value of SWA to those of SWA samples.
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Finally, we conducted an ablation study based on the ImageNet dataset. The results
are shown in Appendix A.2. It was found that the SWA samples provided a greater increase
in test accuracy values than the SGD; except for VGG16, the weight-averaging operation
also increased the test accuracy.

In all aforementioned cases, the weight-averaging operation consistently provided a
test accuracy value that was larger than the smallest test accuracy value provided by the
separate SWA samples. It indicated that the weight-averaging operation in SWA functions
similarly to tail-averaging [1], namely it decreased the variance of the test accuracy values
associated with the SWA samples.

Figure 2. Ablation study on the CHC learning-rate schedule and the weight-averaging operation for
DNNs that did not converge well. The legends are defined in the same way as in Figure 1. The sub-
figures in the left/middle/right columns correspond to VGG16/PreResNet-164/WideResNet-28-10.
The sub-figures in the top/bottom rows correspond to dataset CIFAR-10/CIFAR-100.

4. Periodic SWA
4.1. On the Global Geometric Structure of the DNN Loss Landscape

As presented previously, we found cases in which SWA was initialized by an SGD
that did not converge well, and SWA performed notably better than its backbone SGD.
However, if the preceding SGD converged well, then the performance gap between SWA
and its backbone SGD was reduced or even indistinguishable. As previously shown, when
the preceding SGD converged well, the NN weights employed by SWA centered around a
local optimum discovered by its backbone SGD. Since those NN weights were all close to
this local optimum, they were close among each other. Therefore, based on these weights,
the SWA operation could only employ a highly local geometric structure around the local
optimum. On the contrary, when the preceding SGD did not converge well, corresponding
to a larger product of the learning rate and the stochastic gradient, the NN weight samples
fed into SWA were not close to each other, so they spanned a much wider area. This
motivated us to form the following hypothesis:

Is there any global geometric structure in the DNN loss landscape that could be
encountered by an SGD during an early stage of its life cycle? If such a global structure
exists, could it be exploited to facilitate the discovery of higher-quality local optima?

We proposed a novel algorithm design, termed a periodic SWA (PSWA), that initialized
SWA during an early stage of an SGD procedure. The PSWA exploited the aforementioned
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possible global structures via performing weight-averaging sequentially. We describe
the experimental results in the following section, which demonstrated that the PSWA
outperformed its backbone SWA remarkably, thus providing evidence for the existence of
such global geometric structures.

The PSWA consisted of a series of SWA procedures that processed sequentially. The
first SWA procedure was initialized by an NN weight provided by the backbone SGD that
processed before SWA. For each of the other SWA procedures, its starting weight seed
was the output of its previous SWA procedure. As opposed to the original SWA method,
which was invoked when its previous SGD converged, the PSWA was initialized when its
preceding SGD was in an early stage of its operation.

A flowchart of PSWA is shown in Figure 3. Two special examples of PSWA, termed
double SWA (DSWA) and triple SWA (TSWA), which consisted of two and three sequen-
tially performed SWA procedures, are shown in Algorithm 2 and Algorithm 3, respectively.
In addition, PSWA used a learning-rate schedule that was identical to its backbone SGD, as
shown in Figure A1. If the sequentially performed SWA procedures could continually in-
crease performance, as compared to the backbone SGD, then this would indicate that PSWA
employed certain global structures of the loss landscape to search for the local optima.

Figure 3. Block schema of PSWA. PSWA consisted of a backbone SGD that processed before the SWA
operations and a series of SWA procedures that processed sequentially. The first SWA procedure was
initialized by the output of the backbone SGD. For each of the other SWA procedures, its starting
weight seed was the output of its previous SWA procedure. In contrast to the original SWA method,
which was invoked when its preceding SGD converged, the PSWA was initialized when its preceding
SGD was in an early stage of its operation.



Appl. Sci. 2023, 13, 2935 9 of 17

Algorithm 2 Double Stochastic Weight Averaging (DSWA)
Input: weights ŵ, learning-rate schedule, cycle length c, number of iterations n (assumed
to be multiples of 2)
Output: wdswa

1: Run the SWA procedure (namely Algorithm 1) with input ŵ, c, n/2. Denote the output
to be wswa.

2: ŵ← wswa.
3: Run the SWA procedure again with input ŵ, c, n/2. Denote the output to be wdswa.
4: return wdswa

Algorithm 3 Triple Stochastic Weight Averaging (TSWA)
Input: weights ŵ, learning-rate schedule, cycle length c, number of iterations n (assumed
to be multiples of 3)
Output: wtswa

1: Run the SWA procedure (namely Algorithm 1) with input ŵ, c, n/3. Denote the output
to be wswa.

2: ŵ← wswa.
3: Run the SWA procedure again with input ŵ, c, n/3. Denote the output to be wdswa.
4: ŵ← wdswa.
5: Run the SWA procedure again with input ŵ, c, n/3. Denote the output to be wtswa.
6: return wtswa

4.2. On the Performance of PSWA

The PSWA algorithm was a byproduct of our experimental findings in Section 3.
The aim of our experiments was to test whether our hypothesis in Section 4.1 could be
confirmed. We compared PSWA with the backbone SGD on datasets CIFAR-10 and CIFAR-
100, based on DNN architectures VGG16, PreResNet-164, and WideResNet-28-10. The
codes for reproducing the experimental results are available at https://github.com/ZJL
AB-AMMI/PSWA (accessed on 22 February 2023). The momentum factor for the SGD
was 0.9, and the weight-decay parameter was 0.0005. The PSWA initialized after the 40th
epoch with a period of 20 epochs. Within one period of the PSWA, a full SWA procedure
was conducted. In a SWA procedure, we sampled one NN weight per epoch and then
averaged the weights that had been sampled within this SWA procedure, as the current
output of PSWA.

The experimental results are shown in Figure 4. We found that PSWA provided a
remarkable performance gain, as compared to its backbone SGD, during the early stage of
the training process. We also conducted an experiment in which we compared SWA with
DSWA and TSWA, and we conducted the same number of iterations to guarantee that their
computational budgets were approximately the same. We did not use the momentum and
weight decay methods to prevent their influences on the comparison.

https://github.com/ZJLAB-AMMI/PSWA
https://github.com/ZJLAB-AMMI/PSWA
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Figure 4. Test accuracy comparison between PSWA and its backbone SGD. The sub-figures in the
left/middle/right columns correspond to VGG16/PreResNet-164/WideResNet-28-10, respectively.
The sub-figures in the top/bottom rows correspond to dataset CIFAR-10/CIFAR-100, respectively.

Table 4. Test accuracy (%) comparison among SGD, SWA, and DSWA on CIFAR-10, based on a toy
CNN model. The preceding SGD procedure did not converge. The best results are bolded.

SGD SWA DSWA

57.10±0.48 67.27±0.29 69.49±0.33

We found that if the backbone SGD that ran before SWA did not converge or converged
to a bad local optimum, corresponding to Case II in Appendix A.1.2, DSWA and TSWA
found flatter optima that led to a better generalization than SWA, as shown in Tables 4
and 5, and Figure 5. If the backbone SGD converged well, corresponding to Case I in
Appendix A.1.2, then DSWA and TSWA failed to find flatter optima than SWA, as shown
in Figure 6. Note that Figures 5 and 6 were obtained using the same procedures as those
used to obtain Figure 5 in [5].

Table 5. Test accuracy (%) comparison among SGD, SWA, DSWA, and TSWA on CIFAR-100. The
SGD procedure that processed before SWA does not converge. Best results are bolded.

VGG16 PreResNet-164 WideResNet-28-10

SGD 55.28±0.62 70.55±0.84 76.30±0.81
SWA 65.89±0.24 76.45±0.63 80.95±0.27

DSWA 68.44±0.25 77.26±0.49 81.18±0.14
TSWA 68.68±0.16 77.33±0.45 81.11±0.12
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Figure 5. Cross-entropy training loss and testing error as a function of a point on the line connecting
the SWA and DSWA (or TSWA) solutions on CIFAR-100. DSWA and TSWA were initialized by a
non-converged preceding SGD procedure. Left: PreResNet-164. Right: VGG16.

Figure 6. Cross-entropy training loss and testing error as a function of a point on the line connecting
the SWA and DSWA (or TSWA) solutions on CIFAR-10. DSWA and TSWA were initialized by a
converged preceding SGD procedure. Left: PreResNet-164. Right: VGG16.
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4.3. Discussions

The previous results on PSWA showed experimental evidence for the existence of
global geometric structures in the DNN loss landscape that could be perceived by an SGD
algorithm agent at an early stage of its operation and demonstrated that such structures
could be exploited by the weight-averaging operations for improving the backbone SGD.
From an algorithmic perspective, we could not claim that PSWA was better than SGD, since
the quality of their final results at the end of the training process were indistinguishable. If
the training budget could not support the whole training process, then PSWA was clearly
preferable to an SGD, since it provided better weight samples than an SGD during an early
stage of the training process. Our experimental results using DSWA and TSWA provided
a geometric insight that the weight-averaging operation could occasionally lead to wider
optima. Specifically, when the momentum and weight-decaying techniques were not used
and the preceding SGD converged well, the weight-averaging operation failed to find wider
optima. This result was consistent with that reported in Section 3.1.

5. Conclusions

In this paper, we investigated the contributions of the weight-averaging operation
and the cyclical or high-constant learning-rate scheduling to the SWA process. Through
experiments on a broad range of NN architectures, we identified a link between SGD and
the global loss landscape and developed a novel insight from statistical and geometric per-
spectives regarding SWA. Specifically, we found that SWA was useful because it provided
a mechanism to combine the advantages of the weight-averaging operation and the CHC
learning-rate schedule. The CHC learning-rate schedule discovered global-scale geometric
structures, and weight-averaging exploited such structures. By leveraging SGD’s behavior
in its early training phase, we proposed a novel algorithm, periodic SWA, which proved to
be capable of finding high-quality local optima more quickly than SGD.

Although we covered a broad range of network architectures and different types of
datasets in our experiments, our findings still lacked theoretical support and may not
be applicable for all DNN tasks. However, our work may promote more theoretical and
algorithmic research on demonstrating, discovering, and exploiting non-local geometric
structures of DNN’s loss landscape in the future.
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Appendix A. Experimental Settings and More Experimental Results

Appendix A.1. Experimental Setting

In this section, we describe our experimental design, corresponding to the results
presented in Sections 3 and 4.
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Appendix A.1.1. Experimental Settings for Results Reported in Section 3.1

For the graph-classification task, we conducted our experiments on a public open-
source dataset MUTAG, which has commonly been used for graph-classification tasks. See
details about this dataset at https://paperswithcode.com/dataset/mutag (accessed on
1 November 2021).We used Adam [34] to train a GIN model for 300 epochs. We set the
learning rate α at 0.01 and used the default parameter setting for the exponential decay
rates β1 and β2, namely let β1 = 0.9 and β2 = 0.999, respectively. For SWA, it initialized at
the 270th epoch, using a constant learning rate of 0.02.

For experiments on the text dataset MRPC (see details about this dataset at https:
//paperswithcode.com/dataset/mrpc (accessed on 1 November 2021)) the learning rate of
SGD was fixed at 10−4 during the first 20 epochs; then, it was linearly decreased to 10−6 in
the following 20 epochs and then was fixed at 10−6 for the last 10 epochs. The momentum
and the weight-decaying factors were set at 0.9 and 0.01, respectively. SWA was initialized
at the 45th epoch. For each epoch of SWA, the learning rate was linearly decreased from
5× 10−5 to 5× 10−6.

Appendix A.1.2. Experimental Settings for Results Reported in Section 3.2

For the image-classification experiments presented in Section 3.2, we considered two
main cases, termed Case I and Case II, for each DNN architecture under consideration.
In Case I, we processed SWA after a converged SGD. In Case II, we processed it after a
non-converged SGD. We adopted the same type of learning-rate schedule as used in [5].
An example of learning-rate schedule we used is shown in Figure A1. This learning-rate
schedule covered L = 160 epochs in total. The first half-segment of this learning-rate
schedule had a constant higher value Ch, followed by a segment of the learning-rate
schedule that consisted of linearly decreased learning-rate values. The ending segment
of this learning-rate schedule had a constant lower value Cl . The learning-rate schedule
is shown in Figure A1, Ch = 0.05, and Cl = 0.01. For Case I, we set the value of L to be
sufficiently high and that of Cl sufficiently low to guarantee that the SGD process that
processed before SWA converged. For Case II, we set a low value, such as 30, for L to
ensure that the SGD that processed before SWA did not converge. For the SWA procedure,
the cycle length c had a value that ensured a cycle was equal to an epoch. We adopted the
same CHC learning-rate schedule used in [5] for the SWA procedure. The mini-batch size
was set at 128 for all experiments.

Figure A1. An example of the learning-rate schedules used in our experiments.

https://paperswithcode.com/dataset/mutag
https://paperswithcode.com/dataset/mrpc
https://paperswithcode.com/dataset/mrpc
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Appendix A.2. Experiment on ImageNet

We conduct the same ablation study in Section 3.2 on the ImageNet dataset. We
processed SWA based on the backbone DNN models VGG16, ResNet-50, ResNet-152, and
DenseNet-161, which were contained in PyTorch. The results are presented in Figure A2.

Figure A2. Ablation study using the ImageNet dataset. The legends are defined in the same way as
in Figure 1. The top left, top right, bottom left, and bottom right panels show results corresponding
to VGG16, ResNet-50, ResNet-152, and DenseNet-161, respectively. Note that SWA began based on
the pre-trained models in Pytorch. Therefore, the horizontal axis label initialized with epoch 1.

Appendix A.3. Experiments with a Toy CNN Model

In this experiment, we removed the momentum module from the SGD. We trained a
toy CNN model on CIFAR-10 and received an over-fitted result, as shown in Figure A3.
We recorded the weight value at the end of each epoch and calculated the corresponding
test accuracy value. The maximum test accuracy value of 0.683 appeared at the 45th epoch.
The test accuracy corresponding to the last iterate of SGD was 0.680. We replaced the last
L = 5 iterations of the SGD with the SWA procedure, resulting in a test accuracy value of
wswa = 0.679. We changed the value of L to 20 and obtained wswa = 0.680. This indicated
that SWA did not lead to wider optima in this case.

A similar phenomenon occurred when we replaced the toy CNN model with PreResNet-
164. We used the open-source code by [5], while removing influences of the momentum and
the L2-based weight regularization, on SWA. As is shown in Figure A4, the SGD converged
after the 120th epoch at a test accuracy of 89.24%. We processed SWA after the 140th epoch
and obtained a test accuracy of 89.17%, which was smaller than the test accuracy achieved
by the converged SGD.
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Figure A3. The over-fitted result obtained when training a toy CNN model on CIFAR-10. This CNN
had 9 layers: the input layer, the convolution layer, a max-pooling layer, another convolution layer,
another max-pooling layer, the flatten layer, 2 fully connected layers, and a softmax layer.

Figure A4. Training PreResNet-164 on CIFAR-10.

Appendix A.4. Experiments with Graph Data

We showed experimental settings associated with the graph data experiments pre-
sented in Section 3.1 in Tables A1–A4.

Table A1. The parameter settings for the GNN experiments. The baseline optimizer was Adam
with a weight-decay factor of 0.0005. The variable L denotes the total number of epochs, α is the
learning rate of the Adam optimizer, αSWA is the constant learning rate used by SWA, and tSWA is
the starting point to launch SWA.

Parameter GCN GraphSAGE GAT

L 200 20 300
α 0.01 0.003 0.005

tSWA 180 15 270
αSWA 0.02 0.01 0.01
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Table A2. The parameter settings for the graph-classification task on dataset NCI1. The baseline
optimizer was Adam with weight-decay factor of 0.0005. The variable L denotes the total number
of epochs, α is the learning rate of the Adam optimizer, αSWA is the constant learning rate used by
SWA, and tSWA is the starting point to launch SWA.

Parameter MinCutPool SAGPool

L 1000 300
α 0.001 0.003

tSWA 900 270
αSWA 0.01 0.01

Table A3. The parameter settings for the graph-classification task on dataset D&D. The baseline
optimizer was Adam with weight-decay factor of 0.0005. The variable L denotes the total number
of epochs, α is the learning rate of the Adam optimizer, αSWA is the constant learning rate used by
SWA, and tSWA is the starting point to launch SWA.

Parameter MinCutPool SAGPool

L 50 150
α 0.001 0.003

tSWA 35 120
αSWA 0.01 0.005

Table A4. The parameter settings for the graph-classification task on dataset PROTEINS. The baseline
optimizer was Adam with weight-decay factor of 0.0005. The variable L denotes the total number
of epochs, α is the learning rate of the Adam optimizer, αSWA is the constant learning rate used by
SWA, and tSWA is the starting point to launch SWA.

Parameter MinCutPool SAGPool

L 500 300
α 0.0001 0.003

tSWA 450 270
αSWA 0.001 0.01
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