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SUMMARY

In various application areas, prior information is available about the direction of the effects of multiple
predictors on the conditional response distribution. For example, in epidemiology studies of potentially
adverse exposures and continuous health responses, one can typically assumea priori that increasing the
level of an exposure does not lead to an improvement in the health response. Such an assumption can
be formalized through a stochastic ordering assumption in each of the exposures, leading to a potentially
large improvement in efficiency in nonparametric modeling of the conditional response distribution. This
article proposes a Bayesian nonparametric approach to this problem based on characterizing the condi-
tional response density as a Gaussian mixture, with the locations of the Gaussian means varying flexibly
with predictors subject to minimal constraints to ensure stochastic ordering. Theoretical properties are
considered and Markov chain Monte Carlo methods are developed for posterior computation. The meth-
ods are illustrated using simulation examples and a reproductive epidemiology application.

Keywords: Conditional distribution estimation; Density regression; Isotonic regression; Nonparametric Bayes; Risk
assessment; Stochastic order.

1. INTRODUCTION

In many biomedical applications, subject-specific knowledge suggests that the conditional distribution of
a response variabley ∈ R given predictorsx ∈ X ⊂ Rk increases (or decreases) stochastically with in-
creasingx. One example arises in epidemiology, where the exposure to toxic substances or environmental
risk factors often can be assumed to be related to health risk in a monotonic way. A different example
appears in clinical trials, where the effect of a pharmaceutical compound (or a combination of compounds
or therapies) is assumed to be increasing with increasing dose level (or intensity of therapy). In these
situations, it is natural to model the distribution of the response conditionally on covariates, such as age,
as stochastically ordered with increasing value of the exposures. For ease of exposition, we focus on the
increasing case, but a stochastic decrease can be considered analogously.
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420 B. BORNKAMP AND OTHERS

Nonparametric modeling of stochastically increasing densities with respect to an ordered “categor-
ical” covariate has recently been discussed quite extensively in a Bayesian framework byGelfand and
Kottas (2000), Hoff (2003), Karabatsos and Walker(2007), andDunson and Peddada(2008), among
others. The generalization to a multivariate continuous predictor is considerably more difficult. When
normality and homoscedasticity are imposed on the residual density, the problem reduces to estimation
of an isotonic regression in multiple predictors (e.g.Dykstra and Robertson, 1982). Mukarjee and Stern
(1994) andDette and Scheder(2006) proposed to monotonize an unconstrained nonparametric regres-
sion fit. To reduce dimensionality in modeling of the multivariate surface subject to monotonicity con-
straints, additivity constraints can be imposed as inBacchetti(1989), Morton-Jonesand others(2000), and
Leitenstorfer and Tutz(2007) or more recently inShivelyand others(2009) in a Bayesian framework (see
alsoCai and Dunson, 2007, for a Bayesian approach to monotonic regression with respect to a multivariate
outcome).

Such methods focus on the mean of the response distribution, while in many applications, the distri-
bution tails may be of greater interest. For example, in epidemiology, subjects in the right or left tail have
an adverse health response. In order to assess how the entire conditional response distribution changes
with predictors, it is important to avoid restrictive assumptions such as normality and homoscedasticity.
Bayesian density regression methods, proposed by,Müller and others(1996) and Dunsonand others
(2007), among others, allow the conditional response density to change flexibly with predictors. To ad-
dress the curse of dimensionality problem, such methods borrow strongly across different regions of the
predictor space, relying on base parametric models and smoothing priors. Efficiency can be substantially
improved through imposing stochastic ordering constraints. To our knowledge,Wang and Dunson(2009)
is the only method to enforce stochastic ordering over a continuous predictor in nonparametric density
regression. Our focus is on generalizing their approach to allow multiple predictors while incorporating
ideas ofBornkamp and Ickstadt(2009).

Section2 describes our model and discusses properties. Section3 applies the methods to an epidemiol-
ogy data set, and Section4 concludes. A simulation study can be found in Section A of the supplementary
material available atBiostatisticsonline.

2. METHODOLOGY

2.1 Mixture priors

Although there is a rich literature on multivariate stochastic ordering, the focus has been on multivariate
responses. To our knowledge, we are the first to address the problem of nonparametric conditional dis-
tribution modeling subject to stochastic ordering in multiple predictors. We refer to the proposed order
restriction as SO-X , with X the (possibly multivariate) input space of the predictors. In particular, letting
Fx(y) denote the conditional distribution function ofy given predictorsx ∈ X ⊂ Rk, restriction SO-X
corresponds to

Fx(y) > Fx′(y), for all y ∈ R andx 6 x′,

wherex 6 x′ if and only if xm 6 x′
m for all m = 1, . . . , k.

LetFX = {Fx, x ∈ X } denote an uncountable collection of continuous conditional distribution func-
tions, with eachFx in FX having support onR and withX ⊂ Rk. We propose a priorFX ∼ P, where
P corresponds to a distribution over the set of all possible collectionsFX subject to restriction SO-X . To
induce such a prior, we propose to characterize eachFx as a location-scale mixture of Gaussians, with the
variances constant withx, while the conditional means vary according to unknown multivariate monotone
functions. Such a restriction on the component-specific mean functions is sufficient to ensure SO-X , as is
shown formally below.
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Stochastically ordered multiple regression 421

Letting fx denote the density corresponding to distribution functionFx, we assume

fx(y) =
∫

φ(y, μ(x), σ 2)P(dμ, dσ 2) =
∑

h

πhφ(x, μh(x), σ 2
h ), (2.1)

whereφ(μ, σ 2) is the normal density with meanμ and varianceσ 2, theμh: X → R are multivariate
monotonic functions satisfyingμh(x) 6 μh(x′) for all x 6 x′, and P is a discrete mixing probability
measure with support onM×[0, ∞), whereM is the space of multivariate monotonic functions mapping
from X → R. In the following, we takeX = [0, 1]k without loss of generality for bounded predictors.
By assuming that the mixing measure is almost-surely discrete, we hence obtain a countable mixture with
πh a probability weight on thehth component, which has associated mean functionμh and varianceσ 2

h .
For eachx ∈ X , the conditional density is expressed as a univariate Gaussian mixture, with the densities
stochastically ordered due to the monotonicity of eachμh. We focus on Gaussian mixtures as they are
well established and computationally tractable, note however, that most of the theory in this paper also
applies to other kernels.

We are not aware of methods for estimating a model of form (2.1) in a non-Bayesian framework,
although the mathematical form of the resulting estimator is related to the traditional kernel density esti-
mator with a Gaussian kernel. We believe, however, that a naive classical approach (e.g. optimizing the
likelihood function) could run into severe problems due to local optima in the likelihood surface and a
possible overfitting problem. Instead, we follow a Bayesian approach by using a prior distribution for the
mixing measureP(dμ, dσ 2). This has the advantage of an intrinsic regularization through prior distribu-
tions and implicit averaging over possible local optima of the likelihood.

As a general prior for the discrete mixing measureP(dμ, dσ 2), we focus on the class proposed by
Ongaro and Cattaneo(2004), which includes a broad variety of priors as special cases (and is itself a
special case of the general class of species sampling random probability measures due toPitman, 1996).
A random probability measure belongs to this class when its realizations can be represented as

P(∙) =
N∑

h=1

πhδξξξh
(∙),

whereξξξh, πh and N are random variables specified as follows: Theξξξh are independent and identically
distributed realizations of a nonatomic distributionP0 on 444 and are independent fromπh, h = 1, . . . , N
andN. Note that444 can be a finite-dimensional space but also, for example, a function space. The weights
π1, . . . , πN have a distributionQN on theN − 1 dimensional simplexSN = {πππ ∈ RN :

∑N
h=1 πh =

1, πππ > 0} andN is a positive integer valued random variable with the value∞ also being allowed. The
Dirichlet process with parameterM P0 is obtained by settingN = ∞ and using the so-called Griffiths–
Engen–McCloskey distribution with parameterM for the weightsπh (seeIshwaran and Zarepour, 2002,
for details). A truncated Dirichlet process has a fixedN and a generalized Dirichlet distribution for the
weights.

When a Dirichlet process is used as a prior for the mixing measure in (2.1), our model is a spe-
cial case of the very popular dependent Dirichlet process model, see, for example,MacEachern(1999),
De Iorio and others(2004), or Gelfandand others(2005), with the main innovation that multivariate
monotone functionμh(.) are used as atoms in the mixture. The following lemma establishes that the use
of multivariate monotone functions in mixture model (2.1) induces the SO-X restriction on the condi-
tional distributions. Additionally, we establish that any collection of continuous conditional distributions
in SO-X can be approximated using (2.1).

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/11/3/419/256558 by guest on 20 August 2022



422 B. BORNKAMP AND OTHERS

LEMMA 2.1 (Support)

(i) Under model (2.1), the conditional distributions satisfy

Fx(y) > Fx′(y), for all y ∈ R, (x, x′) ∈ X × X , x 6 x′;

(ii) Given a setF̃X of continuous distributions satisfying SO-X order, with conditional distribution
functionsF̃x(y) onR, there exist, for an arbitrarily smallε > 0, πh, μh(x), andσ 2

h such that

sup
x∈[0,1]k

{

sup
y∈R

∣
∣
∣
∣
∣

N∑

h=1

πh8(y, μh(x), σ 2
h ) − F̃x(y)

∣
∣
∣
∣
∣

}

6 ε +
1

N
,

where8(., μ, σ 2) is the distribution function of a normal distribution with meanμ and variance
σ 2.

Proof. See Section B of the supplementary material available atBiostatisticsonline. �
Because the probability of having any observation exactly at a givenx is zero for predictors having a
continuous density, the ability to estimatefx(y) necessarily relies on borrowing of information across
different locations. We cannot simply define separate mixtures of normals for each location. Lemma 2
shows how the dependence arises through the prior, while also providing an expression for the prior
expectation.

LEMMA 2.2 (Prior moments) Marginalizing out the random mixing measureP, the expectation ofFx(y),
and the covariance ofFx(y) andFx(y) for x, x′ ∈ X are given by

E{Fx(y)} =
∫

8(y, μ(x), σ 2)dP0,

Cov{Fx(y), Fx′(y)} = k0

{∫
8(y, μ(x), σ 2)8(y, μ(x′), σ 2)dP0

−
∫

8(y, μ(x), σ 2)dP0

∫
8(y, μ(x′), σ 2)dP0

}
,

where8(y, μ(x′), σ 2) is the distribution function of a normal distribution with meanμ and varianceσ 2,
P0 is a nonatomic probability distribution onM× [0, ∞) andk0 ∈ [0, 1] is given byE

(∑N
h=1 π2

h

)
.

Proof. The proof is along the lines of the proof of Lemma 1 inBornkamp and Ickstadt(2009). �
Hence, the prior mean and the prior correlation structure is determined by the base measureP0 alone,

while the parameterk0 of the random measure, jointly withP0, determines the variability. In practice, we
need to specify the base measureP0 of the nonparametric prior, consisting of a prior distributionH on the
monotonic function spaceM as well as a prior distribution on [0, ∞) for the variance parameter. Because
standard choices can be used for the prior for the variance (e.g. inverse gamma), we focus in Section2.2
on how to chooseH .

2.2 Prior for multivariate monotone functions

Placing a prior on the space of multivariate monotonic functions is challenging. The use of multivariate
basis expansions or tensor products of univariate bases quickly becomes infeasible as the dimension in-
creases because more and more basis functions are needed to obtain an adequate approximation (Barron,
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Stochastically ordered multiple regression 423

1993). Another challenging issue is how to impose monotonicity on the multivariate basis. A common
strategy is to impose additional constraints to simplify the problem, with 2 such possibilities correspond-
ing to additive models (whereμ(x1, . . . , xk) = μ1(x1) + ∙ ∙ ∙ + μk(xk)) or single-index models (where
μ(x) = μ∗(a′x), with μ∗:R → R anda ∈ Sk or a ∈ Rk), seeAntoniadisand others(2004) for a Bayesian
approach to single-index models. For additive models, monotonicity is imposed through restricting each
univariate function to be monotonic, while for single-index models, one can leta ∈ Rk

+ andμ∗ be mono-
tonic. Unfortunately, additive models do not allow interactions, and the single-index model is constant on
hyperplanes of the forma′x = Const.

We propose to base our prior on linear combinations of ridge functions,μ(x) =
∑

cj gj (a′
j x), where

thegj : R → R are univariate continuous functions and thea j ∈ Rk are direction vectors. Ridge functions
form the building blocks of neural networks and projection pursuit regression. Linear combinations of
sufficiently flexible ridge functions can approximate any multivariate continuous function in sup norm
(Cheney and Light, 1999, Chapter 22) and are ideally suited to multivariate cases in requiring only a
few ridge functions to characterize fairly complex relationships (Barron, 1993). As a sufficient but not
necessary condition to ensure monotonicity, we assumecj ∈ R+, thegj (.) to be monotonic anda j ∈ Rk

+.
We refer to the resulting class of functions as positive linear combination of monotonic ridge (plcmr)
functions. As it is not straightforward to find simple, and hence computationally tractable, necessary
restrictions for monotonicity and we find the plcmr class to be highly flexible, we restrict consideration to
this class. It is straightforward to show that all plcmr functions are multivariate monotone, with monotone
additive and monotone single-index models arising as special cases.

We will carefully specify our prior on the space of plcmr functions on [0, 1]k to facilitate interpretation
and computation expressing the functionμ(x) as

μ(x) = β0 + β1μ
0(x), (2.2)

with β0 ∈ R the value atx = (0, . . . , 0)′, β1 ∈ R+ the maximum change between(0, . . . , 0)′ and
(1, . . . , 1)′, μ0(x) =

∫
G(ααα′x, θθθ)Q(dααα, dθθθ) =

∑J
j =1 w j G(ααα′

j x, θθθ j ), Q a discrete probability measure,

w ∈ SJ , ααα j ∈ Sk andG a univariate probability distribution function on [0, 1] depending on parameters
θθθ ∈ 222. Restrictingααα j to fall on the simplex has the advantage that automaticallyααα′

j x ∈ [0, 1] for any

ααα ∈ Sk and anyx ∈ [0, 1]k. Hence,ααα measures the proportions of the total increase in the functionμμμ0(.)
attributable to the different covariates.

We do not directly use a multivariate probability distribution functionG(x, θθθ) on [0, 1]k with pa-
rametersθθθ , as the base function to be mixed over, because this would be too restrictive: A multivariate
cumulative distribution function (cdf) on [0, 1]k is equal to zero if one of the components ofx is zero
(independently of the other components) and hence the mean functionμ(x) would be equal toβ0 in these
cases. Our model of using linear combinations of (shifted and scaled) univariate probability distribution
function evaluated at a linear combination is considerably more flexible. In fact Lemma 3 provides a
condition on the base distributionG under which a plcmr function can be approximated using (2.2).

LEMMA 2.3 Any plcmr function
∑

cj gj (a′
j x) on [0, 1]k → R can be approximated arbitrarily well in

supremum norm by a function of form (2.2), provided

sup
x∈[0,1]

∣
∣
∣
∣
∣
∣

J∑

j =1

w j G(x, θθθ j ) − G∗(x)

∣
∣
∣
∣
∣
∣

can be made arbitrarily small, forw ∈ SJ , θθθ j ∈ 2 and any distribution functionG∗ on [0, 1].

Proof. Proof: See Section B of the supplementary material available atBiostatisticsonline. �
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424 B. BORNKAMP AND OTHERS

In order to induce smoothness in the collection of conditional distributions over the predictor space,
it is appealing to focus on continuous multivariate monotonic functions. In this case, the prior is dense in
the space of continuous plcmr functions when the base distribution functionG can approximate any con-
tinuous cdf on [0, 1] arbitrarily well. Several choices fulfill this property. One example is the distribution
function of the standard two-sided power (TSP) distribution ofvan Dorp and Kotz(2002),

G(x, m, ν) =

{
m
( x

m

)ν 06 x 6 m,

1 − (1 − m)
(

1−x
1−m

)ν
m6 x 6 1,

wherem ∈ [0, 1] is the mode of the distribution, whileν ∈ R+ determines the steepness at the mode.
The TSP cdf is sufficiently flexible (seeBornkamp and Ickstadt, 2009), numerically straightforward to
evaluate and available in a closed form (unlike e.g. the beta cdf).

Assuming the functions follow (2.2), a specification of the priorH is completed with parametric priors
for β0 andβ1 and a nonparametric prior for the mixing distributionQ based onOngaro and Cattaneo
(2004). A typical choice is to useJ − 1 ∼ Poi(ρ), while the components(m, ν, ααα)′ of the base measure
Q0 are chosen to match prior information and prior uncertainty. A useful tool is to simulate the prior
distribution and assess whether the resulting simulations lead toa priori plausible results. A useful default
in this setting are uniform distributions on reasonable subsets of the parameter space.

2.3 Implementation

In this section, we describe the implementation and specific priors used. We assume independently dis-
tributed data(yi , xi , zi ), i = 1, . . . , n, whereyi is a univariate response,xi ∈ [0, 1]k are the covariates
which are in a multivariate monotonic relationship with respect toyi andzi ∈ Rp are additional uncon-
strained covariates we would like to adjust for in the analysis.

For the mixing measureP (from (2.1)), we use the truncated Dirichlet process with parameterM P0,
which provides an accurate approximation to the Dirichlet process while facilitating an efficient imple-
mentation via a blocked Gibbs sampler (Ishwaran and James, 2001). We choose the truncation level
N = 20, which provides a conservative upper bound on the number of mixture components occupied
by individuals in the sample (seeWalker, 2007or Papaspiliopoulos and Roberts, 2008, for versions of the
blocked Gibbs sampler that avoid truncation). The resulting model for the data is

P∼DPN(M P0), P =
N∑

h=1

πhδ(μh(x),σ−2
h )

yi |xi , zi , P
i.i.d.
∼

N∑

h=1

πhφ(μh(xi ) + γγγ ′zi , σ
2
h ),

where DPN(M P0) denotes the truncated Dirichlet process with parameterM P0 and N components.

The weightsπh have the truncated stick-breaking representationπh = vh
∏

l<h(1 − vh) with vh
i.i.d.
∼

Beta(1, M) andπN = 1 −
∑N−1

h=1 πh. The atoms in the mixture(μh, σ−2
h ) are i.i.d. realizations of the

base measureP0 with P0 = H × Exp(ω), H is the prior on the space of plcmr functions as introduced
in the last section, and theμh(x) are hence given byμh(x) = β0h + β1h

∑Jh
j =1 whj G(ααα′

hj x, mhj , νhj ).
Within each Gaussian mixture component, we hence use a prior for multivariate functions with full support
on the space of plcmr functions. This produces a fairly flexible model for the component-specific mean
functions. The main advantage of this flexibility is the fact that complex relationships can be approxi-
mated with relatively few components in the Gaussian mixture. We adjust for the additional predictorszi

linearily.
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Forβ0h, a normal distribution with parameterm0 and varianceν−1
0 will be used. The parameterm0 in

turn has a normal prior with meanw0 and varianceτ0, while ν0 has a gamma prior with parameteraν0 and
bν0. As a common focus is in assessing whether the predictors have any effect on the response distribution,
it is important to allow a completely flat relationship. This can be accomplished through using a mixture
of a point mass at 0 and an exponential distribution with parameterλ as the prior forβ1h. The mixing
probabilityπ0 is given a Beta(aπ0, bπ0) hyperprior, whileλ is given a gamma(aλ, bλ) hyperprior. These
hyperpriors induce a heavier tailed and hence a more robust specification.

In specifying the prior for the mixing distributionQ in (2.2), we assign the number of componentsJh

a Poisson(ρ) distribution shifted by 1. The hierarchical prior forρ is given a gamma(aρ, bρ) hyperprior.
The weightsw j in the mixture follow a uniform distribution onSJ for eachJ. For the base measureQ0,
we use the following distributionU (0, 1) × U (1, 20) × D(1) for the parameter(m, ν, ααα), whereD(1) is
the (k − 1)-dimensional Dirichlet distribution with parameter(1, . . . , 1)′, that is, a uniform distribution
on the simplex. This corresponds to the prior assumption that all variables are equally importanta priori
and ensures an approximately linear increasing prior mean function for the univariate functionμ, with a
reasonable variability.

For the precisionsσ−2
h , an exponential prior with parameterω is used, whereω has a gamma hy-

perprior with parametersaω andbω. The precision parameterM of the truncated Dirichlet process is also
treated as unknown and receives a conjugate gamma hyperprior with parametersaM andbM . As a prior for
the additional covariatesγγγ a multivariate normal prior is used with meanμμμγ and covariance matrix666γ .

To fit the model, Markov chain Monte Carlo (MCMC) techniques based on the blocked Gibbs sampler
will be used. This algorithm introduces a latent class membership variableKi with categories 1, . . . , N
for each observation and iterates between updating the class memberships variables and the class-specific
parameters. Most of the class-specific parameters can be updated by Gibbs steps, while a Reversible Jump
MCMC step is used to update the functionsμ0

h(.). Additionally, the hyperparameters are updated in Gibbs
steps, which is possible because conjugate hyperpriors were used. Section C of the supplementary material
available atBiostatisticsonline contains a detailed description of the MCMC algorithm.

3. APPLICATION TO EPIDEMIOLOGIC DATA

In epidemiologic studies of the impact of potentially adverse environmental exposures on health re-
sponses, stochastic ordering restrictions are well motivated biologically. By including such biologically
motivated restrictions, one can increase efficiency in estimating dose–response relationships, conducting
inferences and risk assessments. Such restrictions are particularly helpful when there is more than 1 ex-
posure, which is an increasing focus in epidemiology. The regression function is then multivariate, which
makes it challenging to obtain precise dose–response estimates allowing for interactions unless strong
parametric assumptions are made. Such parametric assumptions are difficult to justify scientifically, while
order restrictions are natural. Using an order-restricted approach also provides an (at least partial) solution
to the problem of extrapolation to low-dose risk. The current EPA guide (US Environmental Protection
Agency (EPA), 2005) suggests linear extrapolation to low-dose risk because nonlinear models are, due to
the sparsity of data, usually unreliable for extrapolation across low-dose regions. A nondecreasing con-
straint allows for the possibility of fitting a nonlinear model and can potentially improve the accuracy in
quantitative risk assessment at low doses.

In this section, we apply our methodology to data from the US Collaborative Perinatal Project, which
was conducted from 1959 to 1966. In the 1990s, a random sample of blood sera of the participants
were reanalyzed for potential toxic substances (seeLongnecker, Klebanoff, Zhou, and Brock, 2001or
Longnecker, Klebanoff, Brock, and Guo, 2005). We focus on the relationship between 2 exposures
dichloro-diphenyl-dichloroethylene (DDE) (a metabolite of dichloro-diphenyl-trichloroethane [DDT]) and
polychlorinated biphenyls (PCB) in the blood serum of the mother and gestational age of the newborn at
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426 B. BORNKAMP AND OTHERS

delivery (GAD). DDT is a pesticide that was primarily used as an agricultural insecticide and has mostly
been banned in the 1970s, although it is still in use in some developing countries. PCB are organic com-
pounds that were primarily used in electrical equipment and have been associated with a wide range of
adverse health effects. Note that both the toxic substances were still in use in the United States when the
data were collected.

Here, we focus on GAD (in weeks) in relationship to DDE (inμg/L) and the total serum PCB (in
μg/L). For model fitting, we scaled these 2 predictors into the interval [0, 1]. As additional covariates, we
include the serum triglycerides (originally measured inμg/L but standardized before model fitting) and
the binary inputs smoking habit (1= smoking) and race (1= black). The parameters of these additional
covariates were not constrained in the model. In the analysis, we excluded all values with length of gesta-
tion longer than 45 weeks for plausibility reasons and 68 cases with missing values, leaving a total sample
size of 2312 for analysis.

For the hyperpriors, we chose the following weakly informative settingw0 = 30, τ0 = 10 000, aν0 =
0.1, bν0 = 0.1, aλ = 0.01, bλ = 0.01, aρ = 1, bρ = 1.5, aπ0 = 1, bπ0 = 1, aM = 1, bM = N, aω =
0.01 andbω = 0.01. The components of the prior for the mixing distributionQ (used in the prior for
μ0(.)) are chosen exactly as specified in Section2.3. The prior forγγγ was chosen as a multivariate normal
with mean vector0 and diagonal covariance matrix 6.7I3×3, where 6.7 is an estimate of the approximate
variance in the observations. The prior forγγγ hence approximately reflects the information obtained in one
observation.

We ran 3 independent chains of the MCMC sampling algorithm of Section2 for 110 000 iterations
after using a burn-in of 10 000 iterations and a thinning 10, leaving a total of 10 000 iterations per chain.
The results between the chains were consistent; hence the presented analysis is based on the last 3500
iterations per chain resulting in a total of 10 500 simulations.

Figure1 plots the bivariate posterior median of the 50% and the 10% quantile of the conditional dis-
tribution against DDE and PCB, when the additional covariates are set to 0. There it can be seen that
both substances seem to affect the gestational age at delivery only slightly, with a steeper decrease in the
direction of DDE for both the 10% and the 50% quantile. Comparing the 10% and the 50% conditional
quantile, it becomes obvious that the 10% conditional quantile is affected slightly stronger by an increas-
ing DDE and PCB as the posterior median is decreasing steeper and stronger in overall effect for the
conditional 10% quantile (in particular in the DDE direction).

Fig. 1. Posterior median of the conditional 50% and 10% quantile.
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Fig. 2. Posterior of the conditional 5% quantile, (scaled and shifted) kernel density estimates of the covariate distri-
bution, and a quadratic 5% quantile regression fit.

Figure2 shows the posterior distribution of the conditional 5% quantile for DDE (holding PCB fixed
at its median) and PCB (holding DDE at its median value), and all other covariates are set to 0. It can be
seen that uncertainty in the estimate is quite large, in particular for DDE values larger than 50 and PCB
values larger than 5. This can be attributed to the fact that most of the participants in the study had rather
small PCB and DDE values, which is illustrated in the figure by including the (scaled and shifted) kernel
density estimates of the covariates DDE and PCB. Primarily for DDE there seems to be an effect for
persons with high exposure (i.e. larger than 40), but this effect cannot be estimated with high precision,
as data are relatively sparse in this region.

Using the rq function in the quantreg R package (Koenker, 2008), we also fitted a parametric quantile
regression model to the data (using linear and quadratic effects for DDE and PCB and the same additional
covariates) and applied a monotonic rearrangement methodology (seeChernozhukovand others, 2010)
to obtain a monotonic fit. Univariate rearrangement was applied in both directions, and to eliminate order
dependence, we take the average over both possibilities. The results are superimposed in Figure2. Even
though quantile regression is based on quite a different statistical model, results of rearranged quantile
regression roughly agree with our results. Note that rearrangement is essential here to stabilize the fit: the
unconstrained estimate was slightly u-shaped for DDE and umbrella-shaped for PCB, with these shapes
implausiblea priori. However, it is not surprising to estimate a nonmonotone curve even if the truth is
monotone when one does not place restrictions on the quantile regression curves. There is substantial
uncertainty in estimating these curves, and our approach should convey efficiency advantages through
both the monotonicity restriction and the use of borrowing of information from different quantiles in
estimating the entire conditional response distribution. Accurate estimation of a single quantile regression
curve in isolation may require large samples, particularly when the quantile is in the tails.

Figure3 shows the conditional densities at different locations in the predictor space. For this purpose,
we are looking at the conditional distribution, when both DDE and PCB are at their median value and at 2
extreme quantiles (the 1% and the 99% quantile). There it can be seen that the shape of the residual distri-
bution looks nonnormal, with a more pronounced left tail. In the simulations, typically 2 to 5 components
were employed (with modal value 3). It is interesting to see that the shape of the residual density largely
remains identical throughout the predictor space, only the uncertainty intervals are larger in parts, where
the data are sparser (see also Figure2). It also seems that there is a tendency that the left tail gets slightly
more pronounced, in particular at the extreme quantiles of the predictor space. This is in accordance with
the results in Figure1, where we observed that the 10% conditional quantile is more effected by DDE and
PCB than the conditional 50% quantile.
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Fig. 3. Posterior distribution of the conditional densities at 3 locations in the input space, together with the estimate
of the npcdens function.

Table 1. Posterior summaries of additional covariates

Covariate 0.05 quantile Median 0.95quantile

Triglycerides −0.29 −0.22 −0.14
Smoking habit −0.27 −0.12 0.02
Race −0.78 −0.62 −0.47

Superimposed one can find an (unconstrained) conditional density estimate using the npcdens func-
tion in the np R package (Hayfield and Racine, 2008), implementing methods ofHall and others(2004).
The fixed bandwidth was selected by maximum likelihood cross-validation. Both methods obtain rather
similar results, with the main difference being in the left tail. Here, the Bayesian approach is less wiggly,
which is at least partially due to the implicit averaging over the posterior simulations in the Bayesian
approach (rather than using one particular point estimate), additionally the conditional density is consid-
erably smaller in the left tail for larger values of the input. This is most likely due to the fact that stochastic
ordering is imposed in our methodology, while the alternative approach is unconstrained.

It is also interesting to compare the results with those obtained byWang and Dunson(2009), who
modeled the conditional density of GAD versus DDE with univariate monotonic density regression. The
posterior medians for the conditional densities are quite similar between the approaches, while the vari-
ability intervals for the conditional densities are wider inWang and Dunson(2009). This is probably
due to the fact that the bivariate shape constraint employed in this article restricts the conditional density
considerably more than in the 1D case and hence reduces uncertainty in estimation.

Table1 contains the credibility intervals for the (unconstrained) parameter estimatesγγγ corresponding
to the additional covariates. There it can be seen that both race and triglycerides have an impact on gesta-
tional age at delivery, while for smoking habit there seems to be a less pronounced negative effect, as its
credibility interval contains zero.

4. CONCLUSIONS

In this paper, we have proposed a model for estimating conditional densities under the SO-X stochastic
order, that is, the stochastic ordering is assumed with respect to multivariate continuous predictors. The
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model relies on representing the conditional distributions as a location-scale mixture of normal distribu-
tions and the stochastic ordering constraint is imposed by assuming that the means of the components in
the mixture are multivariate monotonically increasing functions. This type of model is extremely flexi-
ble, in particular we show that any collection of conditional densities under SO-X stochastic order can
be approximated arbitrarily well by the proposed model. The model relies on a prior distribution for
multivariate monotonic functions and we used positive linear combinations of monotonic ridge functions
for this purpose. This class is quite flexible (compared to monotonic additive or single-index models for
example) and seems well suited for sparse representation of multivariate functions.

The flexibility of the proposed model comes at the cost of being quite complex, and in some situations
simpler models might be appropriate. When there is, for example, stronga priori evidence that the con-
ditional residual density does not change in shape withx, a semiparametric model can be adequate. One
approach would be to modelyi = μ(xi )+ εi , for a multivariate monotonic functionμ(.), with theεi sam-
pled i.i.d. from a homoscedastic residual density with mode zero. A related model was proposed byLavine
and Mockus(1995) in the univariate case. A mean zero constraint in the residual distribution would lead
to an easier to interpret regression function, but such a constraint is not straightforward to include without
also assuming symmetry about zero. In addition, regression models focused on characterizing predictor
effects only on the center of the response distribution are not adequate in quite a few applications. This
is particularly the case when the tails of the response distribution are of primary interest. For example,
in many applications, the greatest interest is in the extremes corresponding to unusual health responses,
pollution levels, financial events, or weather conditions, where the semiparametric model described above
would not be appropriate. Hence, in such settings, most of the literature has focused on either using quan-
tile regression models that focus on a single quantile (e.g. 95th) or models for extremes that effectively
discard all information below a certain quantile. By using density regression methods, one simultaneously
models all quantiles and hence allows inferences on differing predictor effects on the center and extreme
quantiles while using all the available data. A concern in density regression is the curse of dimensionality
as it is challenging to allow the response distribution to change flexibly over the predictor space. The
incorporation of stochastic ordering constraints in multiple predictors is a highly effective strategy for
reducing the effective dimensionality of the problem. An interesting direction for future research is the
incorporation of high-dimensional predictors. In such cases, sparse maximuma posterioriestimation or
sequential Monte Carlo methods may be preferred to MCMC.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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