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Dimitrios P. Louzis
a,b

, Spyros Xanthopoulos�Sisinis
a,
* and Apostolos P. Refenes

a 

 

In this article, we account for the presence of heterogeneous leverage effects and the 

persistence in the volatility of stock index realized volatility. The Heterogeneous 

Autoregressive (HAR) realized volatility model is extended in order to account for 

asymmetric responses to negative and positive shocks occurring at distinct frequencies, 

as well as, for the long range dependence in the heteroscedastic variance of the 

residuals. Compared with established HAR and Autoregressive Fractionally Integrated 

Moving Average (ARFIMA) realized volatility models, the proposed model exhibits 

superior in�sample fitting, as well as, out�of�sample volatility forecasting performance. 

The latter is further improved when the realized power variation is used as a regressor, 

while we show that our analysis is also robust against microstructure noise. 

 

a
  ������������	��

���	��

������������
�����
����������	
�
������
��
�����

�
������	������
������
�������������������������
�� !����
����������"��##$%&�

���
���'�

�
�

b  
���(����'�

�
���������������)�������
�����
�������(
����(��
�������$���
��(�����"�

'��#*+�% �����
���'�

�
" ,��
-���
���
.�
/��

���������������
����������
�
������

�
��

�����
���
.������
����(����'�

�
 

*Corresponding author: E�mail: xanthopo@aueb.gr 

The authors would like to thank the two anonymous referees for their helpful comments.

Page 2 of 43

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

mailto:xanthopo@aueb.gr


F
o
r P

eer R
eview

 2 

��������	�������

�

“A volatility model must be able to forecast volatility; this is the central requirement 

in almost all financial applications.”, Engle and Patton (2001). Indeed, everyday core 

business functions such as Basel II capital adequacy calculations, risk management, 

capital allocation, derivatives pricing and hedging, rely on accurate volatility estimation 

and forecasting. A plethora of volatility implementations have been proposed in the 

extant literature, e.g. see Poon and Granger (2003) for a good review. In Andersen and 

Bollerslev (1998), the authors showed that the daily unobserved volatility could be 

adequately approximated by the sum of squared intraday returns, the so�called, realized 

volatility
1
. As evidence appeared that realized volatility possessed long memory, a 

number of researchers employed the Autoregressive Fractionally Integrated Moving 

Average (ARFIMA) specification for its modelling (e.g. see Andersen 
����., 2003; Giot 

and Laurent, 2004; Koopman 
����., 2005; Noh and Kim, 2006; Degiannakis, 2008; 

Martens 
����., 2009).  

An alternative implementation, based on the Heterogeneous Market Hypothesis and 

Muller’s 
����. (1997) HARCH model, the Heterogeneous Autoregressive Realized 

Volatility model (HAR�RV, referred to as HAR henceforth) was also proposed by Corsi 

(2009). The HAR model utilized volatility components of different time resolutions in 

order to capture the long memory property of realized volatility in a more 

straightforward manner. Its tractable estimation and good volatility forecasting 

performance encouraged its use in several econometric studies e.g., see Andersen 
����. 

(2007) on stock, exchange rate and bond price volatility forecasting, Forsberg and 

                                                 

 
1
  The sum of squared intraday returns is actually the realized variance. Realized volatility is defined as 

the square root of realized variance. However, many authors use the term realized volatility 

interchangeably with the term realized variance. 
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 3 

Ghysels (2007) and Martens 
����. (2009) on volatility forecasting and Clements 
����. 

(2008) on Value at Risk applications.  

We contribute to this growing literature by introducing a logarithmic HAR model 

with asymmetries, or leverage effects
2
, modelled here as lagged standardized returns 

and absolute standardized returns (analogous to an EGARCH�type structure
3
), occurring 

at distinct time horizons: daily, weekly and monthly. Moreover, in order to capture any 

remaining long range dependence in the volatility of realized volatility, we propose a 

Fractionally Integrated GARCH (FIGARCH) implementation for the conditional 

heteroscedasticity of the residuals. We also apply the Realized Power Variation (RPV), 

proposed by Barndorff�Nielsen and Shephard (2004) as a regressor, which has been 

shown to be a robust to jumps, more persistent and accurate predictor of future volatility 

than realized volatility. As far as we are aware, this is the first time a HAR model with 

RPV regressors is combined with heterogeneous asymmetric effects and a FIGARCH 

specification for the residuals. Finally, the robustness of our findings to microstructure 

noise is assessed using the Two�Times Scale (TTS) volatility estimator of Zhang 
����. 

(2005) which consistently estimates the integrated variance in the presence of 

microstructure noise. 

The proposed model is initially estimated using two ten year data sets from the S&P 

500 and DJIA stock indices. We find that against eight alternative HAR and ARFIMA 

models, the proposed model produces superior in�sample fitting revealing that not only 

past negative daily, but also weekly and monthly negative shocks yield a greater impact 

                                                 

 
2
  “Bad news” in a stock market (i.e. negative returns) tend to increase future volatility more than “good 

news” (i.e. positive returns). This asymmetry between negative and positive returns is referred to as 

asymmetric or leverage effect. In theory, the leverage of the company increases as its stock price goes 

down, i.e. the company uses more debt than owned capital to finance its business activities. This increases 

the risk of investing in this stock which in turn increases its volatility. 
3
 The asymmetric behavior between returns and volatility is well documented in the GARCH literature. 

For the use of asymmetric GARCH models in forecasting volatility see Kisinbay (2008). 
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 4 

on current volatility than positive ones, suggesting a heterogeneous component structure 

in asymmetric effects. Moreover, an interesting contribution of past monthly positive 

shocks is also identified. Although the inclusion of leverage effects in the HAR 

regression reduces both the skewness and the heteroskedasticity of the error term, it 

does not eliminate the ARCH effects. Through Exact Local Whittle (ELW) and 

Maximum Likelihood Estimation (MLE) integration order estimations, the suspected 

long range dependence in the volatility of realized volatility is also verified.  

The out�of�sample one day ahead, five and twenty�two days ahead forecasting 

performance is then evaluated for seven established loss functions, as well as with 

Hansen’s (2005) Superior Predictive Ability (SPA) test. The proposed specification 

minimizes the majority of the loss functions, for both indices and for all the forecasting 

horizons. Its volatility forecasting performance is further improved when the RPV is 

included as a regressor, while its superiority is also confirmed by the SPA test ��values. 

Finally, the TTS estimated realized volatility forecasting results underline its robustness 

against the microstructure noise in the returns process. 

The remaining of this article is organized as follows: In Section II we introduce the 

realized volatility measures and the mathematical notations and definitions used 

throughout this article. In Section III we present the HAR and ARFIMA based models, 

while the data set, descriptive statistics and the in�sample maximum likelihood models 

estimation are shown in Section IV. In Section V, we present the out�of sample realized 

volatility forecasting evaluation methodology and results. Section VI summarizes and 

concludes this article. 

�

�����
���
	������������
���
��

�

Page 5 of 43

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

 5 

In Andersen and Bollerslev (1998), the authors defined realized variance as the sum 

of squared intraday returns and proved it is an unbiased and less noisy estimator for the 

daily unobserved volatility, than the squared daily returns proxy (for a good review on 

realized volatility see McAller and Medeiros, 2008). Let us define the m
th

 intraday 

return for day t as ( ) ( )( ), , 1,  100 log log� � � � � �� 0 0 −= × −  with �� ,...,1= , where � is 

the total number of intraday returns. The first and last price levels observed at day t are 

denoted as 0,�0  and ,� �0  respectively, while the overnight return, or “sleepage”, is 

defined as ( ) ( )( )0, 0, , 1100 log log� � � �� 0 0 −= × − . Since these close�to�open price levels are 

often in practice quite different, the overnight returns could bias the realized variance 

estimation and hence the following scaling is applied: 

 ( )2 2 2 2 2

, ,

1

 
�

�1 � �� �� �� � �

�

�σ σ σ σ
=

 = + ∑  (1) 

where 2

��σ  and 2

��σ  are the “open�to�close” and “close�to�open” sample variances 

respectively,  which in turn are computed from ( ) ( ) ( )
2

2

, 0,1
1 log log

�

�� � � ��
� 0 0σ

=
 = − ∑  

and ( ) ( ) ( )
2

2

0, , �11
1 log log

�

�� � � ��
� 0 0σ

=
 = − ∑  (see Martens, 2002; Koopman 
����., 2005 

and Degiannakis, 2008). The realized volatility is simply the square root of the realized 

variance, i.e. 2

, ,�1 � �1 �σ σ= . Since realized volatility is an observable variable, standard 

time series techniques can be used for forecasting purposes.  

The intraday sampling frequency used in this article is five minutes, which for liquid 

assets like the S&P 500 and the DJIA stock indices it has been found to be the highest 

sampling frequency with acceptable market microstructure bias (see Andersen 
����", 

2001a; Koopman 
����", 2005; Corsi 
����", 2008). Moreover, in order to verify the 

robustness of our findings against microstructure noise, we repeat our analysis 
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 6 

calculating the realized variance with the Zhang 
����" (2005) Two�Times Scale (TTS) 

volatility estimator, which has been shown to produce consistent realized volatility 

estimates in the presence of  microstructure noise in the returns process. Here, the TTS 

volatility estimates are computed using a fifteen minute sampling interval as in Martens 


����. (2009). 

 

�������
��
���
	�������������	
���

�

2
�
��	
�
��������
	�
��
�32��4����
�������
���5
�������������

�

Based on the Heterogeneous Market Hypothesis
4
 and the HARCH model

5
, Corsi 

(2009) proposed an approximate long memory model for realized volatility, the 

Heterogeneous Autoregressive (HAR) Realized Volatility model. The author suggested 

that a significant contributor to the market’s heterogeneity was the presence of three 

types of market agents with different time investment horizons: short (daily), medium 

(weekly) and long term (monthly) investment horizons. Short�term traders (such as 

hedge funds, FX and statistical arbitrage traders) typically adjust their market positions 

intradaily, swiftly reacting to any relevant new information. Μedium and long�term 

investors (such as commercial banks and pension funds) have longer holding periods 

and restructure their trading portfolios according to lower frequency information flow. 

This asymmetry leads to a hierarchic structure of volatility components, where low (e.g. 

                                                 

 
4
 The Heterogeneous Market Hypothesis (Muller 
����., 1993) states that market agents differ with respect 

to their investment horizon, risk aversion, degree of available information, institutional constraints, 

transaction costs, etc. This diversity is identified as the root cause of asset volatility, as market agents aim 

to settle at different asset valuations, according to their individual market view, preferences and 

expectations. 
5
 For practical applications of the HARCH model see McMillan and Speight (2006a) and McMillan and 

Speight (2006b). 
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 7 

monthly) frequency volatility components should yield a greater impact on the overall 

volatility than high (e.g. daily) frequency volatility components. The economic rationale 

is that short�term investors interpret the level of long�term volatilities as predictions of 

future volatility and adjust their trading strategies accordingly, while short�term 

volatility is irrelevant to investors with longer holding periods. Corsi showed that by 

aggregating daily, weekly and monthly volatility components in an autoregressive 

structure, one could capture the heterogeneity of realized volatility, whilst 

approximating its long range dependence properties.  

Here, in order to mitigate any positivity restrictions on the model’s parameters and 

error term (e.g. see Andersen 
����., 2003), we will use the logarithm of the realized 

volatility in the HAR implementation: 

 ( )
( )

( )
( )

( )
( )

( )
0 1 1 1  

� � . �

� � � � �� . �
��� � � ��� � ��� � ��� �− − −= + + + +  (2) 

where ( )( ) 2

,log�

� �1 ���� σ=  is the daily logarithmic realized variance, ��  are the errors 

distributed as ( )20, �, σ  since ( )�

����  is approximate normal (e.g. see Andersen 
����., 

2003), 
( ) ( ) ( )5

1
1 ,5 1

. �

� � � ��
��� ���− −=

= ∑  and 
( ) ( ) ( )22

1
1 ,22 1

� �

� � � ��
��� ���− −=

= ∑  are the lagged weekly and 

monthly volatility components respectively, computed for each day � as a moving 

average of the previous five and twenty�two days daily logarithmic realized volatilities 

respectively. We anticipate that some informational content in the individual lags of the 

logarithm of realized volatility could as a result of the averaging be lost, however 

empirical evidence has shown that the embedded long lag structure of the HAR model, 

equivalent to a restricted AR(22)
6
, is capable of reproducing the long memory behavior 

of realized volatility (Corsi, 2009; Martens 
����., 2009). Moreover, the simple 

                                                 

 
6
 For the use of AR models in realized volatility forecasting see Hooper 
����" (2009) 
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 8 

autoregressive functional form of the HAR model requires no more than OLS for the 

estimation of its parameters.  

In Corsi 
����" (2008), the authors proposed a GARCH(��6) error process in order to 

account for the time varying conditional heteroscedasticity of the normally distributed 

HAR errors, i.e. the so called “volatility of realized volatility”: 

 ( ) ( ) ( ) ( )

0 ( ) 1 ( ) 1 ( ) 1  � � . �

� � � . � � � ���� � � ��� � ��� � ��� �− − −= + + + +  (3) 

 ,  � � � �� σ ε=  and 2 2 2

, ,  ( ) ( )� � � � �7 � 7σ ω α β σ= + +  (4) 

where 1|� �8ε − ~ (0,1), , 1�8 −  is the information available until 1� − , 7  is the lag 

operator ( )1� �7� � −= , ( ) 2

1 2

�

�7 7 7 7α α α α= + + +�  and ( ) 2

1 2

6

67 7 7 7β β β β= + + +�  

are the lag polynomials of orders �  and 6  respectively.  

Corsi and Reno (2009) also included past negative daily, weekly and monthly 

returns as regressors in the HAR model, aiming to capture the leverage effects in the 

volatility process, plus a jump component. Finally, the authors in Andersen 
����. (2007) 

proposed a HAR model with a jump component and found that the latter had restricted 

persistence compared with the continuous part of the quadratic variation, i.e. its 

contribution to forecasting volatility was limited. 

 

��
�����
�����2��93�84'��:2����
��

�

In this article, we propose extending the HAR specification towards three directions. 

Firstly, we adopt a more flexible EGARCH�type structure for implementing the 

asymmetries in the volatility process. We expand the HAR model of Equation (2) in 

order to include standardized and absolute standardized returns aggregated over 

different time resolutions. Here, we consider the complete returns dataset in the 
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 9 

analysis, thus allowing for asymmetric responses to both negative and positive shocks. 

Secondly, through a FIGARCH specification, we account for the long memory of the 

residual’s variance in Equation (4). Finally, we use the Realized Power Variation (RPV) 

as a regressor, which has been shown to be robust to jumps and a more persistent and 

accurate predictor of future volatility than realized volatility, see Ghysels 
����" (2006) 

and Forsberg and Ghysels (2007).  

Initially, the asymmetric dynamics of past daily positive and negative returns are 

introduced. The Asymmetric (daily) HAR (hereafter A�HAR) model with daily 

leverage effects is defined as follows: 

 ( ) ( ) ( ) ( ) ( ) ( )

0 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1

� � . � � �

� � � . � � � � � � � ���� � � ��� � ��� � ��� 5 5 �ϑ γ− − − − −= + + + + + + (5) 

where ( )

,

�

� � �1 �5 � σ=  are the daily standardized returns. Equation (5) can be 

extended in order to account for the heterogeneity in asymmetric effects, i.e. 

asymmetric volatility reactions not only to past daily but also to weekly and monthly 

standardized returns. The Asymmetric HAR (AHAR) is given by:    

 

( ) ( ) ( ) ( )

0 ( ) 1 ( ) 1 ( ) 1

( ) ( ) ( )

( ) 1 ( ) 1 ( ) 1

( ) ( ) ( )

( ) 1 ( ) 1 ( ) 1

  � � . �

� � � . � � �

� . �

� � . � � �

� . �

� � . � � � �

��� � � ��� � ��� � ���

5 5 5

5 5 5 �

ϑ ϑ ϑ

γ γ γ

− − −

− − −

− − −

= + + + +

+ + + +

+ + + +

 (6) 

where ( ) 2

1 11 , 1

� ��

� �� � � �1 � �5 � σ= =− + − +=∑ ∑  are the daily ( 1� �= = ), weekly ( 5� .= = ) 

and monthly ( 22� �= = ) standardized returns. The response of the logarithmic 

realized variance to past positive and negative standardized returns is given by: 

 

( )( )
( ) ( ) 1

( )( )

( ) ( ) 11

,  if >0 
  

,  if 0

�
��

��

5���

55

ϑ γ
ϑ γ

⋅
⋅ ⋅ −

⋅⋅
⋅ ⋅ −−

 +∂ 
= 

− <∂ 
 (7) 

The leverage effects are captured by the coefficient ( )ϑ ⋅  which is expected to be 

negative and statistically different from zero, should past negative shocks yield a greater 

impact on future volatility.  
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 10 

Although accounting for leverage effects in Equation (6), may lead to some 

reduction in the skewness of the errors, the heteroscedasticity in the residuals is 

expected to remain due to the variance of the realized volatility estimator (Corsi 
����", 

2008). A straightforward approach, is to implement a GARCH(��6) error process to 

account for the conditional heteroscedasticity of the HAR residuals, in an AHAR�

GARCH model.  

We suspect however that the residuals could still retain the long memory property of 

realized volatility. Motivated by the findings of Beltratti and Morana (2005) (see 

ARFIMA models below), we propose to model the residuals with a 

FIGARCH( , , )�� � 6 specification (see Baillie 
����., 1996), implemented as:  

 ( ) ( ) ( ) ( ){ }2 2 2

, ,  1 1 ��

� � � � �7 7 7 7 �σ ω β σ β ϕ= + + − − −  (8) 

The FIGARCH model captures the long memory behavior of the variance process 

through the long memory, or fractional differencing parameter, �� , and is essentially an 

ARFIMA implementation of the squared residuals in Equation (6). For values of the 

differencing parameter 
�

�  between 0 and 1, the autocorrelation of the volatility process 

exhibits a slow hyperbolic rate of decay. As the term ( )1 ��7−  in Equation (8) is an 

infinite summation, the FIGARCH obtains an infinite order specification, which in 

practice is truncated at 1000 lags, as suggested in Baillie 
����. (1996). 

 

��
��
���5
��0�.
��1���������

 

Recently, the Realized Power Variation (RPV) proposed by Barndorff�Nielsen and 

Shephard (2004), has been found to produce superior realized volatility forecasts when 

implemented as a reggresor in a HAR model. The RPV of order � , is defined as: 
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 ( ) 1 (1 / 2)

,

1

 
�

��

� 5 � �

�

�01 � � �� − − −

=

= ∑  (9) 

where 0 2�< < , ( )( ) ( )/2 1 1
2 2

2 1 /
� �

5 � 5 �� = = Γ + Γ  with 5 ~ (0,1),
7
. Forsberg 

and Ghysels (2007), Ghysels 
����" (2006) and Ghysels and Sinko (2006) demonstrated 

the ability of realized absolute variation, i.e. RPV(1), to produce superior volatility 

forecasts compared to the squared return volatility measures. They argued that the RPV 

is a better predictor of realized volatility because of its robustness to jumps, its smaller 

sampling error and its improved predictability. Here, following Liu and Maheu (2009) 

and Fuertes 
����" (2009), who showed that an RPV of order other than one can 

significantly improve the accuracy of volatility forecasts, we use a RPV of order 1.5 as 

a regressor in the HAR models presented above. Hence, the simple HAR�RPV model is 

defined as: 

 ( )
( )

( )
( )

( )
( )

( )
0 1 1 1  

� � . �

� � � � �� . �
��� � � ���� � ���� � ���� �− − −= + + + +  (10) 

where ( )( ) log�

� ����� �01=  is the RPV daily logarithm and 
( )

1

.

����� −  and 
( )

1

�

����� −  are  

the respective five and twenty days logarithm RPV moving average components for 

each day �. The other HAR models are analogously defined. 

�

���8������
�������
���5
�������������

�

The application of ARFIMA models for realized volatility modelling and 

forecasting purposes was first proposed by Andersen 
����. (2001a) and Andersen 
����. 

(2003), based on the analysis of Granger (1980) and Granger and Joyeux (1980). Since 

                                                 

 
7
 Note that when 2� = , the RPV is by definition equal to the realized volatility (i.e. ( ) 2

,
2

� �1 �
�01 σ≡ ). In 

this case, the RPV is not robust to jumps and converges to the integrated volatility plus the jump 

component. 

Page 12 of 43

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

 12 

then, a number of ARFIMA based models have been proposed for volatility forecasting 

applications, most with good results (e.g. see Andersen 
����., 2003; Pong 
����., 2004 

and Koopman 
����., 2005). We will thus include in this study some of the more relevant 

ARFIMA models, in order to provide a straightforward comparison to the HAR based 

model proposed above.  

ARFIMA models are genuine long memory time series models which describe the 

stochastic behavior of a fractionally integrated variable using autoregressive and 

moving average components. The basic ( )ARFIMA , ,�1� � �  model for the logarithm of 

the realized volatility, in terms of deviations from the mean, � , is defined as: 

 ( )( )( ) ( )( ) ( )( )1 1   1�1� �

� �7 7 ��� 7 �ψ � δ− − − = +  (11) 

where �1�  is the fractionally differencing parameter of the logarithmic realized 

variance and �� ~ ( )0, �, σ  as in (2). Beltratti and Morana (2005) first considered the 

conditional heteroscedasticity in the ARFIMA errors by proposing an 

( ) ( )ARFIMA , , FIGARCH , ,�1 �� � � � � 6−  model: 

 ( )( )( ) ( ) ( )( )( )1 1   1�1� �

� �7 7 ��� 7 �ψ � δ− − − = +  (12) 

 ,  � � � �� σ ε=  (13) 

where ,� �σ  is modeled as in Equation (8). In order to capture the asymmetric effects, 

lagged returns and indicator functions have been utilized as explanatory variables of the 

mean (ARFIMAX models), e.g. see Andersen 
�� ��. (2001a), Thomakos and Wang 

(2003), Giot and Laurent (2004), Angelidis and Degiannakis (2008). Here, we 

implement lagged (absolute) daily standardized returns, along with a FIGARCH 

structure for the conditional heteroscedasticity of the errors, thus defining the 

( ) ( )ARFIMAX , , FIGARCH , ,�1 �� � � � � 6−   as: 

 ( )( )( ) ( ) ( ) ( )( ) ( )( )( ) 1 ( ) 11 1 1�1� � � �

� � � � � �7 7 ��� 5 5 7 �ψ � ϑ γ δ− −− − − − − = + (14) 
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where 
( )

,

�

� � �1 �5 � σ=  are the daily standardized returns and ,� �σ  is a FIGARCH 

specification (see Equation (8)). The asymmetric effect is captured by ( )�ϑ , which is 

expected to be negative and statistically different from zero.  

 

������
�	���
���	
��������
������������	���	
��
���������

�

The data set was obtained from Tick Data and consists of five minutes previous tick 

interpolated prices, ,� �0 , for the S&P 500 and the DJIA cash indices over a ten year 

period, from 1.1.1997 to 12.31.2006. After adjustments for holidays and half�holidays, 

there were 2,508� =  trading days per index, with six and a half trading hours per day, 

interpreted as 78=�  intraday returns. Each full data set, was divided into 1,508� ∗ =  

in�sample observations, from 31.01.1997 to 30.12.2002 and * 1,000� � �= − =  out�of�

sample observations.  

 

�
�������
�����������������5
�������

�

The descriptive statistics for the daily logarithmic returns
8
, daily standardized 

returns, realized variance and logarithmic realized variance for the two full data sets are 

shown in Table 1. Both original return series have negative skewness and fat tails, a 

departure from normality which can be attributed to mainly negative price shocks near 

the end of 1997 and 1998, all through 2000 and towards the end of 2002. The skewness 

and kurtosis of the standardized returns and of the logarithmic variance series as well as 

                                                 

 
8
  The daily logarithmic returns are calculated as ( ) ( )( ), , 1

100 log log
� � � � �
� 0 0 −= × −  where ( ), , 1,  � � � �0 0 −  

is the closing price of day t, (t�1). 
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the normality tests suggest that the respective distributions are approximately normal, a 

conclusion similar as in Andersen 
����" (2001a) and Andersen 
����" (2001b).  

 

Insert ���
�  

 

The fractional integration order of the logarithmic realized variance series is calculated 

using the Exact Local Whittle (ELW) estimator proposed by Shimotsu and Philips 

(2005). The estimator relies on the frequency domain representation of the observed 

series, as expressed by its Discrete Fourier Transform (DFT) and evaluated at �  

Fourier frequencies from the spectrum’s origin. A widely adopted functional form for � 

is � � �=  with 0 1�< < , while the empirical evidence suggests that values for �  in the 

interval [ ]0.5,  0.6  limit the bias and variance of the integration order estimate. The 

logarithmic realized variance ELW integration order estimates for both indices are 

shown in Fig. 1 for [ ]0.4,  0.7�∈ . The �1�  estimates vary between 0.55 and 0.6, 

suggesting that the realized variance follows a covariance non�stationary fractionally 

integrated process.  

 

Insert !����  

 

Finally, the descriptive statistics and stylized facts for the two indices for the TTS 

estimated realized variance show no significant departure from the aforementioned 

squared intraday returns observations and are available from the authors upon request.  

 

���������������
�2���)�
�����
��

�
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Before proceeding with the parameters estimation
9
, the optimum lag order for the 

AHAR�FIGARCH model was first determined. The lag structure combinations which 

minimized the AIC and SIC criteria were an AHAR�FIGARCH(#����#) and an AHAR�

FIGARCH(*����*) for the S&P 500 and DJIA indices respectively. The coefficient 

estimates for all the HAR based models, as well as the respective in�sample diagnostics 

are summarized in Tables 2 and 3 for the S&P 500 and DJIA indices respectively.  

 

Insert ���
�"�

�

Insert ���
�#�

�

For the HAR, HAR�GARCH and A�HAR models, the coefficient of the lagged 

weekly volatility component, ( ).� , bears the greatest impact on current volatility, 

followed by the daily volatility component, while the monthly one influences the total 

volatility significantly less. Hence, the day�ahead volatility appears to be the aggregate 

effect of short and mostly medium term volatility components and much less of longer 

term volatility factors. However, when the heterogeneity of the leverage effects is taken 

into consideration in the AHAR based models (i.e. in the AHAR, AHAR�GARCH and 

AHAR�FIGARCH models), the balance shifts drastically. Now, past longer horizon 

volatility events (weekly and monthly volatility components) appear to primarily shape 

the indices future volatility, a conclusion which is in agreement with the economic 

rationale laid out in Section III. The discussion of the estimation results in terms of the 

leverage effects and the presence of long memory in the residuals is next presented. 

                                                 

 
9
  All estimates were deduced by numerical optimization of the log likelihood function (Maximum 

Likelihood Estimation, MLE) and they were conducted with the Ox Metrics G@RCH 4.2 package 

developed by Laurent and Peters (2002). 
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�

��
��
�
��	
�
��
���

�

For both indices, accounting for daily leverage effects in the A�HAR model leads to 

a reduction in the residuals’ skewness and a significant improvement in the goodness of 

fit indicators (i.e. A(S) Information Criteria). However, there is still evidence of ARCH 

effects in the residuals of both indices, as the ARCH�LM tests suggest. For the DJIA 

index, the inclusion of weekly and monthly standardized returns in the AHAR model 

reduces the skewness of the errors, while there is also evidence in favor of the rejection 

of the ARCH effects hypothesis. This is also reflected in the GARCH coefficients 

estimates of the AHAR�GARCH model for the DJIA index, where none of them are 

statistical significant at a 5% significance level. 

The coefficients of the lagged daily, weekly and monthly standardized returns, ( )ϑ ⋅ , 

in the AHAR based models are all statistically significant at a 1% significance level, 

confirming that future market volatility will react asymmetrically not only to 

yesterday’s negative returns, but also to past weekly and monthly returns. Their 

negative weighting also suggests that past negative shocks induce more market 

volatility than past positive ones. This is clearly depicted in Fig. 2 below, where the 

impact of past daily, weekly and monthly shocks on future realized volatility is shown. 

 

Insert !����" 

 

It is clear that past negative return events, irrespective of the time horizon, subscribe 

to future volatility variations more than positive ones. The volatility contribution 

hierarchy is analogous to that of the volatility components, with the weekly 
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standardized return being the prevailing contributor to the overall volatility, followed by 

the monthly one. However, it is interesting to note that past positive monthly shocks 

will also tend to increase volatility, while past positive daily and weekly shocks will 

have a negative impact on volatility. As far as we are aware, this is a novel finding, 

underlining the importance of including in the analysis the complete returns dataset and 

not just past negative returns. 

�

7��	����	
��
�
��
��
������
��
������

�

The presence of long memory in the residuals’ variance is depicted in Fig. 3, where 

the ELW fractional differencing parameter estimates, �� , for the HAR model squared 

residuals are shown for [ ]0.4,  0.7�∈ . 

 

Insert !����# 

 

For both indices, the ELW ��  estimates are statistically significant, thus confirming 

that not only realized volatility, but also the “volatility of realized volatility” is 

autocorrelated for longer time periods. The presence long memory process in the HAR 

residuals confirms the suitability of the proposed FIGARCH implementation for their 

modelling. The AHAR�FIGARCH residuals ��  MLE estimates shown in Tables 2 and 

3 are very close to the respective HAR squared residuals ��  ELW estimates, as 

expected.  

Finally for both indices, there is no noteworthy difference between the TTS realized 

volatility model coefficient estimates and the ones presented above, confirming the 
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robustness of our findings in the presence of microstructure noise (the estimation results 

are available from the authors upon request). 

 

���������������
����8���)�
�����
��

�

The estimation results for the ARFIMA based models are shown in Table 4. The lag 

structures minimizing the A(S)IC information criteria for the ARFIMA models were 

again determined through testing various lag combinations for { }0,1, 2� = , { }0,1, 2� = , 

{ }0,1� =  and { }0,16 = . For both indices, we adopted the following specifications for 

the respective models: an ( )ARFIMA 1, ,0�1� , an 

( )ARFIMA 1, ,0�1� − ( )FIGARCH 0, ,0��  and  an ( )ARFIMAX 0, ,1�1� −  

( )FIGARCH 0, ,0�� .  

 

Insert ���
�$ 

 

The MLE fractional differencing parameter, �1� , estimates vary between 0.49 and 

0.58 for both indices, confirming the respective ELW estimation results shown in Fig. 1. 

Moreover, the long range dependence in the conditional volatility of the ARFIMA 

residuals is also verified by the respective ��  MLE estimates, which for the ARFIMA�

FIGARCH and ARFIMAX�FIGARCH models range from 0.07 to 0.09 and are 

statistically significant. Finally, the ARFIMAX�FIGARCH ( )�ϑ  and ( )�γ  estimates 

confirm the asymmetric impact of past negative shocks on future volatility, as ( )�ϑ  is 

negative and statistically significant.  
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Overall, amongst the nine HAR and ARFIMA realized volatility models estimated 

here, the proposed model exhibits for both indices the best overall goodness of fit, as 

measured by the AIC and SIC criteria. Moreover, for both the HAR and ARFIMA 

models, when the conditional heteroscedasticity of the residuals and more significantly 

so the leverage effects are accounted for, the in�sample fitting as determined by the AIC 

and SIC criteria is considerably improved. Finally, the excess kurtosis values suggest 

that a more fat tailed distribution than the normal, might have been more appropriate. 

�

����
���
	��������������
��������	�
��������

�

In order to evaluate the realized volatility forecasting performance, a rolling window 

of *�  observations was used to re�estimate the models and produce �  out�of�sample 

day�ahead realized volatility forecasts calculated as:  

 ( ) ( )( )1/ 2
2

, 1 , / 1 / 1 , / 1
ˆ ˆ/     exp 0.5; ; ; ;

�1 � � �1 � � � � � � �� 8 ���σ σ σ− − − −= = +  (15) 

where / 1
ˆ ;

� ���� −  is the day�ahead logarithmic realized variance forecast and 2

, / 1

;

� � �σ −  is 

the model ;  residuals variance
10

, while �=1,000, 996 and 979 observations for the day 

ahead, five days and twenty�two days ahead realized volatility forecasts respectively, 

spanning from the 31
st
 December 2002 to the 29

th
 December 2006. For the five and 

twenty two days ahead realized volatility forecasts, the corresponding realized 

volatilities were computed as the square root of the sum of daily realized variances over 

each forecasting period.  

                                                 

 
10

  The transformation in Equation (15) is derived from the realized variance lognormality assumption: A 

random variable 
�
�  is lognormally distributed if log

� �
/ �=  is normally distributed. Then, the expectation 

of 
�
�  is ( ) ( )2

exp 0.5�� � � σ= + , with �  and 2σ  denoting the mean and the variance of 
�
�  

respectively, e.g. see Beltratti and Morana (2005) and Giot and Laurent (2004). 
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�
���5
����������������
�����	�
����������

�

In order to evaluate the model’s out�of sample realized volatility forecasting 

performance over the three forecasting horizons, we used the seven loss functions 

shown in Table 5 below.  

 

Insert ���
�%�

 

MSE and MAE stand for the Mean Square Error and Mean Absolute Error standard 

loss functions respectively. MAPE is the Mean Absolute Percentage Error and MLAE is 

the Mean Logarithm of Absolute Errors. The QLIKE criterion proposed by Bollerslev 
��

��" (1994) is the loss implied by a Gaussian likelihood. The R2LOG loss function of 

Pagan and Schwert (1990) is equivalent to the MSE, but for the logarithm of realized 

volatility. This loss function applies a greater penalty when forecasting errors occur in 

low volatility periods, than when they occur in high volatility periods. Using the MSE 

(R2LOG) criteria is equivalent to testing whether the R�square of the Mincer�Zarnowitz 

regressions for the (logarithmic) realized volatility of the benchmark model, is always 

greater than that of its counterparts (Marcucci, 2005). Finally, the HMSE is the 

Heteroscedastic Mean Squared Error proposed by Bollerslev and Ghysels (1996). 

The predictive ability of the realized volatility models was also assessed via 

Hansen’s (2005) Superior Predictive Ability (SPA) test. The SPA test relies on a 

predetermined loss function in order to test whether the null hypothesis that the 

benchmark model is not outperformed by any of its competitors, is rejected or not. The 

forecasting performance of the benchmark model, model 0 , with respect to model (  is 
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deduced from: , ,0 ,� ( � � (� 7 7= − , 1...( �=  and 1...� �= . Where ( ), , , / 1
ˆ, ;

� ; �1 � �1 � �7 7 σ σ −≡  

with 0,  ; (=  is the predetermined forecast loss function of the benchmark model and 

of model (  respectively. Under the null hypothesis and assuming stationarity for ,� (� , 

we expect that on average the forecasting loss function of the benchmark model will be 

smaller, or at least equal to that of model ( . Thus, the null hypothesis can be stated as: 

( )0 ,
1...

:  max    0( � (
( �

2 � ��
=

= ≤  and can be tested through the following test statistic: 

 
( )var1...

  max (

(

� ��0�

�
� �( �

�
=

=  (16) 

where ( ) 1 ,1/
�

�( � (� � �== ∑  and ( )var (� �  is the variance of (� � . Both 

( )var (� �  and the test statistic ��values are consistently estimated via stationary 

bootstrapping as in Politis and Romano (1994).  

The SPA test analysis focuses only on the MSE and QLIKE loss functions as these 

two measures have been shown to be robust against volatility proxy noise (see Patton, 

2006). Since realized volatility is a proxy for the true unobservable volatility, the 

aforementioned two loss functions yield consistent model rankings, without however 

diminishing the informative power of the other loss functions in Table 5.  

 

��
����
�<��������������
��������
�

�

In Tables 6 and 7, the Table 5 loss functions results, as well as each model’s relative 

performance rankings (in parenthesis) are shown for the S&P 500 and DJIA stock 

indices respectively. Across all forecasting horizons, the proposed AHAR�RPV�

FIGARCH model nearly always ranks first amongst the alternative models, minimizing 

the respective loss functions, with the exception of the DJIA index twenty�two days 
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ahead forecast where the AHAR�RPV�GARCH model ranks first. Note, that for the 

DJIA index where the persistence in the residuals’ variance is smaller than in the S&P 

500 index (e.g. see the Tables 2 and 3 and Fig. 3), the benefit of implementing an 

explicit long memory volatility specification for the residuals is moderated, especially 

for longer term forecasts. The AHAR�RPV�GARCH model according to most of the 

loss functions ranks second for the one and five days ahead forecasting horizons, 

followed by the AHAR�FIGARCH and the AHAR�GARCH models. For the S&P 500 

index and for the twenty�two days ahead horizon, the AHAR�FIGARCH ranks second 

(first for the QLIKE and HMSE loss functions), followed by the AHAR�RPV�GARCH 

and AHAR�GARCH models.  

As for the rest HAR and ARFIMA model variations, the HAR models with leverage 

effects (A�HAR, AHAR) typically outperform the more advanced ARFIMA models 

(ARFIMA�FIGARCH and ARFIMAX�FIGARCH). However, for the S&P500 index 

twenty�two days ahead forecasts, the aforementioned performance ranking is reversed. 

In turn, the AHAR model consistently outperforms the A�HAR one, underlining again 

the importance of considering the heterogeneity in the leverage effects.  

It is nonetheless clear that even though the inclusion of daily, weekly and monthly 

(absolute) standardized returns in the HAR regression reduces the heteroscedasticity in 

the residuals (see the ARCH�LM tests in Tables 2 and 3), a GARCH, or significantly 

more so, a FIGARCH implementation for the residuals invariably enhances the 

forecasting performance. Finally, the AFRIMA model performs, par from a few 

exceptions, better than the HAR�GARCH model, while the basic HAR model is the 

overall worst performing specification.  

 

Insert ���
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Insert ���
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From the results synopsis presented above, the following conclusions can be drawn: 

Firstly, regardless if an RPV regressor is used or not, accounting for asymmetric effects 

is as important as accounting for their heterogeneity: the AHAR model always 

outperforms the A�HAR one and the latter consistently outperforms the HAR. 

Secondly, as expected, we confirm that considering the conditional heteroscedasticity of 

the realized volatility residuals is essential in volatility modelling and forecasting 

applications, even with the presence of asymmetric effects in the volatility equation. 

However, it is now evident that the heteroscedasticity is better accounted for with a 

FIGARCH implementation which captures the long memory of the variance residuals. 

The models with a FIGARCH specification for their residuals outperform the respective 

models with GARCH ones, as almost all the loss functions results suggest. Finally, the 

RPV is a better predictor of realized volatility than the squared returns measure, 

significantly improving the volatility forecasting performance when added as a 

regressor.  

 

��
�������������������
�������(��	�

�

The out�of�sample volatility forecasting analysis for the HAR based models is once 

again evaluated using the TTS realized volatility estimates (see Table 8). For both 

indices and across all forecasting horizons, the AHAR�FIGARCH model outperforms 

all the other models as it minimizes almost all the loss functions. These results confirm 

that the aforementioned findings are robust to microstructure noise bias. However, in 
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tests run by the authors but not shown here, we noted that the inclusion of the RPV 

regressor did not significantly improve the model’s forecasting ability, when the 

dependent variable is the TTS realized volatility. 

 

Insert ���
�(�

�

��
��0���
���
����

�

The SPA test ��values for the MSE and QLIKE loss functions are shown in Table 9 

and align with the aforementioned findings. When the AHAR�RPV�FIGARCH or the 

AHAR�RPV�GARCH model is the benchmark model, the null hypothesis of superior 

performance is strongly accepted (at a 10% significance level), for both indices and both 

loss functions, for the short and mid term forecasting horizons (one and five days 

ahead). When an alternative realized volatility model is chosen as the benchmark model, 

then the null hypothesis is rejected, implying that another model, or models, produces 

statistically significant better forecasts. 

For the twenty�two days ahead forecast horizon, the null hypothesis is also accepted 

for the AFRIMA�FIGARCH and ARFIMAX�FIGARCH models, indicating that for 

longer term forecasts the ARFIMA models are competitive to the HAR models, 

potentially benefiting by their genuine long memory structure. Overall, the asymmetric 

RPV models exhibit the best out�of�sample forecasting performance, yielding for both 

functions the highest ��values for almost all the forecast horizons. 
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Building on the HAR realized volatility model proposed by Corsi (2009), we 

captured the leverage effects in the volatility process using (absolute) standardized 

returns of daily, weekly and monthly frequencies. The HAR error’s heteroscedasticity 

and long memory was also accounted for with a FIGARCH implementation. Moreover, 

we introduced the RPV as a regressor, which has been shown to be robust to jumps, has 

a smaller sampling error and is more predictable. In order to examine the robustness of 

our findings to microstructure noise, we also calculated the realized variance with a TTS 

estimator and then re�evaluated our models.  

The proposed AHAR�FIGARCH model produced the best in�sample fitting against 

the alternative HAR and ARFIMA based realized volatility models. The estimation 

results confirmed the appropriateness of our modelling as heterogeneity in the 

asymmetric effects was established, along with a long range dependence in the 

volatility’s residuals. Rankings of each model’s forecasting performance for seven 

established loss functions were also produced. Overall, the proposed model with the 

RPV as a regressor (i.e. the AHAR�RPV�FIGARCH), minimized the majority of the 

forecast loss functions, across all forecasting horizons and indices. The SPA test ��

values also confirmed that the AHAR�RPV�GARCH model was not, for the most part, 

outperformed by any other model. The TTS estimated realized volatility forecasting 

results demonstrated that the proposed model specification is also robust against the 

microstructure noise in the returns process.  

The published evidence so far concurs that despite the predominant economic 

significance of producing accurate volatility forecasts, there is no single “ideal” 

volatility model for all markets and for all financial applications. Here, we showed that 
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the proposed HAR specification can significantly improve the stock index volatility 

forecasting performance. We have no reason to doubt that similar improvements can 

also be realizable for other liquid stock indices. However, further investigation is 

necessary into the performance of the proposed specification in key financial 

applications like risk management, but also for capital allocation, derivatives pricing 

and hedging and for other asset classes, such as bonds and currencies.   
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  S&P 500  DJIA 
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� � ,

/
� �1 �
� σ �

2

,�1 �
σ �

2

,
log( )

�1 �
σ �  

�
� � ,

/
� �1 �
� σ �

2

,�1 �
σ �

2

,
log( )

�1 �
σ �

�
��� 0.0261 0.0882 0.9718 �0.433  0.0263 0.0742 1.0537 �0.3416 

�
����� 0.0492 0.0835 0.6224 �0.4741  0.0336 0.0458 0.6888 �0.3728 

��/����� 5.308 3.5254 13.2346 2.5828  6.2002 3.0564 17.6652 2.8716 

�������� �7.1127 �3.208 0.0543 �2.9133  �7.439 �3.0309 0.0555 �2.8915 

���"��
�"� 1.1459 1.1499 1.1658 0.8648  1.1075 1.0608 1.2942 0.8443 

�(
.�
� �0.0777 0.0977 4.4241 0.277  �0.1945 0.0789 4.6922 0.3079 

@������ 6.015 2.5655 32.235 3.0848  7.0752 2.608 35.5938 3.3817 

� ��������	
�����


=��6�
9

�
���
952 24 97,496 33  1751 19 120,219 55 

A�9����
B� [0.0000] [0.0000] [0.0000] [0.0000]  [0.0000] [0.0001] [0.0000] [0.0000] 

7����
���� 0.0493 0.0176 0.2189 0.0213  0.0517 0.0153 0.2264 0.0299 

A�9����
B� [0.0000] [0.0697] [0.0000] [0.0106]  [0.0000] [>0.1] [0.0000] [0.0000] 

���
���9

������	�
14.5295 1.7548 256.8931 2.3783  15.0759 1.4858 269.2609 3.2387 

A�9����
B� [0.0000] [0.0002] [0.0000] [0.0000]  [0.0000] [0.0008] [0.0000] [0.0000] 
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'��:2� ��2��� �2���

�2��9

'��:2�

�2��9

�8'��:2�

�0.006 �0.008 �0.074* �0.174* �0.177* �0.178* 
0
�  

(0.013) (0.013) (0.022) (0.032) (0.031) (0.031) 

0.301* 0.293* 0.213* 0.140* 0.139* 0.144* 
( )�
�  

(0.030) (0.035) (0.032) (0.032) (0.031) (0.032) 

0.422* 0.454* 0.507* 0.363* 0.381* 0.375* 
( ).
�  

(0.050) (0.052) (0.050) (0.053) (0.053) (0.052) 

0.170* 0.146* 0.171* 0.352* 0.344* 0.345* 
( )�
�  

(0.044) (0.044) (0.042) (0.046) (0.045) (0.045) 

��� ��� �0.137* �0.089* �0.083* �0.083* 
( )�
ϑ  

  (0.011) (0.012) (0.012) (0.012) 

��� ��� ��� �0.106* �0.104* �0.103* 
( ).
ϑ  

   (0.015) (0.015) (0.015) 

��� ��� ��� �0.056* �0.057* �0.058* 
( )�
ϑ  

   (0.016) (0.016) (0.015) 

��� ��� 0.081* 0.060* 0.059* 0.059* 
( )�
γ  

  (0.020) (0.019) (0.019) (0.018) 

��� ��� ��� 0.055* 0.055* 0.055* 
( ).
γ  

   (0.020) (0.020) (0.020) 

��� ��� ��� 0.092* 0.096* 0.096* 
( )�
γ  

   (0.022) (0.022) (0.021) 

0.280* 0.030 0.255* 0.240* 0.005 0.017 ω  
(0.010) (0.023) (0.010) (0.010) (0.004) (0.010) 

��� ��� ��� ��� ��� 0.222* 
�

�  
     (0.077) 

��� 0.057** ��� ��� 0.021** ��� 
1
α  

 (0.025)   (0.009)  

��� 0.832* ��� ��� 0.955* 0.736* 
1
β  

 (0.104)   (0.022) (0.070) 

��� ��� ��� ��� ��� 0.570* 
1
ϕ  

     (0.085) 

7�	7� �1,163 �1,153 �1,095 �1,049 �1,042 �1,040 

�8:� 1.573 1.563 1.483 1.427 1.420 1.419 

�8:� 1.591 1.588 1.508 1.466 1.467 1.469 

�(
.�
� 0.333 0.309 0.307 0.308 0.306 0.294 

�/�
�@���"� 0.529 0.559 0.610 0.766 0.828 0.784 

45 43 51 59 65 59 
=���

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

>(5) [0.560] [0.657] [0.095] [0.748] [0.829] [0.837] 

>(50) [0.244] [0.277] [0.182] [0.424] [0.229] [0.507] 

>
2
(5) [0.001] [0.259] [0.031] [0.319] [0.392] [0.794] 

>
2
(50) [0.212] [0.800] [0.657] [0.860] [0.976] [0.978] 

��:297�(&)� [0.0007] [0.4438] [0.005] [0.098] [0.257] [0.800] 

��:297�(+)� [0.0055] [0.6079] [0.057] [0.416] [0.752] [0.961] 

,��
- Standard errors are presented in parentheses. * and ** indicate statistical significance at 1%, and 

5% significance levels respectively.�7�	7�is the optimized value of the log likelihood. A(S)IC is the 

Akaike (Schwartz) Information Criterion. >(�) and >
2
(�) are the Ljung�Box statistics for h

th
 order serial 

correlation for the standardized and squared standardized residuals respectively. The ��values for the 

Jarque Bera (JB), >(
.
), >

2
(

.
) and the �7:297�(

.
) test statistics are depicted in brackets. 
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2���

2��9

'��:2� ��2��� �2���

�2��9

'��:2�

�2��9

�8'��:2�

0.002 �0.006 �0.070* �0.168* �0.168* �0.170* 
0
�  

(0.013) (0.013) (0.022) (0.031) (0.030) (0.030) 

0.291* 0.291* 0.224* 0.167* 0.170* 0.169* 
( )�
�  

(0.030) (0.034) (0.032) (0.032) (0.035) (0.032) 

0.450* 0.450* 0.510* 0.389* 0.400* 0.403* 
( ).
�  

(0.050) (0.053) (0.051) (0.054) (0.056) (0.053) 

0.144* 0.146* 0.154* 0.301* 0.291* 0.291* 
( )�
�  

(0.044) (0.044) (0.044) (0.045) (0.045) (0.046) 

��� ��� �0.114* �0.073* �0.070* �0.070* 
( )�
ϑ  

  (0.012) (0.013) (0.013) (0.013) 

��� ��� ��� �0.092* �0.088* �0.089* 
( ).
ϑ  

   (0.015) (0.016) (0.016) 

��� ��� ��� �0.050* �0.050* �0.050* 
( )�
ϑ  

   (0.016) (0.016) (0.016) 

��� ��� 0.091* 0.067* 0.067* 0.067* 
( )�
γ  

  (0.021) (0.020) (0.020) (0.020) 

��� ��� ��� 0.068* 0.065* 0.066* 
( ).
γ  

   (0.021) (0.021) (0.021) 

��� ��� ��� 0.089* 0.087* 0.088* 
( )�
γ  

   (0.022) (0.022) (0.022) 

0.265* 0.086** 0.249* 0.237* 0.078 0.162* ω  
(0.009) (0.042) 0.010 (0.010) (0.074) (0.029) 

��� ��� ��� ��� ��� 0.050** 
�

�  
     (0.024) 

��� 0.087* ��� ��� 0.046 ��� 
1
α  

 (0.031)   (0.038)  

��� 0.585* ��� ��� 0.621 ��� 
1
β  

 (0.178)   (0.331)  

��� ��� ��� ��� ��� ��� 
1
ϕ  

      

7�	7� �1,121 �1,113 �1,076 �1,040 �1,037 �1,037 

�8:� 1.517 1.508 1.458 1.414 1.414 1.412 

�8:� 1.535 1.533 1.483 1.454 1.460 1.455 

�(
.�
� 0.300 0.265 0.254 0.236 0.237 0.244 

�/�
�@���"� 0.767 0.653 0.796 1.019 0.921 0.911 

58 43 55 78  66 
=���

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

>(5) [0.255] [0.422] [0.136] [0.651] [0.715] [0.721] 

>(50) [0.074] [0.078] [0.049] [0.051] [0.050] [0.056] 

>
2
(5) [0.005] [0.207] [0.088] [0.534] [0.669] [0.953] 

>
2
(50) [0.201] [0.639] [0.035] [0.512] [0.631] [0.781] 

��:297�(&)� [0.005] [0.832] [0.057] [0.342] [0.632] [0.724] 

��:297�(+)� [0.009] [0.485] [0.131] [0.556] [0.908] [0.953] 

,��
-�Standard errors are presented in parentheses. * and ** indicate statistical significance at 1%, and 5% 

significance levels respectively.�7�	7�is the optimized value of the log likelihood. A(S)IC is the Akaike 

(Schwartz) Information Criterion. >(�) and >
2
(�) are the Ljung�Box statistics for h

th
 order serial 

correlation for the standardized and squared standardized residuals respectively. The ��values for the 

Jarque Bera (JB), >(
.
), >

2
(
.
) and the �7:297�(

.
) test statistics are depicted in brackets. 
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 S&P 500  DJIA 

 ���8�� 

���8��9

�8'��:2�

���8��C9

�8'��:2  ���8�� 

���8��9

�8'��:2�

���8��C9

�8'��:2 

�1
� � 0.497* 0.502* 0.584*  0.511* 0.509* 0.582* 

� (0.028) (0.029) (0.047)  (0.028) (0.029) (0.046) 
� � �0.565 �0.551 �0.669**  �0.356 �0.370 �0.442 

� (0.268) (0.272) (0.314)  (0.264) (0.254) (0.291) 

1
ψ � �0.107* �0.109* ���  �0.129* �0.121* ��� 

� (0.037) (0.038) ���  (0.036) (0.038) ��� 

1
δ � ��� ��� �0.255*  ���  �0.244* 

� ��� ��� (0.060)  ���  (0.059) 

( )�
ϑ � ��� ��� �0.091*  ���  �0.076* 

� ��� ��� (0.010)  ���  (0.011) 

( )�
γ � ��� ���  0.051*  ���  0.063* 

� ��� ��� (0.017)  ���  (0.018) 

�
� � ��� 0.093* 0.077*  ��� 0.078* 0.069* 

� ��� (0.025) (0.024)  ��� (0.025) (0.025) 
ω � 0.281* 0.138* 0.148*  0.265* 0.147* 0.152* 

� (0.010) (0.025) (0.027)  (0.009) (0.027) (0.028) 

7�	7� �1,166 �1,156 �1,118  �1,123 �1,117 �1,091 

�8:� 1.575 1.562 1.516  1.518 1.510 1.479 

�8:� 1.590 1.580 1.541  1.532 1.527 1.504 

�(
.�
� 0.328  0.305 0.330  0.279 0.261  0.253 

�/�
�@���"� 0.516 0.564 0.565  0.767 0.703 0.66 

43 42.8 46  55 47 43 
=���

[0.000] [0.000] [0.000]  [0.000] [0.000] [0.000] 

>(5) [0.240] [0.140] [0.275]  [0.295] [0.193] [0.483] 

>(50) [0.131] [0.079] [0.128]  [0.034] [0.018] [0.039] 

>
2
(5) [0.002] [0.800] [0.970]  [0.012] [0.619] [0.977] 

>
2
(50) [0.060] [0.899] [0.975]  [0.255] [0.672] [0.232] 

��:297�(&) [0.001] [0.964] [0.723]  [0.010] [0.997] [0.980] 

��:297�(+) [0.007] [0.810] [0.975]  [0.018] [0.626] [0.978] 

,��
-�Standard errors are presented in parentheses. * and ** indicate statistical significance at 1%, and 5% 

significance levels respectively.�7�	7�is the optimized value of the log likelihood. A(S)IC is the Akaike 

(Schwartz) Information Criterion. >(�) and >
2
(�) are the Ljung�Box statistics for h

th
 order serial correlation 

for the standardized and squared standardized residuals respectively. The ��values for the Jarque Bera (JB), 

>(
.
), >

2
(
.
) and the �7:297�(

.
) test statistics are depicted in brackets. 
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 1 day ahead 

 MSE MAE MAPE MALE QLIKE R2LOG HMSE 

HAR 0.02754 (11) 0.13093 (11) 0.22473 (11) �2.44812 (10) 0.54104 (10) 0.06521 (11) 0.05721 (9) 

HAR�GARCH 0.02698 (8) 0.12915 (9) 0.22145 (10) �2.47833 (9) 0.54056 (8) 0.06400 (9) 0.05664 (7) 

A�HAR 0.02567 (6) 0.12470 (6) 0.21038 (6) �2.49526 (7) 0.53752 (5) 0.05749 (6) 0.05047 (6) 

AHAR 0.02471 (5) 0.12124 (5) 0.20292 (5) �2.53066 (5) 0.53625 (4) 0.05446 (5) +�+$((%�4 5�

AHAR�GARCH 0.02436 (4) 0.12035 (4) 0.20129 (4) �2.53859 (4) 0.53611 (3) 0.05397 (4) 0.04897 (4) 

AHAR�FIGARCH 0.02429 (3) 0.12011 (3) 0.20081 (3) �2.55167 (2) 0.53608 (2) 0.05387 (3) 0.04903 (5) 

AHAR�RPV�GARCH 0.02422 (2) 0.12000 (2) 0.20053 (2) �2.54340 (3) +�%#%))�4 5� 0.05366(2) 0.04886 (2) 

AHAR�RPV�FIGARCH +�+"$ (�4 5� +�  )')�4 5� +�"++ &�4 5� 6"�%%)%$�4 5� +�%#%))�4 5� +�+%#&"4 5� 0.04895 (3) 

ARFIMA 0.02741 (10) 0.13019 (10) 0.22192 (9) �2.44282 (11) 0.54080 (9) 0.06428 (10) 0.05765 (11) 

ARFIMA�FIGARCH 0.02679 (7) 0.12813 (8) 0.21818 (8) �2.48507 (8) 0.54030 (7) 0.06302 (8) 0.05712 (8) 

ARFIMAX�FIGARCH 0.02710 (9) 0.12676 (7) 0.21337 (7) �2.50304 (6) 0.53999 (6) 0.06179 (7) 0.05761 (10) 

 5 days ahead 

 MSE MAE MAPE MALE QLIKE R2LOG HMSE 

HAR 0.07903 (11) 0.22149 (11) 0.15750 (11) �1.92672 (11) 1.36566 (11) 0.03447 (11) 0.03276 (11) 

HAR�GARCH 0.07678 (10) 0.21836 (10) 0.15511 (10) �1.93484 (10) 1.36525 (10) 0.03360 (10) 0.03198 (9) 

A�HAR 0.06925 (6) 0.20407 (6) 0.14334 (6) �2.03282 (6) 1.36317 (6) 0.02922 (6) 0.02798 (6) 

AHAR 0.06815 (5) 0.19887 (5) 0.13702 (5) �2.08784 (5) 1.36222 (5) 0.02720 (5) 0.02624 (5) 

AHAR�GARCH 0.06629 (4) 0.19707 (4) 0.13570 (4) �2.10483 (2) 1.36204 (4) 0.02673 (4) 0.02604 (2) 

AHAR�FIGARCH 0.06598 (3) 0.19666 (3) 0.13536 (3) 6"� +%($�4 5� 1.36202 (3) 0.02667 (3) 0.02607 (4) 

AHAR�RPV�GARCH 0.06589 (2) 0.19658 (2) 0.13529 (2) 62.09471 (3)� 1.36200 (2) 0.02660 (2) 0.02605 (3) 

AHAR�RPV�FIGARCH +�+&%$)�4 5� +� )&+(�4 5� +� #$)"�4 5� �2.09350 (4)  �#& )'�4 5� +�+"&% �4 5� +�+"&+#�4 5�

ARFIMA 0.07558 (9) 0.21737 (9) 0.15370 (9) �1.96463 (8) 1.36513 (9) 0.03309 (9) 0.03240 (10) 

ARFIMA�FIGARCH 0.07301 (8) 0.21339 (8) 0.15086 (8) �1.96396 (9) 1.36472 (8) 0.03219 (8) 0.03163 (8) 

ARFIMAX�FIGARCH 0.07260 (7) 0.21084 (7) 0.14761 (7) �1.98752 (7) 1.36433 (7) 0.03125 (7) 0.03108 (7) 

 22 days ahead 

 MSE MAE MAPE MALE QLIKE R2LOG HMSE 

HAR 0.36614 (11) 0.46121 (11) 0.15018 (11) �1.26200 (9) 2.12040 (11) 0.03282 (11) 0.03122 (10) 

HAR�GARCH 0.35599 (10) 0.45441 (9) 0.14793 (10) �1.26179 (8) 2.12003 (9) 0.03204 (10) 0.03046 (8) 

A�HAR 0.35048 (8) 0.44981 (8) 0.14572 (8) �1.27375 (7) 2.11969 (7) 0.03115 (8) 0.03015 (6) 

AHAR 0.34198 (7) 0.43575 (5) 0.14064 (5) 6 �## '(�4 5� 2.11905 (5) 0.02995 (5) 0.02868 (5) 

AHAR�GARCH 0.33365 (4) 0.43166 (3) 0.13927 (4) �1.31668 (5) 2.11888 (2) 0.02953 (3) 0.02849 (2) 

AHAR�FIGARCH 0.33209 (2) 0.43068 (2) 0.13894 (2) �1.32441 (2) "�  ((&�4 5� 0.02947 (2) +�+"($(�4 5�

AHAR�RPV�GARCH 0.33285 (3) 0.43173 (4) 0.13925 (3) �1.32093 (3) 2.11893 (4) 0.02957 (4) 0.02872 (4) 

AHAR�RPV�FIGARCH +�##+('�4 5� +�$#+%"�4 5� +� #(("�4 5� �1.31868 (4) 2.11889 (3) +�+")$&�4 5� 0.02866 (3) 

ARFIMA 0.35210 (9) 0.45681 (10) 0.14790 (9) �1.22333 (11) 2.12004 (10) 0.03170 (9) 0.03134 (11) 

ARFIMA�FIGARCH 0.34099 (5) 0.44845 (7) 0.14533 (7) �1.24961 (10) 2.11970 (8) 0.03098 (7) 0.03065 (9) 

ARFIMAX�FIGARCH 0.34112 (6) 0.44562 (6) 0.14346 (6) �1.28563 (6) 2.11953 (6) 0.03054 (6) 0.03042 (7) 
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 1 day ahead 

MSE MAE MAPE MALE QLIKE R2LOG HMSE 

HAR 0.03400 (10) 0.14391 (11) 0.23456 (11) �2.37560 (8) 0.59615 (9) 0.07068 (11) 0.06238 (8) 

HAR�GARCH 0.03375 (9) 0.14310 (9) 0.23303 (10) �2.37477 (9) 0.59587 (7) 0.07002 (10) 0.06197 (7) 

A�HAR 0.03229 (5) 0.13783 (6) 0.22141 (6) �2.41244 (6) 0.59306 (4) 0.06393 (6) 0.05646 (6) 

AHAR 0.03103 (4) 0.13411 (5) 0.21412 (5) �2.43164 (5) 0.59171 (3) 0.06059 (5) +�+%$)(�4 5�

AHAR�GARCH 0.03088 (3) 0.13357 (4) 0.21320 (4) �2.43635 (3) 0.59166 (2) 0.06039 (4) 0.05509 (4) 

AHAR�FIGARCH 0.03088 (3) 0.13354 (3) 0.21302 (3) �2.43243 (4) 0.59166 (2) 0.06036 (3) 0.05516 (5) 

AHAR�RPV�GARCH +�+#+&+�4 5� 0.13277 (2) 0.21157 (2) �2.45302 (2) +�%) $&�4 5� 0.05980 (2) 0.05500 (2) 

AHAR�RPV�FIGARCH 0.03061 (2) +� #"'&�4 5� +�"  $$�4 5� 6"�$%(#%�4 5� +�%) $&�4 5� +�+%)'(�4 5� 0.05507 (3) 

ARFIMA 0.03395 (8) 0.14331 (10) 0.23197 (9) �2.35751 (11) 0.59588 (8) 0.06967 (9) 0.06289 (11) 

ARFIMA�FIGARCH 0.03336 (6) 0.14143 (8) 0.22761 (8) �2.36889 (10) 0.59529 (6) 0.06804 (8) 0.06244 (9) 

ARFIMAX�FIGARCH 0.03338 (7) 0.14036 (7) 0.22474 (7) �2.38481 (7) 0.59507 (5) 0.06717 (7) 0.06281 (10) 

 5 days ahead 

 MSE MAE MAPE MALE QLIKE R2LOG HMSE 

HAR 0.08536 (11) 0.22905 (11) 0.15484 (11) �1.92239 (9) 1.42230 (10) 0.03360 (11) 0.03119 (11) 

HAR�GARCH 0.08487 (10) 0.22799 (10) 0.15400 (10) �1.90838 (11) 1.42211 (9) 0.03325 (10) 0.03068 (10) 

A�HAR 0.07425 (6) 0.21252 (6) 0.14220 (6) �1.96637 (6) 1.41989 (5) 0.02844 (6) 0.02667 (6) 

AHAR 0.07128 (5) 0.20555 (5) 0.13502 (5) �2.03602 (5) 1.41884 (4) 0.02843 (5) 0.02481 (5) 

AHAR�GARCH 0.07051 (4) 0.20430 (4) 0.13421 (4) �2.04570 (2) 1.41873 (3) 0.02596 (4) 0.02462 (3) 

AHAR�FIGARCH 0.07043 (3) 0.20422 (3) 0.13408 (3) �2.04446 (3) 1.41873 (3) 0.02593 (3) 0.02465 (4) 

AHAR�RPV�GARCH 0.06956 (2) 0.20315 (2) 0.13328 (2) 6"�+$&)(�4 5� 1.41863 (2) 0.02567 (2) +�+"$%'�4 5�

AHAR�RPV�FIGARCH +�+&)$)�4 5� +�"+#+$�4 5� +� ## $�4 5� �2.04294 (4)  �$ (&"�4 5� +�+"%&$�4 5� 0.02458 (2) 

ARFIMA 0.08172 (9) 0.22492 (9) 0.15122 (9) �1.91136 (10) 1.42174 (8) 0.03221 (9) 0.03054(9) 

ARFIMA�FIGARCH 0.08011 (8) 0.22157 (8) 0.14824 (8) �1.93425 (8) 1.42140 (7) 0.03210 (8) 0.03010 (8) 

ARFIMAX�FIGARCH 0.07835 (7) 0.21790 (7) 0.14540 (7) �1.94435 (7) 1.42095 (6) 0.03037 (7) 0.02939 (7) 

 22 days ahead 

 MSE MAE MAPE MALE QLIKE R2LOG HMSE 

HAR 0.38902 (11) 0.47317 (11) 0.14591 (11) �1.24074 (11) 2.17779 (11) 0.03141 (11) 0.02962 (11) 

HAR�GARCH 0.38482 (10) 0.46746 (10) 0.14407 (10) �1.26285 (9) 2.17750 (10) 0.03088 (10) 0.02883 (8) 

A�HAR 0.35515 (6) 0.45124 (6) 0.13897 (7) �1.29824 (6) 2.17668 (6) 0.02888 (6) 0.02792 (6) 

AHAR 0.34309 (5) 0.43626 (5) 0.13439 (5) �1.32586 (5) 2.17602 (5) 0.02767 (5) 0.02628 (5) 

AHAR�GARCH 0.33838 (3) 0.43309 (3) 0.13333 (3) �1.33379 (4) 2.17581 (2) 0.02728 (3) +�+"%')�4 5�

AHAR�FIGARCH 0.33882 (4) 0.43344 (4) 0.13337 (4) �1.33834 (3) 2.17585 (4) 0.02732 (4) 0.02591 (2) 

AHAR�RPV�GARCH +�##$( �4 5� +�$# %(�4 5� +� #"''�4 5� �1.34850 (2) "� '%(+�4 5� +�+"' &�4 5� 0.02597 (3) 

AHAR�RPV�FIGARCH 0.33519 (2) 0.43182 (2) 0.13279 (2) 6 �#%")"�4 5� 2.17583 (3) 0.02719 (2) 0.02608 (4) 

ARFIMA 0.37422 (9) 0.46482 (9) 0.14261 (9) �1.24730 (10) 2.17738 (9) 0.03024 (9) 0.02948 (10) 

ARFIMA�FIGARCH 0.36799 (8) 0.45784 (8) 0.14004 (8) �1.27711 (8) 2.17713 (8) 0.02968 (8) 0.02901 (9) 

ARFIMAX�FIGARCH 0.36250 (7) 0.45334 (7) 0.13848 (6) �1.27851 (7) 2.17685 (7) 0.02903 (7) 0.02859 (7) 
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� 1 day ahead�

�E0�+**� MSE MAE MAPE MALE QLIKE R2LOG HMSE 

HAR 0.02545 (5) 0.12797 (5) 0.24574 (5) �2.42973 (5) 0.43656 (5) 0.07380 (5) 0.06207 (5) 

A�HAR 0.02462 (4) 0.12427 (4) 0.23622 (4) �2.47604 (4) 0.43481 (4) 0.06952 (4) 0.05959 (4) 

AHAR 0.02367 (3) 0.12034 (3) 0.22804 (3) �2.51254 (3) 0.43319 (3) 0.06608 (3) 0.05648 (3) 

AHAR�GARCH 0.02307 (2) 0.11877 (2) 0.22524 (2) 6"�%$%$&�4 5� 0.43285 (2) 0.06513 (2) 0.05628 (2) 

AHAR�FIGARCH +�+"")%�4 5� +�  ($#�4 5� +�""$% �4 5� �2.53538 (2) +�$#"'&�4 5� +�+&$('�4 5� +�+%&"%�4 5�

� 5 days ahead�

�E0�+**� MSE MAE MAPE MALE QLIKE R2LOG HMSE 

HAR 0.06819 (5) 0.20515 (5) 0.16177 (5) �1.98649 (5) 1.26367 (5) 0.03651 (5)� 0.03463 (5) 

A�HAR 0.06942 (4) 0.20185 (4) 0.15736 (4) �2.03961 (4) 1.26318 (4) 0.03530 (4) 0.03409 (4) 

AHAR 0.06682 (3) 0.19411 (3) 0.14901 (3) �2.10834 (3) 1.26175 (3) 0.03236 (3) 0.03120 (3) 

AHAR�GARCH 0.06376 (2) 0.19029 (2) 0.14641 (2) �2.11952 (2) 1.26135 (2) 0.03149 (2) 0.03049 (2) 

AHAR�FIGARCH +�+&#"#�4 5� +� ()#)�4 5� +� $%&&�4 5� 6"� "$ "�4 5�  �"& "(�4 5� +�+# ")�4 5� +�+#+$#�4 5�

� 22 days ahead�

�E0�+**� MSE MAE MAPE MALE QLIKE R2LOG HMSE 

HAR 0.31042 (3) 0.43054 (4) 0.15572 (4) �1.28592 (4) 2.02073 0.03489 (4) 0.03455 (4) 

A�HAR 0.32753 (5) 0.43622 (5) 0.15688 (5) �1.28370 (5) 2.02132 0.03590 (5) 0.03611 (5) 

AHAR 0.31869 (4) 0.42104 (3) 0.15087 (3) �1.34205 (3) 2.02043 0.03433 (3) 0.03379 (3) 

AHAR�GARCH 0.30298 (2) 0.41113 (2) 0.14783 (2) 6 �#'(%$�4 5� 2.01995 0.03331 (2) 0.03283 (2) 

AHAR�FIGARCH +�"))&#�4 5� +�$+)$ �4 5� +� $' (�4 5� �1.36595 (2) "�+ )(%�4 5� +�+##+(�4 5� +�+#"' �4 5�

� 1 day ahead�

�=8�� MSE MAE MAPE MALE QLIKE R2LOG HMSE 

HAR 0.02515 (5) 0.12618 (5) 0.24126 (5) �2.45846 (5) 0.43795 (5) 0.07174 (5) 0.06001 (5) 

A�HAR 0.02425 (4) 0.12160 (4) 0.23107 (4) �2.54627 (2) 0.43624 (4) 0.06766 (4) 0.05736 (4) 

AHAR 0.02352 (3) 0.11934 (3) 0.22612 (3) �2.53401 (4) 0.43493 (3) 0.06500 (3) 0.05458 (3) 

AHAR�GARCH 0.02308 (2) 0.11803 (2) 0.22339 (2) �2.54121 (3) 0.43462 (2) 0.06411 (2) 0.05449 (2) 

AHAR�FIGARCH +�+"")'�4 5� +�  '''�4 5� +�""")"�4 5� 6"�%$'#$�4 5� +�$#$%#�4 5� +�+&#()�4 5� +�+%$#'�4 5�

� 5 days ahead�

�=8�� MSE MAE MAPE MALE QLIKE R2LOG HMSE 

HAR 0.06746 (5) 0.20329 (5) 0.16041 (5) �1.99894 (5) 1.26457 (5) 0.03582 (5) 0.03360 (5) 

A�HAR 0.06599 (4) 0.19758 (4) 0.15460 (4) �2.06719 (4) 1.26369 (4) 0.03383 (4) 0.03224 (4) 

AHAR 0.06433 (3) 0.19111 (3) 0.14775 (3) �2.13247 (3) 1.26260 (3) 0.03168 (3) 0.02987 (3) 

AHAR�GARCH 0.06229 (2) 0.18777 (2) 0.14531 (2) �2.14638 (2) 1.26231 (2) 0.03103 (2) 0.02944 (2) 

AHAR�FIGARCH +�+& &%�4 5� +� (&%%�4 5� +� $$##�4 5� 6"� ' )#�4 5�  �"&" )�4 5� +�+#+'$�4 5� +�+")"%�4 5�

� 22 days ahead�

�=8�� MSE MAE MAPE MALE QLIKE R2LOG HMSE 

HAR 0.30261 (3) 0.42755 (5) 0.15500 (5) �1.29708 (5) 2.02256 (4) 0.03416 (4) 0.03309 (4) 

A�HAR 0.30532 (5) 0.42217 (4) 0.15285 (4) �1.31018 (4) 2.02273 (5) 0.03427 (5) 0.03403 (5) 

AHAR 0.30498 (4) 0.41118 (3) 0.14889 (3) �1.36204 (3) 2.02228 (3) 0.03367 (3) 0.03264 (3) 

AHAR�GARCH 0.29477 (2) 0.40346 (2) 0.14646 (2) �1.40309 (2) 2.02197 (2) 0.03299 (2) 0.03207 (2) 

AHAR�FIGARCH +�") ++�4 5� +�$+ "&�4 5� +� $%%'�4 5� 6 �$+$#(�4 5� "�+" (+�4 5� +�+#"& �4 5� +�+# ''�4 5�
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� S&P 500 

� 1 day ahead� � 5 days ahead  22 days ahead 

� MSE QLIKE  MSE QLIKE  MSE QLIKE 

HAR 0.000 0.000  0.000 0.000  0.000 0.002 

HAR�GARCH 0.000 0.008  0.007 0.000  0.028 0.039 

A�HAR 0.000 0.015  0.071 0.000  0.008 0.047 

AHAR 0.000 0.000  0.000 0.001  0.001 0.013 

AHAR�GARCH 0.001 0.000  0.010 0.053 � 0.086 +�% $�

AHAR�FIGARCH 0.002 0.003 � 0.005 0.043 � +�#&$� +�))&�

AHAR�RPV�GARCH 0.071 0.089  +�"+&� +�%+(�  0.033 +� '"�

AHAR�RPV�FIGARCH +�)+)� +�% "�  +�(''� +�$)"�  +�)% � +�&"#�

ARFIMA 0.000 0.000  0.000 0.000  0.000 0.009 

ARFIMA�FIGARCH 0.014 0.000  0.052 0.000  +�%$)� +�#++�

ARFIMAX�FIGARCH 0.005 0.000  +� #+� 0.000  +�%)%� +�$+'�

 DJIA 

 1 day ahead� � 5 days ahead  22 days ahead 

� MSE QLIKE  MSE QLIKE  MSE QLIKE 

HAR 0.005 0.000  0.000 0.000  0.007 0.006 

HAR�GARCH 0.005 0.000  0.002 0.000  0.021 0.010 

A�HAR 0.014 0.000  0.067 0.000  0.065 0.023 

AHAR 0.000 0.000 � 0.001 0.000  0.004 0.000 

AHAR�GARCH 0.000 0.000 � 0.001 0.011 � 0.011 +�'$%�

AHAR�FIGARCH 0.000 0.000 � 0.001 0.014 � 0.003 +�  +�

AHAR�RPV�GARCH +�'##� +�&$'�  +�$#'� +�")"� � +�))$� +�)& �

AHAR�RPV�FIGARCH +�") � +�#%#�  +�)#"� +�'  � � +�% (� +� %"�

ARFIMA 0.000 0.000  0.008 0.001  0.038 0.042 

ARFIMA�FIGARCH 0.019 0.000  0.016 0.000  +� #)� 0.079 

ARFIMAX�FIGARCH 0.024 0.000  0.064 0.000  +�"$ � +�  &�

,��
- This Table shows the ��values of the SPA test statistic. The benchmark model, model 0, in the first 

column is tested against its competitors, models (, with (�= #F�. for the specific loss functions denoted in 

the subsequent columns. The null hypothesis that the benchmark model is not outperformed by any of its 

competitors for the specific loss function is accepted at a 10% significance level when the ��value is 

greater than 0.10. The bold face fonts indicate acceptance of the null at a 10% significance level. 
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