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Stock market crashes are outliers
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Abstract

We call attention against what seems to be a widely held misconception according to

which large crashes are the largest events of distributions of price variations with fat

tails. We demonstrate on the Dow Jones Industrial Average that with high proba-

bility the three largest crashes in this century are outliers. This result supports the

suggestion that large crashes result from specific amplification processes that might

lead to observable pre-cursory signatures.

PACS numbers : 01.75+m ; 02.50+s ; 89.90+n

1

http://arxiv.org/abs/cond-mat/9712005v3


Stock markets can exhibit very large motions, such as rallies and crashes. These

are the most extreme deviations from the ingrained Gaussian description that was

first shaken by Mandelbrot (see [1] and references therein) when he proposed to use

Lévy distributions. Lévy distributions are characterised by a fat tail decaying as a

power law with index between 0 and 2. Recently, physicists have characterised more

precisely the distribution of market price variations [2-4] and found that a power law

truncated by an exponential provides a reasonable fit at short time scales (less than

one day), while at larger time scales the distributions cross over progressively to the

Gaussian distribution which becomes approximately correct for monthly and larger

scale price variations. Alternative representations exist [5] corresponding to different

models inspired from an analogy with turbulence. These two classes of descriptions

can only be distinguished using higher order statistics [6].

This has led naturally to the idea that the stock market could exhibit self-

organising behaviour [7-10] where large motions can occur relatively often in contrast

to what is expected within the Gaussian description.

The purpose of this short note is to point out the shortcomings of this concept

when applied to the very largest crashes. We would like to stress the danger of

amalgamating the existence of large crashes with the existence of a fat tail in the

distribution of stock market prices. Our message is that the largest crashes of this

century are outliers.

This is suggested by figure 1, which shows the number of times a given level of

draw down has occurred in the Dow Jones Industrial Average in the period 1900-

1994. A draw down is defined as the cumulative loss from the last local maximum to

the next local minimum. The number of draw downs DD smaller than ≈ 15% is well

fitted by an exponential law

N(DD) = N0 e−DD/DDc , with DDc ≈ 1.8% . (1)

This exponential fall-off is compatible with the previous results [2-6] because the time

scales is already in the cross-over regime converging to the Gaussian distribution. The

three largest events seem to be outside the range of the exponential fit. These events

are in chronological order: World War 1, Wall Street 1929.8 and Wall Street 1987.8.

The largest is the crash of October 1987, then World War 1 and Wall Street 1929.8.
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To forestall any criticism related to the influence of the binning can have on the

appearance of such a fit, we have re-binned distribution of draw downs using a 4 times

larger bin, see figure 2. We still see an exponential distribution with approximately

the same decay constant (DDc ≈ 2.2 %) for all but the 3 largest crashes. Note that

the decrease in the distance between the crash of 1929 and the exponential fit is

partly due to the fact that the larger binning attributes a decrease of 22.0% to the

crash and not the correct value of 23.6%. Let us also mention that the draw down

have all approximately the same duration : the average duration is 3.3 days to be

compared with 3.2 for the 6 crashes larger than 15%.

To quantify how much these three events deviates from (1), we can calculate

what would be, according to (1), the typical return time of a draw down of amplitude

equal to or larger than the second largest of 28.8%. Expression (1) gives the number

of draw down equal to or larger than DD. Then N0 is simply the total number of

drawdown larger than 1% in a century. The fit yields N0 = 2360, which is not too

far from the exact number 2789 of drawn downs larger than 1%. Taking the largest

decay constant DDc of the two fits to be conservative, expression (1) predicts the

number of drawn downs equal to or larger than 28.8% per century to be ≈ 0.006. The

return time of draw down equal to or larger than 28.8% would then be the number

of centuries n such that 0.006 n ∼ 1. This yields n ∼ 160 centuries. Taking the other

value DDc = 1.8% yields a return time of 3000 centuries. In contrast, the market

has sustained two such events in less than a century.

As an additional test, we have used a more sophisticated null-hypothesis than

that of an exponential and generated 10.000 surrogate data sets corresponding to

approximately one million years using a GARCH(1,1) model estimated from the true

index with a t-student distribution with four degrees of freedom [11]. Among these

10.000 surrogate data sets only two had 3 draw downs above 22% and none had 4.

However, 3 of these 6 “crashes” showed a rather abnormal behaviour in the sense

that they were preceded by a draw up of comparable size as the “crash” (for real

crashes, the reverse is often seen, i.e., large crashes are typically followed by large

draw ups). This means that in a million years of “Garch-trading”, with a reset every

century, never did 3 crashes occur. Furthermore, none were preceded by log-periodic
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signatures as found for the 1929 and 1987 crashes [12, 14, 13].

Figure 3 shows the number of times a given level of draw up has occurred in the

Dow Jones Industrial Average of the same period. Here, a power law

N(UD) =
(

UD(+)

UD

)1+µ

, with µ ≈ 2.0 , (2)

accounts reasonably well for the data except for the very smallest events. There are

no outliers for the draw ups and the exponent is not unreasonably far from the value

around 1.5 that is found at smaller time scales. However, the difference is significant

and could be interpreted as an effective power law characterising the cross-over from

the truncated Lévy law at short time scales to the Gaussian distribution at long time

scales.

Crashes have recently been modelled as special critical crises [11-17]. The un-

derlying hypothesis is that stock market crashes are caused by the slow buildup of

powerful subterranean forces that come together in one critical instant. The use of

the word “critical” is not purely literary here : in mathematical terms, complex dy-

namical systems such as the stock market can go through so-called “critical” points,

defined as the explosion to infinity of a normally well-behaved quantity.

Both crashes and the price variations with their fat tail distributions and anoma-

lous correlations are thus proposed to be the result of endogenous self-organising

process, however they are not the same phenomenon. There is rather a coexistence

of self-organisation and criticality. Here, self-organisation refers to the globally sta-

tionary state of the market in normal times with fat tail distributions. The criticality

here describes the special times when a great crash occurs which has been documented

to be preceded by a rising susceptibility and pre-cursory signals in a way similar to

a critical instability. Such a coexistence between self-organisation and criticality has

been recently demonstrated in a hierarchical model of earthquakes [19], in which a

coexistence of self-organisation of the crust at large time scales and a critical nature

of large earthquakes were found. The critical nature of the large cascades emerges

from the interplay between the long-range correlations of the self-organised state and

the hierarchical structure of interactions : a given level of the hierarchical rupture is

like a critical point to all the lower levels, albeit with a finite size. The finite size

effects are thus intrinsic to the process.
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The fact that large crashes are outliers implies that they are probably triggered by

additional amplifying factors. An important consequence is that specific signatures

of their presence could exist, as proposed in [11-17] , similar to precursors before

instabilities. This is in contrast to the almost total absence of precursors before a

large avalanche which is NOT an outlier in a self-organised state [20].
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Figure 1: Number of times a given level of draw down has been observed in this
century in the Dow Jones Average. The bin-size is 1%. A threshold of 1% has been
applied. The fit is equation (1) with N0 ≈ 2360 and DDc ≈ 0.018.

Figure 2: Number of times a given level of draw down has been observed in this
century in the Dow Jones Average. The bin-size is 4%. A threshold of 1% has been
applied. The fit is equation (1) with N0 ≈ 3358 and DDc ≈ 0.022.

Figure 3: Number of times a given level of draw up has been observed in this century
in the Dow Jones Average. A threshold of 1% has been applied. The fit is equation
(2) with µ ≈ 2.0.
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