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Stock price prediction is an important issue in the 
nancial world, as it contributes to the development of e�ective strategies for
stock exchange transactions. In this paper, we propose a generic framework employing Long Short-Term Memory (LSTM) and
convolutional neural network (CNN) for adversarial training to forecast high-frequency stockmarket.	ismodel takes the publicly
available index provided by trading so�ware as input to avoid complex 
nancial theory research and di
cult technical analysis,
which provides the convenience for the ordinary trader of non
nancial specialty. Our study simulates the trading mode of the
actual trader and uses the method of rolling partition training set and testing set to analyze the e�ect of the model update cycle on
the prediction performance. Extensive experiments show that our proposed approach can e�ectively improve stock price direction
prediction accuracy and reduce forecast error.

1. Introduction

Predicting stock prices is an important objective in the

nancial world [1–3], since a reasonably accurate prediction
has the possibility to yield high 
nancial bene
ts and hedge
against market risks. With the rapid growth of Internet
and computing technologies, the frequency for performing
operations on the stock market had increased to fractions of
seconds [4, 5]. Since year of 2009 the BM&F Bovespa (the
Brazilian stock exchange) has worked in high-frequency, and
the number of high-frequency operations has grown from
2.5% in 2009 to 36.5% in 2013. Aldridge and Krawciw [6]
estimate that in 2016 high-frequency trading on average ini-
tiated 10%–40% of trading volume in equities and 10%–15%
of volume in foreign exchange and commodities. 	ese
percentages suggest that the high-frequency stock market is
a global trend.

In most cases, the forecast results are assessed from two
aspects: the 
rst is forecast error (chie�y the RMSE (Root
Mean Square Error) or RMSRE (Root Mean Square Relative
Error)) between real price and forecast value; the second is
direction prediction accuracy, which means the percentage
of correct predictions of price series direction, as upward and

downward movements are what really matters for decision-
making. Even small improvements in predictive performance
can be very pro
table [7, 8].

However, predicting stock prices is not an easy work, due
to the complexity and chaotic dynamics of the markets and
the many nondecidable, nonstationary stochastic variables
involved [9]. Many researchers from di�erent areas have
studied the historical patterns of 
nancial time series and
have proposed various methods for forecasting stock prices.
In order to achieve promising performance, most of these
ways require careful selection of input variables, establishing
predictive model with professional 
nancial knowledge, and
adopting various statistical methods for arbitrage analysis,
which makes it di
cult for people outside the 
nancial 
eld
to use these methods to predict stock prices [10–12].

Generative adversarial network (GAN) was introduced
by Goodfellow et al. [13], where images patches are generated
from random noise using two networks trained simultane-
ously. Speci
cally, in GAN a discriminative net � learns to
distinguish whether a given data instance is real or not, and
a generative net � learns to confuse � by generating high
quality data. Although this approach has been successful and
applied to a wide range of 
elds, such as image inpainting,
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semantic segmentation, and video prediction [14–16], as far
as we know, it has not been used for stock forecasting.

	is work uses basic technical index data as an input
variable, which can be acquired directly from trading so�-
ware, so that people outside the 
nancial 
eld can predict
stock price through our method easily. 	is study introduces
forecast error loss and direction prediction loss and shows
that generative adversarial training [13] may be successfully
employed for combining these losses to produce satisfying
predict results, and we call this prediction architecture GAN-
FD (GAN for minimizing forecast error loss and direction
prediction loss). For the purpose of conforming to the
practice of actual transactions, this work carries out rolling
segmentation on training set and testing set of the raw data,
and we will illustrate it in detail in the experimental section.

Overall, our main contributions are twofold: (1) we
adapted generative adversarial network for the purpose of
price prediction, which constitutes to our knowledge the

rst application of adversarial training to stock market, and
extensive experiments show that our prediction model can
achieve remarkable results and (2) we carry out rolling
segmentation on training set and testing set of the raw data to
investigate the e�ect the of model parameter update cycle on
the stock forecast performance, and the experimental results
show that smaller model update cycle can advance prediction
performance.

In the remainder of this paper, we begin with a review
of the literature on which algorithms have been used for the

nancial market prediction. 	en we formulate the problem
and propose our general adversarial network framework.
Furthermore, in the experiments section, we presented the
experimental analysis with the proposed model, as well as a
comparison between the obtained results with those given by
classical prediction models. Finally, conclusions and possible
extensions are discussed.

2. Related Work

	is section introduce the relatedwork from the stockmarket
prediction method and the generative adversarial network.

2.1. Stock Market Prediction Method. According to the re-
search developed in this 
eld, we can classify the techniques
used to solve the stock market prediction problems to
twofold.

	e 
rst category of related work is econometric models,
which includes classical econometric models for forecasting.
Common methods are the autoregressive method (AR), the
moving average model (MA), the autoregressive moving
average model (ARMA), and the autoregressive integrated
moving average (ARIMA) [17–19]. Roughly speaking, these
models take each new signal as a noisy linear combination of
the last few signals and independent noise terms. However,
most of them rely on some strong assumptions with respect
to the noise terms (such as i.i.d. assumption, �-distribution)
and loss functions, while real 
nancial data may not fully
satisfy these assumptions. By introducing a generalized
autoregressive conditional heteroscedastic (GARCH) model

for conditional variances, Pellegrini et al. [20] apply ARIMA-
GARCHmodel to the prediction of 
nancial time series.

	e second category involves so� computing based mod-
els. So� computing is a term that covers arti
cial intelligence
which mimics biological processes. 	ese techniques include
arti
cial neural networks (ANN) [21, 22], fuzzy logic (FL)
[23], support vectormachines (SVM) [24, 25], particle swarm
optimization (PSO) [26], and many others. Many authors
have tried to deal with fuzziness along with randomness in
option pricing models [27, 28]. Carlsson and Fullér [29] were
the 
rst to study the fuzzy real options and 	avaneswaran
et al. [30] demonstrated the superiority of the fuzzy fore-
casts and then derived the membership function for the
European call price by fuzzifying the interest rate, volatility,
and the initial value of the stock price. Recently there has
been a resurgence of interest in deep learning, whose basic
structure is best described as a multilayer neural network
[31]. Some literatures have established various models based
on deep neural networks to improve the prediction ability
of high-frequency 
nancial time series [32, 33]. 	e ability
of deep neural networks to extract abstract features from
data is also attractive, Chong et al. [12] applied a deep
feature learning-based stockmarket predictionmodel, which
extract information from the stock return time series without
relying on prior knowledge of the predictors and tested
it on high-frequency data from the Korean stock market.
Chen et al. [34] proposed a double-layer neural network for
high-frequency forecasting, with links specially designed to
capture dependence structures among stock returns within
di�erent business sectors. 	ere also exist a few studies
that apply deep learning to identi
cation of the relationship
between past news events and stock market movements [35–
37].

However, to our knowledge, most of these methods
require expertise to impose speci
c restrictions on the input
variables, such as combining related stocks together as entry
data [12], inputting di�erent index data to di�erent layers
of the deep neural network [34], and converting news text
into structured representation as input [36]. In contrast, our
proposed forecasting model directly uses the data provided
by the trading so�ware as input, which reduce the barrier for
ordinary investors.

2.2. Generative Adversarial Network. Generative adversarial
network (GAN) is a framework for estimating generative
models via an adversarial process, in which we simultane-
ously train twomodels: a generativemodel� that captures the
data distribution and a discriminativemodel� that estimates
the probability that a sample came from the training data
rather than �. 	e training procedure for � is to maximize
the probability of � making a mistake. 	is framework
corresponds to a minimax two-player game. In the space of
arbitrary functions � and D, a unique solution exists, with� recovering the training data distribution and � equal to
0.5 everywhere [13]. While� and� are de
ned bymultilayer
perceptrons in [13], most researches recently constructed �
and � on the basis of Long Short-Term Memory (LSTM)
[38] or convolutional neural network (CNN) [39] for a large
variety of application.
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Figure 1: GAN-FD architecture.	e generator (�) is founded on LSTM, which applies to predicting �̂�+1. 	e discriminator (�) is based on
CNN for the purpose of estimating the probability whether a sequence is real (Y) or being predicted (Ŷ). Conv. means convolutional layer,
FC is an abbreviation for fully connected layer. 	e structure of � and� can be adjusted according to the speci
c application.

LSTM is a basic deep learning model and capable of
learning long-term dependencies. A LSTM internal unit is
composed of a cell, an input gate, an output gate, and a
forget gate. LSTM internal units have hidden state augmented
with nonlinear mechanisms to allow state to propagate
without modi
cation, be updated, or be reset, using simple
learned gating functions. LSTM work tremendously well on
various problems, such as natural language text compression,
handwriting recognition, and electric load forecasting.

CNN is a class of deep, feed-forward arti
cial neural net-
works that has successfully been applied to analyzing visual
imagery. A CNN consists of an input layer and an output
layer, as well as multiple hidden layers. 	e hidden layers of a
CNN typically consist of convolutional layers, pooling layers,
fully connected layers, and normalization layers. CNN also
has many applications such as image and video recognition,
recommender systems, and natural language processing.

Although there are a lot of literatures forecast stock price
by using LSTM model, to the best of our knowledge, this
paper is the 
rst to adopt GAN to predict stock prices.
	e experimental part (Section 4.2) compares the prediction
performances between GAN-FC and LSTM.

3. Forecasting with High-Frequency Data

In this section, we illuminate the details of the generative
adversarial network framework for stock market forecasting
with high-frequency data.

3.1. Problem Statement. Under the high-frequency trading
environment, high-quality one-step forecasting is usually
of great concern to algorithmic traders, providing signi
-
cant information to market makers for risk assessment and
management. In this article, we aim to forecast the price
movement of individual stocks or the market index one step
ahead, based solely on their historical price information. Our
problem can be mathematically formalized as follows.

Let X� represent a set of basic indicators and �� denote
the closing price of one stock for a 1-minute interval at
time � (� = 1, 2, . . . , �), where � is the maximum lag
of time. Given the historical basic indicators information
X (X = {X1,X2, . . . ,X�}) and the past closing price Y (Y ={�1, �2, . . . , ��}), our goal is to predict the closing price ��+1
for the next 1-minute time interval. 	ere are literatures that
examined the e�ects of di�erent� [7, 12, 40], but, in thiswork,

we just set � to 242 because each trading day contains 242-
minute intervals in the China stock exchanges.

3.2. Prediction Model. 	e deep architecture of the proposed
GAN-FD model is illustrated as in Figure 1. Since the stock
data is a typical time series, we choose LSTM model, which
is widely applied to time series prediction, as the generative

model � to predict output �̂�+1 based on the input data X;
that is,

�̂�+1 = � (X) . (1)

	e discriminative model � is based on the CNN
architecture and performs convolution operations on the
one-dimensional input sequence in order to estimate the

probability whether a sequence comes from the dataset (Y ={�1, �2, . . . , ��, ��+1}) or being produced by a generative

model � (Ŷ = {�1, �2, . . . , ��, �̂�+1}).
Our main intuition on why to use an adversarial loss

is that it can simulate the operating habits of 
nancial
traders. An experienced trader usually predicts stock price
through the available indicator data, which is the work of the
generative model �, and then judges the correct probability
of his own forecast with the previous stock price, as the
discriminative model� does.

It is noteworthy that the structure of � and � in GAN-
FD can be adjusted according to speci
c application, and
the experimental part in this paper just proposed simple �
and � framework (Section 4.2) for stock prediction. It is
reasonable to believe that 
ne-tuning the structure of � and� can improve the predictive performance.

3.3. Adversarial Training. 	e training of the pair (�, �)
consists of two alternated steps, described below. For the sake
of clarity, we assume that we use pure SGD (minibatches of
size 1), but there is no di
culty to generalize the algorithm
to minibatches of size � by summing the losses over the
samples.

Training � (let (X,Y) be a sample from the dataset). In order
tomake the discriminativemodel� as “confused” as possible,
the generative model � should reduce the adversarial loss in
the sense that�will not discriminate the prediction correctly.

Classifying Y into class 1 and Ŷ into class 0, the adversarial
loss for � is

	�adv (Ŷ) = 	 sce (� (Ŷ) , 1) , (2)
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where 	 sce is the sigmoid cross-entropy loss, de
ned as

	 sce (A,B) = −∑
�

� log (sigmoid (� �))

+ (1 − 
�) log (1 − sigmoid (� �)) .
(3)

However, in practice, minimizing adversarial loss alone
cannot guarantee satisfying predictions. Imagine that� could

generate samples to “confuse”�, without being close to �̂�+1,
and then�will learn to discriminate these samples, leading�
to generate other “confusing” samples, and so on. To address
this problem, the generative model � ought to decrease the
forecast error loss; that is, 	� loss

	� (Y, Ŷ) = �����Y − Ŷ������ (4)

where � = 1 or � = 2.
Furthermore, as mentioned above, stock price direction

prediction is crucial to trading, so we de
ne direction pre-
diction loss function 	dpl:

	dpl (Y, Ŷ) = �����sgn (�̂�+1 − ��) − sgn (��+1 − ��)����� (5)

where sgn represents sign function.
Combining all these losses previously de
ned with di�er-

ent parameters �adv, ��, and �dpl, we achieve the 
nal loss on�:
	� (X,Y) = �adv	�adv (Ŷ) + ��	� (Y, Ŷ)

+ �dpl	dpl (Y, Ŷ) . (6)

	en we perform one SGD iteration on � to minimize	�(X,Y) while keeping the weights of� 
xed.

Training � (let (X,Y) be a di�erent data sample). Since the
role of � is just to determine whether the input sequence is

Y or Ŷ, the target loss is equal to the adversarial loss on D.
While keeping the weights of � 
xed, we perform one SGD
step on� to minimize the target loss:

	� (X,Y) = 	�adv (Y, Ŷ)
= 	 sce (� (Ŷ) , 0) + 	 sce (� (Y) , 1) . (7)

We train the generator and discriminator iteratively. 	e
entire process is summarized in Algorithm 1, withminibatch-
es of size �.

(1) Set the learning rates �� and ��, and parameters�adv, ��, �dpl;
(2) Initialize weights�� and��.
(3) while not converged do
(4) Update the generator �:
(5) Get � new data samples (X(1), Y(1)), (X(2),

Y(2)),. . ., (X(�), Y(�))
(6) �� = �� − �� �∑

�

�	�(X(�),Y(�))���
(7) Update the discriminator �:
(8) Get � new data samples (X(1), Y(1)), (X(2),

Y(2)),. . ., (X(�), Y(�))
(9) �� = �� − �� �∑

�

�	�(X(�),Y(�))���
(10) end while

Algorithm 1: Training GAN-FD.

4. Experiments

4.1. Dataset. Next, we evaluate the performance of the pro-
posed method based on the China stock market, ranging
from January 1, 2016, to December 31, 2016. 	ere are totally
244 trading days and each day contains 242-minute intervals,
corresponding to 59048 time points. 	ese stocks selected
for the experiment should conform to three criteria: 
rst,
they should be the constituent stock of ��� 300 (the CSI
300 is a capitalization-weighted stock market index designed
to replicate the performance of 300 stocks traded in the
Shanghai and Shenzhen stock exchanges); second, they were
not suspended during the period we just mentioned, in case
accidental events bring about signi
cant impact on their price
and a�ect forecast results; third, their closing prices in the
start time, that is, January 1, 2016, are above 30 to ensure
the volatility for high-frequency exchange. 	is leaves 42
stocks in the sample, which are listed in Table 1. 	e number
of increasing directions and decreasing directions for each
stock’s closing price per minute is also shown in Table 1, and
their numbers are relatively close. 	e historical data was
obtained from the Wind Financial Terminal, produced by
Wind Information Inc. (the Wind Financial Terminal can be
downloaded from http://www.wind.com.cn).

Many fund managers and investors in the stock market
generally accept and use certain criteria for technical indi-
cators as the signal of future market trends [12, 41]. 	is
work selects 13 technical indicators as feature subsets by
the review of domain experts and prior researches; that is,
the input data X at each moment (e.g., X�) consists of 13
basic indicators that can be obtained directly from almost all
trading so�ware. 	ese basic indicators are listed in Table 2,
and their parameters are using the default value of the Wind
Financial Terminal. As mentioned above, Y is de
ned as the
closing price at each moment.

Most of the related articles use the traditional data
partitioning method; that is, the entire dataset is directly split
into training set and testing set [12, 22, 40, 42]. However,

http://www.wind.com.cn
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Table 1: 	e sample stocks and their number of increasing direc-
tions and decreasing directions.

ID Stock code Increase Decrease

1 000156.SZ 28927 30120

2 000432.SZ 28879 30168

3 000783.SZ 28310 30737

4 000938.SZ 28537 30510

5 000963.SZ 29192 29855

6 002007.SZ 28933 30114

7 002027.SZ 28623 30424

8 002153.SZ 28566 30481

9 002183.SZ 28795 30252

10 002195.SZ 28861 30186

11 002241.SZ 29084 29963

12 002241.SZ 28737 30310

13 002252.SZ 28696 30351

14 002292.SZ 28385 30662

15 002304.SZ 28914 30133

16 002415.SZ 29036 30011

17 002456.SZ 28671 30376

18 002475.SZ 28837 30210

19 002594.SZ 28525 30522

20 300017.SZ 28528 30519

21 300024.SZ 28411 30636

22 300072.SZ 28884 30163

23 300124.SZ 28632 30415

24 300146.SZ 29137 29910

25 600038.SH 28428 30619

26 600085.SH 28856 30191

27 600118.SH 28456 30591

28 600150.SH 28537 30510

29 600332.SH 29174 29873

30 600340.SH 28773 30274

31 600519.SH 29118 29929

32 600535.SH 29013 30034

33 600570.SH 28053 30994

34 600588.SH 28483 30564

35 600685.SH 28627 30420

36 600718.SH 28881 30166

37 600754.SH 28307 30740

38 600783.SH 28680 30367

39 601318.SH 28979 30068

40 601336.SH 28643 30404

41 601888.SH 28919 30128

42 603885.SH 28817 30230

the trading style of the stock market changes frequently;
for example, investors sometimes prefer stocks with high
volatility and sometimes tend to invest in technology stocks.
	erefore, we should update the model parameters regularly
to adapt to the change of market style. In order to make
experiments closer to real transactions, we carry out rolling

Table 2: Basic indicators for prediction.

Indicators

Opening price

Maximum price

Minimum price

Trading volume

Turnover

Bias

Bollinger bands

Directional movement index

Exponential moving averages

Stochastic index

Moving averages

MACD

Relative strength index

Dataset

M

M

M

N

N

N

Figure 2: Rolling segmentation on training set and testing set. 	e
green bar represents the entire dataset, the blue bar represents the
training set for a round experiment, and the yellow bar represents
the corresponding testing set.

segmentation on training set and testing set of the experi-
mental data. As Figure 2 shows, in the beginning, we select
the 
rst� days as training set, and the next� days play the
role of testing set. A�er the 
rst round of experiments, we
roll forward the time window for � days, that is, choosing
the (�+1)th day to the (�+�)th day as training set and the(�+�+1)th day to the (�+2�)th day as testing set. Repeat
until all the data has been experimented. In other words, this� can be regarded as the model update cycle, and� is the
size of the corresponding training data.

4.2. Network Architecture. Given that the LSTM generator
takes on the role of prediction and requires more accurate
calculations of values than the CNN discriminator, we set the
learning rate �� to 0.0004 and �� to 0.02. 	e LSTM cell in� contains 121 internal (hidden) units and the parameters
are initialized following the normal distribution N(0, 1).
	e architecture of discriminative model � is presented in
Table 3. We train GAN-FD with � = 2 weighted by �adv =�� = �dpl = 1.
4.3. Benchmark Methods. To evaluate the performance of
our proposed method, we include three baseline meth-
ods for comparison. 	e 
rst model is ARIMA (1, 1, 1)-
GARCH(1, 1), a 
tted ARIMA model that forecasts future
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Table 3: Network architecture of discriminative model �.
Layer Con
guration

Convolution 1 Filter 32 × 4 × 1, strides 2, LReLU
Convolution 2 Filter 64 × 4 × 1, strides 2, LReLU, BN
Convolution 3 Filter 128 × 4 × 1, strides 2, LReLU, BN
FC 1 128, leaky ReLU

FC 2 2, sigmoid

Optimizer: SGD; batch size: 121; iterations: 10000; LReLU slope: 0.01.

Table 4: Summary of RMSRE with di�erent (M, N). 	ese 
gures are the average values over the 42 stocks.

� = 5 � = 10 � = 20� = 10 � = 20 � = 60 � = 10 � = 20 � = 60 � = 10 � = 20 � = 60
ARIMA-GARCH 0.0419 0.0406 0.0425 0.0529 0.0529 0.0516 0.0733 0.0657 0.0739

ANN 0.0419 0.0485 0.0531 0.0522 0.0522 0.0510 0.0739 0.0631 0.0631

SVM 0.0512 0.0450 0.0487 0.0539 0.0507 0.0527 0.0616 0.0666 0.0639

GAN-F 0.0151 0.0155 0.0157 0.0300 0.0243 0.0277 0.0326 0.0313 0.0299

GAN-D 0.0422 0.0304 0.0503 0.0625 0.0419 0.0405 0.0514 0.0598 0.0420

LSTM-FD 0.0200 0.0194 0.0180 0.0324 0.0230 0.0245 0.0321 0.0335 0.0357

GAN-FD 0.0098 0.0079 0.0101 0.0218 0.0111 0.0144 0.0333 0.0323 0.0296

values of stock time series and the GARCH model forecasts
future volatilities [20]. 	e second one is arti
cial neural
networks (ANN). 	e parameter optimization method and
model architectural is setting as in [21], except that the input
layer node is changed to 13 and the network outputs the
predicted value instead of two patterns (0 or 1).	e third one
is support vectormachines (SVM).AnRBF kernel is used and
the parameter is setting as in [25].

We also inspect our GAN-FD model from several ways.
	e GAN-F model is using a GAN architectural for mini-
mizing forecast error loss, with �adv = �� = 1 and �dpl= 0. 	e GAN-D model is using a GAN architectural for
minimizing direction prediction loss, with �adv = �dpl = 1
and �� = 0. 	e LSTM-FD model is a LSTM model aiming
at minimizing forecast error loss and direction prediction
loss, with 121 internal units in LSTM. Obviously, the main
di�erence between LSTM-FD and GAN-FD is the presence
of adversarial training.

4.4. Evaluation Metrics. For each stock at each time �, a
prediction is made for the next time point � + 1 based on
a speci
c method. Assume the total number of time points
being tested is �0; we used the following criteria to evaluate
the performance of di�erent models.

(1) Root Mean Squared Relative Error (RMSRE)

RMSRE = √ 1�0
�0∑
�=1
(�̂�+1 − ��+1��+1 )2. (8)

RMSRE is employed as an indicator for the predictive power
or prediction agreement. A low RMSRE indicates that the
prediction agreeswith the real data (the reasonwhy this paper
uses RMSRE instead of RMSE is that RMSRE facilitates a
uniform comparison of the results of 42 stocks).

(2) Direction Prediction Accuracy (DPA)

DPA = 100�0
�0∑
�=1
��, (9)

where

�� = {{{
1 if (��+1 − ��) (�̂�+1 − ��) > 00 otherwise

. (10)

DPA measures the percentage of accuracy relating to the
series trend. A high DPA promises more winning trades.

4.5. Results. In order to investigate the e�ect of the model
update cycle on the predictive performance, let� ∈ {10, 20,60} and � ∈ {5, 10, 20}. In China stock exchange market,{5, 10, 20, 60} days represent one week, two weeks, one
month, and one quarter.

Tables 4 and 5 show the average values of RMSRE and
DPAwith di�erent (�,�).	e numbers clearly indicate that
GAN-FD and its related methods perform better than three
baseline methods in terms of RMSRE and DPA.	is targeted
method GAN-F brings some improvement in RMSRE, but
it does not outperform three baseline methods in DPA.
Contrary to GAN-F, GAN-D achieves better results in DPA
but failed in RMSRE. LSTM-FD improves the results, since
it combines forecast error loss with direction prediction loss
for training. Finally the combination of the forecast error loss,
direction prediction loss, and adversarial training, that is,
GAN-FD, achieves the best RMSRE and DPA in the majority
of scenarios.

Let us take a look at the e�ects of di�erent (M, N) on the
experiment. GAN-FD obtains the maximum average DPA
(0.6956) and the minimum average RMSRE (0.0079) when
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Table 5: Summary of DPA with di�erent (M, N). 	ese 
gures are the average values over the 42 stocks.

� = 5 � = 10 � = 20� = 10 � = 20 � = 60 � = 10 � = 20 � = 60 � = 10 � = 20 � = 60
ARIMA-GARCH 0.5464 0.5479 0.5264 0.5280 0.5315 0.5245 0.5007 0.5214 0.5296

ANN 0.5456 0.5978 0.5738 0.5473 0.5629 0.5575 0.5205 0.5280 0.5394

SVM 0.5715 0.5490 0.5839 0.5377 0.5514 0.5576 0.5147 0.5144 0.5318

GAN-F 0.5347 0.5507 0.5281 0.4930 0.5115 0.5265 0.4880 0.5008 0.5116

GAN-D 0.6220 0.6399 0.6409 0.6117 0.6245 0.6437 0.5217 0.5517 0.5498

LSTM-FD 0.6340 0.6506 0.6509 0.6124 0.6236 0.6256 0.5546 0.5635 0.5719

GAN-FD 0.6761 0.6956 0.6793 0.6233 0.6651 0.6687 0.5535 0.5583 0.5753

Table 6: 	e number of times about the minimum RMSRE.

� = 5 � = 10 � = 20� = 10 � = 20 � = 60 � = 10 � = 20 � = 60 � = 10 � = 20 � = 60
ARIMA-GARCH 0 0 0 0 0 0 0 0 0

ANN 0 0 0 0 0 0 0 0 0

SVM 0 0 0 0 0 0 0 0 0

GAN-F 11 2 4 6 6 4 13 18 11

GAN-D 0 0 0 0 0 0 2 0 7

LSTM-FD 0 0 5 6 3 3 16 10 5

GAN-FD 31 40 33 30 33 35 11 14 19

Table 7: 	e number of times about the maximum DPA.

� = 5 � = 10 � = 20� = 10 � = 20 � = 60 � = 10 � = 20 � = 60 � = 10 � = 20 � = 60
ARIMA-GARCH 0 0 0 0 0 0 0 6 5

ANN 0 0 0 0 0 0 2 0 3

SVM 0 0 0 0 0 0 3 1 1

GAN-F 0 0 0 0 0 0 0 0 0

GAN-D 0 1 6 5 1 7 2 6 2

LSTM-FD 1 3 4 11 4 0 18 15 12

GAN-FD 41 38 32 26 37 35 17 14 19

(M, N) is (20, 5). It is interesting to note that all these
methods work better when � is 5 than when � is 10 or 20,
with smaller RMSRE and higher DPA. 	is implies that very
short-term trends are best for predicting the next minute’s
price. 	erefore, a shorter model update cycle (e.g., � is 5)
is preferred. On the other hand, for the same �, di�erent� will bring about some changes to the prediction results.
From the experimental results, we suggest that� should take
the value greater than �. 	is makes intuitive sense. If the
training sample is inadequate, it would fail to train themodel,
especially in the volatile stockmarkets.We should also notice
that when the training set is small while the testing set is
large (i.e., (M, N) is (10, 20)), most of these methods perform
the worst, and the DPA of these methods are no better than
random guessing (i.e., 50%).

Table 6 shows the number of times for each method
to achieve the minimum RMSRE over the 42 stocks. It is
noticeable that the results of these three baseline methods are
all zero. GAN-FDwith its related methods is obviously better
than these three baseline methods in RMSRE. Meanwhile,

GAN-FD obtains the minimum RMSRE 246 times, account-
ing for 65.08% in these 378 scenarios (42 stocks and 9 groups
(M, N)). 	e best performance appeared when (M, N) is (20,
5), with 40 stocks’ minimumRMSRE coming fromGAN-FD.

Table 7 shows the number of times for each method to
achieve the maximum DPA over the 42 stocks. Compared
with the other six methods, GAN-FD achieves the maximum
DPA 269 times, accounting for 71.16% in all scenarios. When
(M, N) is (10, 5), the maximum DPA of 41 stocks in all 42
stocks comes from GAN-FD. Even when (M, N) is (20, 20),
that is, the worst performance of GAN-FD cases, GAN-FD
still obtains maximum DPA in 14 stocks. From the above
analyses, the performance of the GAN-FD is signi
cantly
better than the other six ways.

	e results of each representation are reported in Figures
3–11. We just focus on GAN-FD. As shown in Figures 3–5,
the DPA of GAN-FD ranges around 64.59%–72.24% when�
is 5, and it slumps to 52.01%–62.71% when � is 20, which
is presented in Figures 9–11. When � is 5, the RMSRE of
GAN-FD over the 42 stocks varies between 0.48% and 1.49%,
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Figure 3: DPA and RMSRE of each stock when (M, N) is (10, 5) and $-axis represents the stock ID.
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Figure 4: DPA and RMSRE of each stock when (M, N) is (20, 5) and $-axis represents the stock ID.
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Figure 5: DPA and RMSRE of each stock when (M, N) is (60, 5) and $-axis represents the stock ID.
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Figure 6: DPA and RMSRE of each stock when (M, N) is (10, 10) and $-axis represents the stock ID.
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Figure 7: DPA and RMSRE of each stock when (M, N) is (20, 10) and $-axis represents the stock ID.
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Figure 8: DPA and RMSRE of each stock when (M, N) is (60, 10) and $-axis represents the stock ID.
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Figure 9: DPA and RMSRE of each stock when (M, N) is (10, 20) and $-axis represents the stock ID.
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Figure 10: DPA and RMSRE of each stock when (M, N) is (20, 20) and $-axis represents the stock ID.
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Figure 11: DPA and RMSRE of each stock when (M, N) is (60, 20) and $-axis represents the stock ID.

which is lower than other six methods in most cases, while
the volatility is smaller. However, the RMSRE of GAN-FD
increases dramatically and �uctuates violently when� is 20,
and it varies between 1.21% and 4.96%. 	is further shows
that we should reduce the model update cycle � and revise
the model parameters regularly to adapt to the change of
market style.

5. Conclusion

In this paper, we propose an easy-to-use stock forecasting
model called GAN-FD, to assist more and more non
nancial
professional ordinary investors making decisions. GAN-FD
adopts 13 simple technical indexes as input data to avoid
complicated input data preprocessing. Based on the deep
learning network, thismodel achieves prediction ability supe-
rior to other benchmark methods by means of adversarial
training, minimizing direction prediction loss, and forecast
error loss. Moreover, the e�ects of themodel update cycles on
the predictive capability are analyzed, and the experimental
results show that the smaller model update cycle can obtain
better prediction performance. In the future, we will attempt
to integrate predictive models under multiscale conditions.
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