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abstract

We propose a dynamically consistent framework that allows joint valuation

and estimation of stock options and credit default swaps written on the same

reference company. We model default as controlled by a Cox process with

a stochastic arrival rate. When default occurs, the stock price drops to zero.

Prior to default, the stock price follows a jump-diffusion process with stochas-

tic volatility. The instantaneous default rate and variance rate follow a bivariate

continuous process, with its joint dynamics specified to capture the observed

behavior of stock option prices and credit default swap spreads. Under this

joint specification, we propose a tractable valuation methodology for stock

options and credit default swaps. We estimate the joint risk dynamics using

data from both markets for eight companies that span five sectors and six

major credit rating classes from B to AAA. The estimation highlights the inter-

action between market risk (return variance) and credit risk (default arrival) in

pricing stock options and credit default swaps. (JEL: C13, C51, G12, G13)
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Markets for both stock options and credit derivatives have experienced dramatic
growth in the past few years. Along with the rapid growth, it has become increas-
ingly clear to market participants that stock option implied volatilities and credit
default swap (CDS) spreads are positively linked. Furthermore, when a company
defaults, the company’s stock price inevitably drops by a sizeable amount. As a re-
sult, the possibility of default on a corporate bond generates negative skewness in
the probability distribution of stock returns. This negative skewness is manifested
in the relative pricing of stock options across different strikes. When the Black and
Scholes (1973) implied volatility is plotted against some measure of moneyness
at a fixed maturity, the slope of the plot is positively related to the risk-neutral
skewness of the stock return distribution. Recent empirical works, for example,
Cremers et al. (2008), show that CDS spreads are positively correlated with both
stock option implied volatility levels and the steepness of the negative slope of the
implied volatility plot against moneyness.

In this paper, we propose a dynamically consistent framework that allows
joint valuation and estimation of stock options and credit default swaps written
on the same reference company. We model company default as controlled by a
Cox process with a stochastic arrival rate. When default occurs, the stock price
drops to zero. Prior to default, we model the stock price by a jump-diffusion pro-
cess with stochastic variance. The instantaneous default rate and the instantaneous
variance rate follow a bivariate continuous Markov process, with its joint dynam-
ics specified to capture the empirical evidence on stock option prices and CDS
spreads.

Under this joint specification, we propose a tractable valuation methodology
for stock options and CDS contracts. We estimate the joint dynamics of the default
rate and the variance rate using four years of stock option prices and CDS spreads
for eight reference companies that span five sectors and six major credit rating
classes from B to AAA. Our estimation shows that for all eight companies, the
default rate is more persistent than the variance rate under both statistical and risk-
neutral measures. The statistical persistence difference manifests different degrees
of predictability. The risk-neutral difference suggests that the default rate has a
more long-lasting impact on the term structure of option implied volatilities and
CDS spreads than does the variance rate.

The estimation also highlights the interaction between market risk (stock re-
turn variance) and credit risk (default arrival) in pricing stock options and CDS,
especially for companies with significant default probabilities. Shocks to the vari-
ance rate have a relatively uniform impact on the implied volatility skew along
the moneyness dimension, whereas the impacts of shocks to the default arrival
rate are larger on options at low strikes than on options at high strikes. Along
the option maturity dimension, the impact of variance rate shocks declines with
increasing option maturity, whereas the impact of the default risk increases with
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it. For companies with significant default probabilities, the contributions of the de-
fault rate and the variance rate are comparable in magnitude in certain segments
of the implied volatility surface, in particular at long maturities and low strikes.

The positive empirical relation between stock option implied volatilities and
CDS spreads has been recognized only recently in the academic community. As
a result, efforts to capture this linkage theoretically are only in an embryonic
stage. Hull, Nelken, and White (2004) link CDS spreads and stock option prices by
proposing a new implementation and estimation method for the classic structural
model of Merton (1974). As is well known, this early model is highly stylized as
it assumes that the only source of uncertainty is a diffusion risk in the firm’s asset
value. As a result, stock option prices and CDS spreads have changes that are per-
fectly correlated locally. Thus, the empirical observation that implied volatilities
and swap spreads sometimes move in opposite directions can only be accommo-
dated by adding additional sources of uncertainty to the model. When compared
to efforts based on the structural model of Merton (1974), our contribution amounts
to adding consistent, interrelated, but separate dynamics to the relation between
volatility and default. The CDS contracts and the stock options contain overlap-
ping information on the market risk and the credit risk of the company. Our joint
valuation and estimation framework exploits this overlapping informational struc-
ture to provide better identification of the dynamics of the stock return variance
and default arrival rate. The estimation results highlight the interrelated and yet
distinct impacts of the two risk factors on the two types of derivative securities.

Also related to our work is a much longer list of studies on the linkages
between the primary equity and debt markets. These studies can be classified into
two broad approaches. The first is the structural modeling approach proposed by
Merton (1974), who starts with a dynamic process (geometric Brownian motion) for
the firm’s asset value and treats the debt and equity of the firm as contingent claims
on the firm’s asset value.1 The other approach is often termed as reduced-form,
exemplified by another classic paper of Merton (1976), who recognizes the direct
impact of corporate default on the stock price process and assumes that the stock
price jumps to zero and stays there upon the random arrival of a default event.2

Merton uses the first approach to analyze the company’s capital structure and its
impact on credit spreads, but he chooses the latter to analyze the impact of corporate

1Various modifications and extensions on the debt structure, default triggering mechanisms, firm value
dynamics, and implementation procedures have been proposed in the literature. Prominent examples
include Black and Cox (1976), Geske (1977), Ho and Singer (1982), Ronn and Verma (1986), Titman
and Torous (1989) Kim, Ramaswamy, and Sundaresan (1993), Longstaff and Schwartz (1995), Leland
(1994, 1998), Anderson and Sundaresan (1996), Anderson, Sundaresan, and Tychon (1996), Leland and
Toft (1996), Briys and de Varenne (1997), Mella-Barral and Perraudin (1997) Garbade (1999), Fan and
Sundaresan (2000), Duffie and Lando (2001), Goldstein, Ju, and Leland (2001), Zhou (2001), Acharya
and Carpenter (2002), Huang and Huang (2003), Hull, Nelken, and White (2004), Bhamra, Kuehn, and
Strebulaev (2007), Buraschi, Trojani, and Vedolin (2007), Chen, Collin-Dufresne, and Goldstein (2008),
and Cremers, Driessen, and Maenhout (2008).

2Extensions and estimations of the jump-to-default-type models include Das and Sundaram (2004), Carr
and Linetsky (2006), Le (2007), and Carr and Wu (2008b).
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default on stock options pricing. Our work belongs to the latter approach as we
focus on the dynamic linkages between the two (equity and credit) derivatives
markets.

The remainder of this paper is organized as follows. The next section proposes
a joint valuation framework for stock options and CDS. Section 2 describes the
data set and summarizes the stylized evidence that motivates our specification.
Section 3 describes the joint estimation procedure. Section 4 presents the results
and discusses the implications. Section 5 concludes.

1 JOINT VALUATION OF STOCK OPTIONS AND CREDIT DEFAULT
SWAPS

We consider a reference company that has positive probability of defaulting. Let
Pt ≥ 0 denote the time-t stock price for this company. We assume that the stock
price P is strictly positive prior to default and falls to zero upon default. Let
(�, F , (Ft)t≥0, Q) be a complete stochastic basis defined on the risk-neutral prob-
ability measure Q. We assume that, prior to default, the company’s stock price is
governed by the following stochastic differential equation under the risk-neutral
measure Q,

d Pt/Pt− = (rt − qt + λt) dt +
√

vtdWP
t +

∫

R0
(ex − 1) (μ(dx, dt) − π (x)dxvtdt) , (1)

where Pt− denotes the time-t pre-jump level of the stock price; rt and qt denote
the instantaneous interest rate and dividend yield, respectively, which we as-
sume evolve deterministically over time; λt denotes the risk-neutral arrival rate of
the default event; and vt denotes the instantaneous variance rate that controls the
intensity of both the Brownian movement WP

t and the jump movement in stock
price prior to default. The incorporation of λt in the drift of the stock price process
compensates for the possibility of a default, so that the forward price of the stock
remains a martingale unconditionally under the risk-neutral measure.

The last term in Equation (1) under the integral denotes a jump martingale,
with μ(dx, dt) counting the number of jumps of size x and π (x)vtdxdt being its
compensator. The integral is over all possible jump sizes, defined on the whole real
line excluding zero, R0. Conditional on the instantaneous variance rate level vt , the
arrival rate of jumps of size x is controlled by π (x), which we specify as

π (x) =
{
ζ e−x/v+ x−1, x > 0
ζ e−|x|/v− |x|−1, x < 0,

(2)

where ζ controls the average arrival rate scale and (v+, v−) control the average sizes
of upside and downside jumps, respectively. With vt fixed, the π (x) specification
describes the variance-gamma Lévy jump process studied in Madan, Carr, and
Chang (1998). In this model, the jump arrival rate declines monotonically as the
absolute jump size declines. The singularity of the arrival rate at the origin leads
to an infinite number of jumps within any finite time interval. We use this high-
frequency jump component to describe the discontinuous stock price movements
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during normal market conditions, in contrast to the rare, but catastrophic, default
event that is controlled by a Cox process with arrival rate λt .

The pre-default stock price dynamics in Equation (1) is carefully specified
to match the observed stock price behaviors. Several studies have found that
high-frequency, infinite-activity jumps perform better than low-frequency, finite-
activity jumps in capturing both the time-series behavior of stock and stock index
returns (Carr et al., 2002; Li, Wells, and Yu, 2008) and the cross-sectional behavior
of stock index options (Carr and Wu, 2003a; Huang and Wu, 2004). In line with
such evidence, we include an infinite-activity jump component in the stock price
dynamics.

Questions arise on whether a diffusion component is still needed once an
infinite-activity jump is incorporated into the dynamics. In a pure Lévy setting, Carr
et al. (2002) and Carr and Wu (2003a) find that it is difficult to identify a diffusion
component in addition to an infinite-activity jump. On the other hand, Carr and Wu
(2003b) construct a simple and robust test on the presence of jumps and diffusion
components based on the asymptotic option price behavior as the option maturity
approaches zero. They find that a diffusion component is always present and
priced in the S&P 500 index options, whereas the additional contribution of a jump
component varies over time. Recently, Todorov and Tauchen (2008) construct an
activity signature function from discrete observations of a continuous process, and
show that the asymptotic properties of the function as the sampling frequency
increases can be used to make inferences on the activity behavior of the underlying
process. Estimating the signature function on dollar/mark exchange rates, they
also find supporting evidence for a diffusion component in addition to jumps.
Hence, we specify a jump-diffusion instead of a pure jump specification.

We allow both the instantaneous variance rate vt and the default arrival rate
λt to be stochastic, and we model their joint dynamics under the risk-neutral
probability measure Q as

dvt = (θv − κvvt) dt + σv

√
vtdWv

t , (3)

λt = βvt + zt , (4)

dzt = (θz − κzzt) dt + σz
√

ztdWz
t , E

[
dWzdWP

]
= E [dWzdWv] = 0 (5)

ρ = E
[
dWP dWv

]
/dt. (6)

The specifications are motivated by both empirical evidence and economic justi-
fication. It is well documented that stock return volatility is stochastic. We use a
square-root process in Equation (3) to model the dynamics of the instantaneous
variance rate of the stock return prior to default. There is evidence that credit
spreads of a company are positively related to the equity return volatilities of the
same company.3 Equation (4) captures this positive relation through a positive
loading coefficient β between the default arrival rate λt and the variance rate vt . It
is also important to accommodate the reality that credit spreads sometimes move

3See, for example, Collin-Dufresne, Goldstein, and Martin (2001), Campbell and Taksler (2003), Bakshi,
Madan, and Zhang (2006), Consigli (2004), and Zhu, Zhang, and Zhou (2005).
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independent of the stock and stock options market. We use zt to capture this inde-
pendent credit risk component, with its dynamics controlled by an independent
square-root process specified in (5). Finally, when the stock price falls, its return
volatility often increases. A traditional explanation that dates back to Black (1976)
is the leverage effect. So long as the face value of debt is not adjusted, a falling
stock price increases the company’s leverage and hence its risk, which shows up
in stock return volatility.4 Equation (6) captures this phenomenon via a negative
correlation coefficient ρ between diffusion shocks in return and diffusion shocks
in return variance.

1.1 Pricing Stock Options

Consider the time-t value of a European call option c (Pt , K , T) with strike price K

and expiry date T . The terminal payoff of the option is (PT − K )+ if the company
has not defaulted by that time, and is zero otherwise. The value of the call option
can be written as

c (Pt , K , T) = Et

[
exp

(
−

∫ T

t

(rs + λs) ds

)
(PT − K )+

]
, (7)

where Et [·] denotes the expectation operator under the risk-neutral measure Q and
conditional on the filtration Ft . Given the deterministic interest rate assumption,
we have

c (Pt , K , T) = B (t, T) Et

[
exp

(
−

∫ T

t

λsds

)
(PT − K )+

]
(8)

with B (t, T) denoting the time-t value of a default-free zero-coupon bond paying
one dollar at its maturity date T . The expectation can be solved by inverting the
following discounted generalized Fourier transform of the pre-default stock return,
ln(PT/Pt),

φ (u) ≡ Et

[
exp

(
−

∫ T

t

λsds

)
e iu ln(PT /Pt )

]
, u ∈ D ⊂ C, (9)

where D denotes the subset of the complex plane under which the expectation
is well defined. Under the dynamics specified in Equations (1)–(6), the Fourier
transform is exponential affine in the bivariate risk factor xt ≡ [vt , zt]⊤:

φ(u) = exp(iu(r (t, T) − q (t, T))τ − a (τ ) − b(τ )⊤xt), τ = T − t, (10)

where r (t, T) and q (t, T) denote the continuously compounded spot interest
rate and dividend yield at time t and maturity date T , respectively, and the

4Various other explanations have also been proposed in the literature; for example, Haugen, Talmor, and
Torous (1991), Campbell and Hentschel (1992), Campbell and Kyle (1993), Bekaert and Wu (2000), and
Carr and Wu (2008a).
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time-homogeneous coefficients [a (τ ), b(τ )] are given by

a (τ ) =
θv

σ 2
v

[
2 ln

(
1 −

ηv − κM
v

2ηv

(1 − e−ηvτ )
)

+
(
ηv − κM

v

)
τ

]

+
θz

σ 2
z

[
2 ln

(
1 −

ηz − κz

2ηz
(1 − e−ηzτ )

)
+ (ηz − κz)τ

]
, (11)

b(τ ) =

[
2bv(1 − e−ηvτ )

2ηv −
(
η − κM

v

)
(1 − e−ηvτ )

,
2bz(1 − e−ηzτ )

2ηz − (ηz − κz)(1 − e−ηzτ )

]⊤

(12)

with κM
v = κv − iuσvρ, ηv =

√
(κM

v )2 + 2σ 2
v bv , ηz =

√
(κz)2 + 2σ 2

z bz, bz = 1 − iu,

and bv = (1 − iu)β + 1
2 (iu + u2)+ζ (ln(1 − iuv+)(1 + iuv−) − iu ln(1 − v+)(1 + v−)).

Appendix A provides details of the derivation. Given φ(u), option prices can be
obtained via fast Fourier inversion (Carr and Wu, 2004).

1.2 Pricing Credit Default Swap Spreads

The most actively traded credit derivative in the over-the-counter market is a CDS
written on a corporate bond. The protection buyer pays a fixed premium, called
the CDS spread, to the seller periodically over time. If a certain pre-specified credit
event occurs, the protection buyer stops the premium payments and the protection
seller pays the par value in return for the corporate bond. The CDS spread is set at
inception so that the contract is costless to enter. As a result, the expected value of
the premium payment leg is set equal to the expected value of the protection leg.5

Consider a CDS contract initiated at time t and with maturity date T . Let
S(t, T) denote the fixed premium rate paid on this contract by the buyer of default
protection. Assuming one dollar notional and continuous payments for simplicity,
we can write the present value of the premium leg of the contract as

Premium(t, T) = Et

[
S(t, T)

∫ T

t

exp
(

−
∫ s

t

(ru + λu)du

)
ds

]
(13)

with r and λ denoting the instantaneous benchmark interest rate and default arrival
rate. Further, assuming that upon default, the underlying corporate bond recovers
a fixed fraction w of its par value, we can write the present value of the protection
leg as

Protection(t, T) = Et

[
(1 − w)

∫ T

t

λs exp
(

−
∫ s

t

(ru + λu)du

)
ds

]
. (14)

5For companies with high default probabilities, the industry often switches to another convention, under
which the protection buyer pays an upfront fee to the protection seller with the periodic premium
payment fixed at 500 basis points per annum of the notional amount. At the time of this writing, the
North America CDS market is going through further reforms to increase the fungibility and to facilitate
central clearing of the contracts. The convention on virtually all contracts is switching to fixed premium
payments of either 100 or 500 basis points, with upfront fees to settle the value differences between the
two legs.
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By equating the present values of the two legs, we can solve for the CDS spread
S(t, T) that sets the contract value to zero at initiation:

S(t, T) =
Et

[
(1 − w)

∫ T
t λs exp

(
−

∫ s
t (ru + λu)du

)
ds

]

Et

[ ∫ T
t exp

(
−

∫ s
t (ru + λu)du

)
ds

] , (15)

which can be regarded as a weighted average of the expected default loss.
Under the dynamics specified in Equations (3)–(6), we can solve for the present

values of the two legs of the CDS. The value of the premium leg can be written as

Premium(t, T) = S(t, T)
∫ T

t

B(t, s)Et

[
exp

(
−

∫ s

t

b⊤
λ0xudu

)]
ds (16)

with bλ0 = [β, 1]⊤. The affine dynamics for the bivariate risk factors x and the
linear loading function bλ0 dictate that the present value of the premium leg is an
exponential affine function of the state vector (Duffie, Pan, and Singleton, 2000):

Premium(t, T) = S(t, T)
∫ T

t

B(t, s) exp
(
− aλ(s − t) − bλ(s − t)⊤xt

)
ds, (17)

where the affine coefficients can be solved analytically:

aλ(τ ) =
θv

σ 2
v

[
2 ln

(
1 −

ηv − κv

2ηv

(1 − e−ηvτ )
)

+ (ηv − κv)τ
]

+
θz

σ 2
z

[
2 ln

(
1 −

ηz − κz

2ηz
(1 − e−ηzτ )

)
+ (ηz − κz)τ

]
, (18)

bλ(τ ) =
[

2β(1 − e−ηvτ )
2ηv − (η − κv) (1 − e−ηvτ )

,
2(1 − e−ηzτ )

2ηz − (ηz − κz)(1 − e−ηzτ )

]⊤

(19)

with ηv =
√

(κv)2 + 2σ 2
v β and ηz =

√
(κz)2 + 2σ 2

z .
The present value of the protection leg can be written as

Protection(t, T) = (1 − w)
∫ T

t

B(t, s)Et

[(
b⊤

λ0xs

)
exp

(
−

∫ s

t

b⊤
λ0xudu

)]
ds, (20)

which also allows for an affine solution

Protection(t, T) = (1 − w)
∫ T

t

B(t, s)(cλ(s − t) + dλ(s − t)⊤xt)

× exp(−aλ(s − t) − bλ(s − t)⊤xt) ds, (21)

where the coefficients (aλ(τ ), bλ(τ )) are the same as in (17), and the coefficients
(cλ(τ ), dλ(τ )) can also be solved analytically by taking partial derivatives against
(aλ(τ ), bλ(τ )) with respect to maturity τ :

cλ(τ ) = ∂aλ(τ )/∂τ, dλ(τ ) = ∂bλ(τ )/∂τ. (22)
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Table 1 List of companies.

Equity ticker Company name Sector Credit ratinga

C Citigroup Inc. Financial AA
DUK Duke Energy Corporation Utilities BBB
F Ford Motor Company Consumer Cyclical BB
FNM Fannie Mae Financial AAA
GM General Motors Corporation Consumer Cyclical B
IBM International Business Services A

Machines Corp
MO Altria Group, Inc. Consumer Non-Cyclical BBB
T AT&T Inc. Services A/BBB

aDuring our sample period, from May 2002 to May 2006.

Combining the solutions for the present values of the two legs in Equations (16) and
(21) leads to the CDS spread S(t, T). When we estimate the model, we discretize
the above equation to accommodate quarterly premium payments.

1.3 Market Prices of Risks and Time-Series Dynamics

Our estimation procedure identifies both the time-series dynamics and the risk-
neutral dynamics of the bivariate state vector xt = [vt , zt]⊤. To derive the time-series
dynamics for the bivariate vector xt under the statistical measure P, we assume that
the market prices of risks are proportional to the corresponding risk level. Under
this assumption, the time-series dynamics are

dvt =
(
θv − κP

v vt

)
dt + σv

√
vtdWvP

t , dzt =
(
θz − κP

z zt

)
dt + σz

√
ztdWzP

t , (23)

where κP
v = κv − σvγv and κP

z = κz − σzγv , with (γv , γz) denoting the two propor-
tional market price of risk coefficients on the two risk sources (Wv , Wz).

2 DATA AND EVIDENCE

We collect data on CDS spreads and stock option prices for eight reference com-
panies from May 8, 2002 to May 10, 2006. The choices of the sample period and
the company list are largely determined by data availability and coverage. The
eight companies are Citigroup Inc. (C), Duke Energy Corporation (DUK), Ford
Motor Company (F), Fannie Mae (FNM), General Motors Corporation (GM), In-
ternational Business Machines Corp (IBM), Altria Group, Inc. (MO), and AT&T
Inc. (T). Table 1 lists the eight companies, including their equity tickers, company
names, the sectors that they belong to, and their credit ratings during our four-year
sample period. The eight companies span six major rating classes from B to AAA,
and cover five different sectors including Financials, Utilities, Consumer Cyclical,
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Services, and Consumer Non-Cyclicals. Thus, the eight companies that we choose
cover a wide spectrum of credit ratings and industry sectors.

2.1 Data Description

We obtain the CDS spread quotes from several broker dealers. We cross-validate
the numbers and take the quotes from the most reliable source. The constructed
dataset includes six time series for each company at six fixed terms: one, two, three,
five, seven, and 10 years.

The stock options data are from OptionMetrics. Exchange-traded options on
individual stocks are American-style and hence the price reflects an early exer-
cise premium. OptionMetrics uses a binomial tree to back out the option implied
volatility that explicitly accounts for this early exercise premium. We estimate our
model specification based on their implied volatility estimates. At each time and
maturity, we take the implied volatility quotes of out-of-the-money options (call
options when the strike is higher than the spot, and put options when strike is
lower than the spot) and convert them into European option values based on the
Black and Scholes (1973) pricing formula.

Processing the options data involves careful considerations and delicate
choices. Normally, two options are available at each maturity and strike: one call
and the other put. For European options, put-call parity dictates that the put and
the call at the same maturity and strike have the same time value and thus the same
implied volatility. For model estimation, it suffices to pick one of them as the two
options contain identical information about the underlying stock price dynamics.
When the two options quotes deviate from put-call parity due to measurement er-
rors or market frictions (such as short-sale constraints), taking a weighted average
of the time values or implied volatilities of the two options can be a useful way
to reduce measurement noise. Since out-of-the-money options are more actively
traded than in-the-money options, the quotes on out-of-the-money options are
usually more reliable. Thus, the weight should be higher on the out-of-the-money
option than on its in-the-money counterpart. The exact weighting scheme becomes
an empirical issue and can vary across markets.

The American feature of the single name options adds another layer of com-
plexity. Directly using the model to generate American values is numerically dif-
ficult and computationally intensive. A commonly used shortcut is to extract the
Black–Scholes implied volatility from the price of an American option and use
the implied volatility to compute a European option value for the same maturity
date and strike. Put-call parity does not hold for American options, nor does it
need to hold for the European option values that we computed from the American
option prices. Apart from measurement errors and market frictions, in-the-money
options often have a higher chance of being exercised early and hence have a
shorter effective maturity—A ten-year option to be exercised tomorrow only has
an effective maturity of one day left. The implied volatility estimate on each option
reflects the volatility over the effective maturity horizon. Thus, when the implied
volatility has a nonflat term structure, the two implied volatility estimates from
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the American put and call will not be the same. In this case, we choose to use the
out-of-the-money option implied volatility except for near-the-money contracts.6

As discussed earlier, out-of-the-money options are more actively traded and the
quotes are usually more reliable. Furthermore, for American options, the effective
maturity of the out-of-the-money option is closer to the maturity of the contract.
Thus, the de-Americanization procedure introduces smaller approximation errors
for out-of-the-money options.

To price the CDS contracts and to convert the implied volatility into option
values, we also need the underlying interest rate curve. Following standard in-
dustry practice, we use the interest rate curve defined by the Eurodollar LIBOR
and swap rates. We download LIBOR rates at maturities of one, two, three, six,
nine, and 12 months and swap rates at two, three, four, five, seven, and 10 years.
We use a piecewise constant forward function in bootstrapping the discount rate
curve.

2.2 Summary Statistics of CDS Spreads

Table 2 reports the summary statistics of the CDS spreads on the eight reference
companies. Panel A reports the sample averages of the CDS spreads at each of the
six maturities and for each of the eight companies. At each maturity, the average
spread varies greatly across the eight reference names. The average spread is the
lowest for the AAA-rated Fannie Mae, followed by AA-rated Citigroup and then
by A-rated IBM. The average spreads on these A-level companies are less than 50
basis points across all six maturities. The next group are the BBB-rated companies,
including Duke Energy, Altria, and AT&T, with the credit spreads averaging be-
tween 50 and 200 basis points. Finally, BB-rated Ford and B-rated General Motors
have much higher average spreads over our sample period, ranging from three to
five percentage points. For all eight companies, the average spreads at long matu-
rities are much higher than the average spreads at short maturities. The differences
generate steeply upward sloping mean term structures on the CDS spreads.

Panel B of Table 2 reports the standard deviation estimates on the CDS spread
series. The standard deviation estimates are similar in magnitude to the average
spreads, suggesting large historical variations on each series. The only exception
is the spread on Fannie Mae, the standard deviation estimates of which are much
smaller than the already low mean spread estimates. We conjecture that the implicit
government guarantee on the agency debt not only lowers the credit spread level,
but also makes the spread stable over time.

The term structures of the standard deviations show different shapes for dif-
ferent companies, upward sloping for the three high-rating companies C, FNM,
and IBM, downward sloping for DUK, GM, MO, and T, and hump-shaped for F.
If the credit spread were driven by one strongly mean-reverting risk factor, we
would expect the standard deviations to be lower at longer maturities and hence

6We apply equal weight to the two at-the-money implied volatilities, but let the weight decline rapidly as
the option becomes in-the-money.
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Table 2 Summary statistics of credit default swap spreads.

CDS spreads, in basis points

Years C DUK F FNM GM IBM MO T

Panel A: Mean
1 0.136 0.566 2.885 0.094 3.527 0.193 1.352 1.469
2 0.169 0.602 3.717 0.122 4.220 0.228 1.461 1.629
3 0.203 0.601 4.087 0.152 4.592 0.261 1.539 1.680
5 0.275 0.700 4.442 0.216 4.787 0.335 1.602 1.868
7 0.327 0.749 4.476 0.259 4.776 0.398 1.675 1.965

10 0.401 0.847 4.492 0.308 4.783 0.489 1.769 2.075

Panel B: Standard deviation
1 0.118 0.659 2.395 0.048 4.211 0.178 1.122 1.980
2 0.131 0.660 2.653 0.052 4.393 0.175 1.027 1.897
3 0.141 0.490 2.668 0.055 4.210 0.191 0.950 1.688
5 0.150 0.460 2.538 0.059 3.732 0.199 0.756 1.567
7 0.151 0.416 2.428 0.056 3.482 0.188 0.699 1.473

10 0.156 0.482 2.315 0.058 3.335 0.198 0.656 1.399

Panel C: Autocorrelation
1 0.976 0.828 0.975 0.957 0.978 0.970 0.906 0.981
2 0.981 0.897 0.973 0.962 0.979 0.982 0.930 0.975
3 0.982 0.940 0.971 0.954 0.978 0.979 0.932 0.981
5 0.980 0.949 0.971 0.951 0.979 0.977 0.934 0.979
7 0.978 0.951 0.971 0.929 0.980 0.978 0.926 0.979

10 0.974 0.826 0.970 0.906 0.979 0.969 0.925 0.973

The statistics are based on weekly sampled data (every Wednesday) from May 8, 2002 to May 10, 2006;
210 observations for each series.

the standard deviation term structure to be downward sloping. The different term
structure shapes observed in CDS spreads suggest that credit risk factors can be
highly persistent under the risk-neutral measure. Panel C of Table 2 shows that the
weekly autocorrelation estimates on the CDS spreads are also very high, ranging
from 0.826 to 0.982. The high estimates suggest that the CDS spreads (and hence
credit risk factors) are also highly persistent under the statistical measure.

Figure 1 plots the time series of CDS spreads at selected maturities of one
year (solid lines), five years (dashed lines), and 10 years (dash-dotted lines). Each
panel is for one company. Seven of the eight chosen companies have experienced
dramatic credit spread variations during our sample period. The CDS spreads
have spiked for these companies at least once during our sample period. The
one exception is Fannie Mae, which shows the stabilizing effect of the implicit
government guarantee. The three lines in each panel also reveal the CDS term
structure and its variations. The long-term CDS spreads are on average wider than
the short-term CDS spreads, especially during calm periods; but the term structure
can become downward sloping when the CDS spread level spikes.
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Figure 1 The time series of CDS spreads at selected maturities of one year (solid lines), five years
(dashed lines), and 10 years (dash-dotted lines). Each panel is for one company.
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2.3 Summary Statistics of Stock Option Implied Volatilities

The exchange-listed stock options are quoted at fixed strike prices and expira-
tion dates. As calendar time passes and the underlying stock price changes, the
moneyness and time-to-maturity of each contract also change. To analyze the cross-
sectional behavior of the options across different levels of moneyness and maturity,
we perform nonparametric regressions on the option implied volatilities against the
time to maturity (τ ) and a standardized moneyness measure d ≡ ln(K/Pt)/(IV

√
τ ),

where K denotes the strike price and IV denotes the Black–Scholes implied volatil-
ity of the option. We perform nonparametric regression using an independent
bivariate Gaussian kernel and a default choice of bandwidth that is proportional
to σx N−1/6, with N being the number of observations and σx being the standard
deviation of the regressor x.

Figure 2 plots the nonparametrically estimated mean implied volatility sur-
face for the eight companies, one company in each panel. Compared to the large
cross-sectional variation of the average CDS spreads across the eight companies,
the average implied volatility levels vary within a narrower range of 20%–70%.
The eight mean implied volatility surfaces also share similar shapes. The mean
implied volatility exhibits the well-documented smile pattern along the money-
ness dimension at short maturities, but this smile gradually becomes a negatively
sloped skew at longer maturities.7 It has been well appreciated that the implied
volatility smiles and skews along the moneyness direction are direct results of
conditional non-normality in the underlying stock returns under the risk-neutral
measure. The positive curvature of the smile reflects fat tails (positive excess
kurtosis) in the risk-neutral return distribution, whereas the negative slope of
the implied volatility skew indicates negative skewness in the risk-neutral return
distribution. Under our model specification, negative risk-neutral return skewness
can come from three sources: (i) positive probability of default (λ > 0), (ii) asymme-
try in the high-frequency jump component (v− > v+), and (iii) negative correlation
between the return Brownian motion component and its instantaneous variance
rate (ρ < 0).

To analyze the time-series behavior of implied volatility, we interpolate to
create implied volatility estimates at fixed levels of moneyness and maturity at
each date. We first perform a local quadratic regression of the implied variance on
the standard moneyness measure d at each observed maturity and date. The local
quadratic regression generates not only the interpolated implied variance, but also
the slope and curvature estimates of the locally quadratic fit at each moneyness
point. Then, at each fixed moneyness level, we perform linear interpolation along
the maturity dimension on the total variance and the implied variance slope to
generate the implied variance and the implied variance skew at fixed maturities.

Table 3 reports the summary statistics of the interpolated implied volatility
time series at selected moneyness levels and maturities. We choose two maturities,

7Dennis and Mayhew (2002) and Bakshi, Kapadia, and Madan (2003) have examined the negative skew
of the implied volatility plot for individual stock options.
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Figure 2 Mean implied volatility surface across moneyness and time to maturity. The mean
implied volatility surface as a function of time to maturity τ and a standardized moneyness
measure d is estimated nonparametrically with an independent bivariate Gaussian kernel. Each
panel represents one company.
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Table 3 Summary statistics of interpolated implied volatility series.

Implied volatilities, in percentages

Days d C DUK F FNM GM IBM MO T

Panel A: Mean
30 −1 29.824 35.612 49.636 34.407 45.991 28.806 33.043 33.078
30 0 24.623 28.965 40.640 28.115 37.725 24.594 27.342 28.294
30 1 22.414 27.007 38.038 25.354 34.733 23.256 26.021 25.815

360 −1 30.873 35.751 51.194 34.390 52.742 29.116 34.660 31.994
360 0 24.878 28.685 40.160 27.725 38.767 24.429 27.179 27.483
360 1 21.150 25.434 35.371 23.548 29.808 21.604 23.703 24.422

Panel B: Standard deviation
30 −1 15.587 20.607 15.462 8.296 19.377 13.057 9.924 15.456
30 0 12.322 15.578 11.740 6.035 14.491 10.274 7.638 12.919
30 1 10.445 13.061 9.909 4.625 12.062 8.488 6.404 11.954

360 −1 10.037 16.309 13.536 5.228 20.755 9.369 5.977 10.619
360 0 8.229 11.731 10.393 3.422 14.381 7.760 4.336 8.802
360 1 6.650 9.341 8.017 2.399 7.829 6.392 3.884 7.942

Panel C: Autocorrelation
30 −1 0.943 0.949 0.927 0.871 0.932 0.960 0.788 0.909
30 0 0.939 0.941 0.908 0.838 0.927 0.951 0.753 0.928
30 1 0.929 0.947 0.900 0.817 0.924 0.937 0.753 0.942

360 −1 0.980 0.976 0.957 0.942 0.974 0.989 0.915 0.985
360 0 0.979 0.975 0.956 0.926 0.969 0.987 0.914 0.984
360 1 0.974 0.974 0.956 0.899 0.952 0.983 0.931 0.983

Entries report the sample estimates of the mean, standard deviation, and weekly autocorrelation on
interpolated implied volatility series at selected fixed moneyness levels and maturities. We first perform
a local quadratic nonparametric regression of the implied variance on moneyness to obtain implied
variance at fixed moneyness levels for observed maturities. The moneyness of each option is defined
as d ≡ ln(K/Pt)/(IV

√
τ ), where K denotes the strike, Pt the stock price level, IV the implied volatility

estimate, and τ the time to maturity. Then, at each fixed moneyness level, we interpolate across the
maturity dimension using piecewise linear interpolation on the total variance. The statistics on the
interpolated series are based on weekly sampled data (every Wednesday) from May 8, 2002 to May 10,
2006; 210 observations for each series.

one at the short end at one month (30 days), and the other at the long end at
one year (360 days). At each of the two maturities, we choose three moneyness
levels at d = −1, 0, 1. Approximately speaking, d = −1 corresponds to a strike
that is one standard deviation below the current spot price level and d = 1 corre-
sponds to a strike that is one standard deviation above the current spot price level.
Panel A reports the sample average of the implied volatility levels. The average
implied volatility levels are mostly in the range of 20%–50%, with the averages
for BB-rated Ford and B-rated General Motors higher than the averages for the
other companies with higher credit ratings. At each maturity and for each com-
pany, the average implied volatility at d = −1 is higher than the average implied
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Table 4 Co-movements of credit spreads with stock option implied volatilities and
implied variance skews.

Days d C DUK F FNM GM IBM MO T

Panel A: Implied volatility
30 −1 0.177 0.457 0.424 0.157 0.498 0.223 0.560 0.134
30 0 0.147 0.449 0.370 0.146 0.450 0.200 0.482 0.110
30 1 0.145 0.435 0.395 0.169 0.438 0.183 0.411 0.113

360 −1 0.257 0.536 0.590 0.244 0.786 0.307 0.711 0.257
360 0 0.269 0.540 0.577 0.257 0.774 0.310 0.618 0.175
360 1 0.248 0.469 0.558 0.250 0.646 0.298 0.462 0.103

Panel B: Negative implied variance skew
30 −1 0.183 0.469 0.286 0.076 0.488 0.287 0.674 0.103
30 0 0.169 0.475 0.293 0.096 0.490 0.309 0.667 0.085
30 1 0.151 0.492 0.304 0.050 0.470 0.262 0.649 0.055

360 −1 0.235 0.451 0.504 0.195 0.762 0.235 0.817 0.259
360 0 0.232 0.462 0.493 0.204 0.758 0.250 0.817 0.225
360 1 0.247 0.460 0.370 0.176 0.723 0.188 0.698 0.146

Entries report the cross-correlation estimates between weekly changes in the average CDS spreads for
each company and weekly changes in the stock option implied volatility (panel A) and the negative
of the implied variance skew (panel B) across different maturities and moneyness. We use a simple
average of the six CDS series as an average credit spread series for each company. To obtain the implied
volatility and skew series at fixed time to maturities and moneyness, we first perform a local quadratic
regression of the implied variance on the moneyness d to obtain implied variance and its slope at fixed
moneyness levels for observed maturities. Then, at each fixed moneyness level, we linearly interpolate
on total variance and the skew to obtain the implied variance and skew at fixed time to maturities. The
statistics are based on weekly sampled data (every Wednesday) from May 8, 2002 to May 10, 2006; 210
observations for each series.

volatility at d = 1, consistent with the negatively sloped skew observed in
Figure 2. At each fixed moneyness, the average implied volatility does not show
much variation across the two maturities. By contrast, the standard deviation
estimates reported in panel B show significantly smaller magnitudes at longer
maturities. The downward sloping standard deviation term structure is consis-
tent with mean-reverting variance risk dynamics under the risk-neutral measure.
The last panel (panel C) in Table 3 reports the weekly autocorrelation estimates of
the implied volatility series. The estimates are high, suggesting that the implied
volatility series are highly persistent in their time-series dynamics.

2.4 Co-Movements between Option Implied Volatilities and CDS
Spreads

To analyze how a company’s CDS spreads co-move with the company’s stock
options, Table 4 measures the cross-correlation of the weekly changes in the aver-
age CDS spread for a company with weekly changes in the stock option implied
volatility levels (panel A) and the implied variance skews (panel B) of the same
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company at different levels of moneyness and maturity. For each company and at
each date, we use a simple average of the six CDS quotes at the six maturities to
represent the average CDS spread for the company.

The estimates in panel A show that the correlations between the credit spreads
and the stock option implied volatilities are universally positive across all com-
panies, all maturities, and all moneyness levels. For each company, the correla-
tion estimates are in general higher at low strikes (d = −1) than at high strikes
(d = 1). The estimates are also higher at one year than at one month maturities.
Under our model specification, this positive correlation can come from two ma-
jor sources. First, the positive loading coefficient β in Equation (4) generates a
direct positive linkage between stock return variance and the default arrival rate.
Second, the default arrival rate itself contributes positively to the option implied
volatility.

The implied variance skew estimates are predominantly negative, especially at
long maturities and low strikes. Panel B of Table 4 reports the correlation estimates
between weekly changes in the credit spread and weekly changes in the negative
of the implied variance skew at different maturities and moneyness. The estimates
are again universally positive, suggesting that when a company’s credit spread
widens, its implied variance skew becomes more negatively skewed. Overall, the
implied variance skew at longer maturities show higher correlation with the credit
spread.

In Figure 3, we overlay the time series of the average CDS spread (solid
line) with the one-year stock option implied volatility at d = 0 (dashed line) and
the negative of the one-year implied variance skew at d = 0 (dash-dotted line),
one panel for each company. To accommodate the scale differences in the same
plot, we normalize each time series to have unit sample standard deviation. The
comparative time-series plots show that for each company, the CDS series show
positive co-movements with both the implied volatility and the implied variance
skew time series. They also show variations independent of one another.

Both the correlation estimates in Table 4 and the time-series plots in Figure 3
show that the credit spread is intricately related to the equity options market. The
linkages ask for a dynamically and internally consistent theoretical framework to
jointly model the dynamics and pricing of default arrival rates and stock return
variance. Our model does just that, and it accommodates both the positive co-
movements and their separate variations through the bivariate specifications in
Equations (3)–(5).

3 JOINT ESTIMATION OF MARKET AND CREDIT RISK DYNAMICS

We estimate the bivariate risk dynamics xt = [vt , zt]⊤ jointly using both CDS
spreads and stock options. We cast the model into a state-space form and esti-
mate the model using a quasi-maximum likelihood method.

In the state-space form, we regard the bivariate risk vector as the unobservable
states and specify the state propagation equation as an Euler approximation of the
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Figure 3 Co-movements of CDS spreads with stock option implied volatilities and implied vari-
ance skews. Each panel represents one company. The three lines in each panel denote the nor-
malized time series of the average CDS spreads (solid lines), the one-year implied volatilities
(dashed lines), and the negative of the implied variance skew (dash-dotted lines). Each time series
is normalized to have unit sample standard deviation.
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time-series dynamics in Equation (23):

xt =
[

θv

θz

]
�t +

[
e−κP

v �t 0
0 e−κP

z �t

]
xt−1 +

√[
σ 2

v vt−1�t 0
0 σ 2

z zt−1�t

]
εt , (24)

where ε denotes an iid bivariate standard normal innovation and �t = 7/365 de-
notes the sampling frequency.

We construct the measurement equation based on CDS spreads and stock
options, assuming additive, normally distributed measurement errors

yt = h(xt ; �) + et , (25)

where yt denotes the observed series and h(xt ; �) denotes the corresponding model
value as a function of the state vector xt and model parameters �. Each day, the
measurement equation contains six CDS spread quotes at six different maturities.
We scale each CDS series by its sample average and then assume that the pricing
errors on the six scaled CDS series are iid normal with variance σ 2

C . The number
of option observations varies across different dates and different companies. The
estimation includes options with a minimum of 10 days to expiration and strike
prices within two standard deviations of the spot (|d| ≤ 2). The average number
of options per day included in the estimation ranges from 25 for Ford to 59 for
General Motors. The option maturity for each company ranges from the minimum
requirement of 10 days to about 2.5 years, with the median maturity varying from
190 to 290 days for different companies. We scale the out-of-the-money European
option values at each strike price and maturity by its Black–Scholes vega, and
assume that the scaled pricing errors on all options are iid normal with variance
σ 2

O.
When both the state propagation equation and the measurement equation

are Gaussian and linear, the Kalman (1960) filter generates efficient forecasts
and updates on the conditional mean and covariance of the state vector and the
measurement series. In our application, the state propagation equation in (24) is
Gaussian and linear, but the measurement equation in (25) is nonlinear. We use the
unscented Kalman filter (Wan and van der Merwe, 2001) to handle the nonlinearity.
The unscented Kalman filter approximates the posterior state density using a set of
deterministically chosen sample points (sigma points). These sample points com-
pletely capture the mean and covariance of the Gaussian state variables, and when
propagated through the nonlinear functions in the measurement equation, capture
the posterior mean and covariance of the CDS spreads and option prices accurately
to the second order for any nonlinearity. Appendix B provides the technical details
for the filtering methodology.

We construct the log-likelihood value assuming normally distributed fore-
casting errors. Furthermore, since we use different numbers of options and CDS
spreads in the estimation, the estimated dynamics tend to bias toward the market
with more data observations. To correct for this bias and to assign approximately
equal weights to both markets, we separately calculate the weekly likelihood
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values on the options (l O
t ) and the CDS spreads (lC

t ), and we divide the two likeli-
hood values by the number of option (nO

t ) and CDS (nC
t ) observations in that week,

respectively. Then, we maximize the sum of the rescaled log-likelihood values over
the whole data series to estimate the model parameters:

� ≡ arg max
�

N∑

t=1

(
lC
t (�)/nC

t + lC
t (�)/nO

t

)
, (26)

where � denotes 16 model parameters to be estimated: � ≡ [κv , κz, κP
v , κP

z ,
θv , θz, σv , σz, β, ρ , ζ , v+, v−, w, σ 2

C , σ 2
O]⊤ and N = 210 denotes the number of weeks

in our sample.

4 RESULTS AND DISCUSSION

First, we summarize the performance of our joint valuation model on CDS spreads
and stock options on the eight reference companies. Then, from the estimates of
the model parameters, we discuss the joint dynamics and pricing of the return
variance risk and default arrival risk, and their impacts on the CDS spread term
structure and the option implied volatility surface.

4.1 Performance Analysis

Table 5 reports the summary statistics of the pricing errors on the credit default
swap spreads and option implied volatilities. We report the pricing errors on the
CDS spreads at each of the six fixed terms and the pricing errors on the implied
volatilities as one pooled series for each company. The pricing errors are defined
as the differences between the data observations (CDS spreads and option implied
volatilities, both in percentage points) and the corresponding model values.

Panel A of Table 5 reports the sample averages of the pricing errors. The mean
pricing errors for the CDS spreads do not show any obvious structure, except for
Altria and AT&T, where the mean errors show a positive mean bias across all
maturities. The mean bias is about 5–10 basis points for Altria and 12–26 basis
points for AT&T. The mean biases on the option implied volatilities are all positive
but small, less than half a volatility percentage point for all companies, and less
than one-tenth of a volatility point for Altria and AT&T.

To learn how the mean option pricing errors vary across the option money-
ness and maturity spectrum, we perform nonparametric regressions on the pricing
errors as a function of moneyness d and maturity, using the same methodology as
we have done to obtain the mean implied volatility surface in Figure 2. Figure 4
plots the mean pricing error surfaces, one panel for each company. The shapes of
the mean pricing error surface vary across different reference companies, with no
systematic pattern. The largest mean pricing errors come from Altria and AT&T,
with the mean errors negative at low strikes (negative d), but positive at high
strikes (positive d). The biases are stronger at longer maturities. The mean bias pat-
tern across the moneyness dimension suggests that the observed implied volatili-
ties are not as negatively skewed as the model-implied values. Under our model
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Table 5 Summary statistics of pricing errors on CDS spreads and option implied
volatilities.

C DUK F FNM GM IBM MO T

Panel A: Mean pricing errors
1 −0.003 −0.030 −0.285 −0.005 −0.140 −0.002 0.102 0.124
2 −0.003 −0.052 0.226 −0.004 0.222 −0.003 0.104 0.175
3 −0.001 −0.095 0.319 −0.000 0.335 −0.006 0.100 0.135
5 0.010 −0.043 0.245 0.013 0.187 −0.000 0.052 0.195
7 0.003 −0.016 −0.016 0.008 −0.015 0.001 0.062 0.212

10 −0.005 0.068 −0.272 −0.011 −0.153 0.011 0.104 0.257
IV 0.308 0.396 0.259 0.244 0.360 0.278 0.015 0.076

Panel B: Mean absolute pricing errors
1 0.014 0.175 0.524 0.008 0.417 0.020 0.139 0.337
2 0.009 0.179 0.391 0.008 0.579 0.020 0.141 0.305
3 0.014 0.149 0.513 0.012 0.792 0.020 0.155 0.298
5 0.020 0.113 0.608 0.025 1.008 0.023 0.138 0.401
7 0.022 0.101 0.700 0.024 1.105 0.034 0.156 0.421

10 0.031 0.147 0.871 0.033 1.209 0.050 0.193 0.476
IV 1.563 2.089 1.818 1.491 2.460 1.411 1.889 2.978

Panel C: Explained percentage variation
1 0.969 0.703 0.931 0.970 0.981 0.977 0.966 0.902
2 0.991 0.737 0.972 0.971 0.968 0.977 0.973 0.920
3 0.979 0.770 0.948 0.934 0.926 0.983 0.966 0.936
5 0.967 0.863 0.895 0.811 0.850 0.976 0.952 0.878
7 0.961 0.883 0.866 0.747 0.819 0.949 0.931 0.846

10 0.933 0.639 0.822 0.588 0.793 0.888 0.892 0.784
IV 0.963 0.968 0.967 0.932 0.973 0.966 0.947 0.862

Entries report the mean pricing error (panel A), mean absolute pricing error (panel B), and explained
variation (panel C) on CDS spreads and option implied volatilities. The pricing errors are defined as the
difference between the observed CDS spreads and implied volatilities, both in percentage points, and
their model-implied values. The explained variation is defined as one minus the ratio of the variance of
the pricing error to the variance of the original series. The statistics on the credit default swap spreads
are at each of the six fixed terms, and the statistics on the implied volatilities is on one pooled series
across all maturities and strikes for each company.

specification, a highly negative skew at long option maturities can be generated
from a high default arrival rate; yet, the positive mean pricing errors on the CDS
spreads on these two companies suggest that the estimated default arrival rates
are not high enough to match the observed CDS spreads. Taken together, the CDS
and the options markets for the two companies show a degree of pricing tension
within our modeling framework: The CDS spreads imply higher default arrival
rates than those revealed from the option implied volatility skews.

Panel B of Table 5 reports the mean absolute pricing errors. The mean absolute
pricing errors on the CDS spreads are below five basis points for the high-rating
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Figure 4 Mean pricing error in implied volatility across moneyness and time to maturity. The
pricing error is defined as the difference between the observed implied volatility and the corre-
sponding model values in volatility percentage points. The mean pricing error as a function of
time to maturity τ and a standardized moneyness measure d is estimated nonparametrically with
an independent bivariate Gaussian kernel. Each panel represents one company.
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(A and above) and hence low-spread companies such as Citigroup, Fannie Mae,
and IBM. They become larger for the low-rating/high-spread companies, 10–20
basis points for BBB-rated Duke Energy and Altria, 30–50 basis points for AT&T,
40–87 basis points for BB-rated Ford Motor, and 42–120 basis points for B-rated
General Motors.

The mean absolute pricing errors on the option implied volatilities are one
to three volatility points, about the same size as the average of bid-ask spreads.
Figure 5 plots the nonparametrically smoothed implied volatility mean absolute
pricing error surface as a function of moneyness and maturity. Overall, the mean
absolute errors are larger for out-of-the-money options than for the more actively
traded at-the-money options, partly as a result of our vega weighting scheme in
the model estimation.

The last panel of Table 5 reports the explained variation, defined as one minus
the variance ratio of the pricing errors and the original time series. The model can
explain over 90% of the variation for more than half of the CDS spread series. The
explained variation on the option implied volatilities are over 90% for seven of the
eight companies, with the only exception being AT&T at 86%. Overall, the model
generates good performance, especially when we consider the fact that we only
allow two state variables (vt , zt) to vary each day to capture the variations in six
CDS spread series and 25–59 option prices.

4.2 The Joint Dynamics of Return Variance and Default Arrival
Rates

Table 6 reports the maximum likelihood estimates and the absolute magnitudes
of the t-statistics of the structural parameters that control the joint dynamics of
the stock return variance rate and the default arrival rate. Given the large amount
of data used in the model estimation, the estimates for most parameters generate
large t-values and hence strong statistical significance. As the eight companies
differ in credit ratings and in industry sectors, the estimated return variance and
default rate dynamics also show large cross-sectional differences. Nevertheless,
several common features emerge from the parameter estimates.

First, the estimates for the risk-neutral mean-reverting coefficients (κv , κz) and
their statistical counterparts (κP

v , κP
z ) show that the default arrival rate is more

persistent than the return variance rate under both the risk-neutral measure Q and
the statistical measure P. The difference in statistical persistence suggests that the
stock return variance rates are more mean-reverting than the credit risk factor.
Thus, it is more difficult to predict changes in the credit risk factor than to predict
changes in the return variance rate based on their past values. The difference in
risk-neutral persistence dictates that the two factors have different impacts across
the term structure of options and CDS spreads. Shocks to the variance rate affect
the short-term options and CDS spreads, but dissipate quickly as the option and
CDS maturity increases. Shocks to the more persistent credit risk factor last longer
across the term structure of options and credit spreads. In particular, the estimates
for κz are not significantly different from zero for all eight companies, suggesting
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Figure 5 Mean absolute pricing error in implied volatility across moneyness and time to matu-
rity. The pricing error is defined as the difference between the observed implied volatility and the
corresponding model values in volatility percentage points. The mean absolute pricing error as
a function of time to maturity τ and a standardized moneyness measure d is estimated nonpara-
metrically with an independent bivariate Gaussian kernel. Each panel represents one company.
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Table 6 Maximum likelihood estimates of model parameters.

� C DUK F FNM GM IBM MO T

κv 0.868 (135.4) 3.092 (92.1) 0.893 (44.7) 1.476 (65.1) 1.353 (76.6) 0.802 (156.2) 2.868 (123.7) 1.089 (42.7)
κz 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.059 (11.8) 0.000 (0.0)
κP

v 0.565 (2.6) 1.892 (4.7) 0.494 (0.9) 1.656 (2.6) 1.792 (3.2) 0.360 (1.0) 1.696 (3.9) 0.336 (0.9)
κP

z 0.325 (0.5) 0.612 (0.5) 0.590 (1.0) 0.404 (0.7) 0.480 (1.2) 0.202 (0.5) 0.451 (0.5) 0.059 (0.0)
θv 0.040 (103.6) 0.053 (8.7) 0.048 (22.2) 0.072 (58.9) 0.071 (17.8) 0.026 (64.4) 0.105 (52.5) 0.018 (3.7)
θz 0.001 (130.9) 0.006 (15.3) 0.008 (30.3) 0.001 (6.5) 0.009 (57.7) 0.002 (71.0) 0.004 (64.7) 0.003 (33.2)
σv 0.281 (33.8) 0.267 (13.8) 0.332 (35.4) 0.387 (38.6) 0.497 (29.1) 0.200 (36.6) 0.398 (41.9) 0.137 (7.3)
σz 0.036 (12.6) 0.315 (23.0) 0.187 (19.0) 0.027 (9.9) 0.250 (39.4) 0.069 (19.6) 0.245 (42.3) 0.204 (14.2)
β 0.000 (0.0) 0.000 (0.0) 0.004 (0.3) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0) 0.001 (0.2) 0.000 (0.0)
ρ −0.558 (58.4) −0.206 (6.5) −0.423 (17.0) −0.720 (54.5) −0.832 (27.0) −0.518 (35.9) −0.572 (30.9) −0.379 (5.4)
ζ 3.818 (21.8) 69.176 (4.0) 3.406 (5.2) 9.515 (12.7) 24.070 (4.1) 13.995 (13.7) 13.216 (11.8) 973.654 (1.3)
v+ 0.000 (0.0) 0.064 (16.7) 0.204 (22.9) 0.110 (41.6) 0.099 (17.9) 0.077 (31.6) 0.118 (48.4) 0.000 (0.0)
v− 0.461 (49.6) 0.169 (17.7) 0.475 (11.3) 0.290 (32.7) 0.151 (12.9) 0.202 (37.2) 0.214 (32.7) 0.043 (5.8)
w 0.000 (0.0) 0.672 (257.0) 0.001 (0.1) 0.002 (0.0) 0.000 (0.0) 0.657 (182.7) 0.001 (0.4) 0.000 (0.0)
σ 2

C 0.012 (43.6) 0.116 (109.6) 0.030 (32.7) 0.013 (23.0) 0.032 (84.6) 0.012 (36.8) 0.008 (51.2) 0.038 (58.5)
σ 2

O 0.045 (193.5) 0.083 (122.8) 0.067 (99.8) 0.042 (183.0) 0.138 (269.9) 0.035 (335.3) 0.054 (231.7) 0.204 (254.6)
γv 1.076 (1.4) 4.493 (2.7) 1.200 (0.7) −0.465 (0.3) −0.883 (0.8) 2.200 (1.2) 2.947 (2.5) 5.490 (1.9)
γz −9.071 (0.5) −1.943 (0.5) −3.161 (1.1) −15.087 (0.7) −1.917 (1.2) −2.920 (0.5) −1.597 (0.4) −0.291 (0.0)

Absolute magnitudes of the t-statistics are given in parentheses. The estimation is based on weekly sampled data from May 8, 2002 to May 10, 2006.
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that a shock to the credit risk factor generates relatively uniform responses from
credit spreads of all maturities. As such, long-term CDS spreads vary as much as
short-term CDS spreads.

For each risk factor, the difference in persistence under the two probability
measures defines the market price of that factor’s risk:

γv =
(
κv − κP

v

)/
σv , γz =

(
κz − κP

z

)/
σz. (27)

We compute the market price of risk coefficients (γv , γz) based on the parameter
estimates and report them in the last two rows of Table 6. The estimates for the
market price of variance rate risk (γv) are mostly positive or insignificantly different
from zero. By contrast, the estimates for the market price of the default arrival rate
risk (γz) are negative for all eight companies.

Several studies, for example, Bakshi and Kapadia (2003a, 2003b) and Carr
and Wu (2009), use stock and stock index options and the underlying time series
returns to study the total return variance risk premia. They find that the risk premia
are negative for some stocks, and highly negative for stock indexes. Our model
decomposes the total risk on an individual stock into two components: risk in the
return variance rate under normal market conditions and risk in the default arrival
rate. By using both the CDS data and stock options data, we are able to separate
the two sources of risks and identify their respective market prices. Our estimation
suggests that for the eight stocks, negative risk premia only come from the default
arrival rate, but not from the return variance rate.

Another common finding among the eight reference companies is that the es-
timated loading (β) of the return variance rate on the default arrival rate is close
to zero. Even though there is evidence that companies with high credit spreads
also tend to have high equity return volatility levels on average (e.g., Campbell
and Taksler, 2003), our near-zero estimates on the loading coefficient suggest that
the two derivatives markets (CDS spreads and stock options) contain a large pro-
portion of independent instantaneous variations that we must capture through the
separate variations of the two risk factors vt and zt . When β = 0, the CDS spreads
become independent of the return variance rate vt and are fully determined by
the credit risk factor λt = zt . Nevertheless, the option implied volatilities are still
a function of the credit risk factor zt as the default arrival rate directly enters the
valuation of the stock options. The observed correlations between CDS spreads
and the option implied volatilities are driven purely by their common loading on
the credit risk factor.

For all eight companies, the estimates for the instantaneous correlation be-
tween stock return and return variance ρ are negative, consistent with the classic
leverage effect explanation. Nevertheless, by allowing the possibility of default to
contribute to the negative option implied volatility skew, the negative correlation
estimates are low compared to some estimates in the literature.

In addition to the rare but catastrophic event of default, we also allow the
stock price to move discontinuously under normal market conditions. We cap-
ture this discontinuous movements using a high-frequency variance-gamma jump
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component, with v+ and v− capturing the relative jump size differences for upside
and downside jumps under the risk-neutral measure. For all eight companies, the
estimates for the upside jump sizes are much smaller than are the estimates for
the downside jump sizes. The estimated jump size asymmetry contributes to the
negative option implied volatility skew at short maturities.

Finally, the literature often finds it difficult to separately identify the recov-
ery rate and the default arrival rate using credit spread data alone (Houweling
and Vorst, 2005; Hull and White, 2000; Longstaff, Mithal, and Neis, 2005). As a
result, researchers often assume a fixed recovery rate instead of estimating it along
with other model parameters. By exploiting the overlapping information from the
stock options market and the CDS market, we are able to separately identify the
recovery rate w and the default arrival rate dynamics. The recovery rate estimates
vary greatly across different companies, from virtually zero recovery to as high
as 67%.

Several caveats apply to the interpretation of the parameter estimates. First,
we assume that the stock price drops to zero upon default. The bond recovery
identification hinges on the zero recovery assumption on equity. Second, the joint
estimation relies on the assumption that the two markets are integrated and that
the same risk is priced identically in the two markets. When the two markets are
segmented and the prices from the two markets are not completely consistent with
each other, the tension can show up both in the parameter estimates and the pricing
errors. For example, for companies such as Altria and AT&T, the mean pricing
errors on the implied volatility surface (Figure 4) and the CDS spreads (Table 5)
suggest that the CDS spreads are too wide relative to the steepness of the implied
volatility skews. With this tension between the two markets, fitting the relatively
flat implied volatility skew generates a small estimate on the default arrival rate
λt . To fit the relatively wide CDS spreads at the same time, the estimation can only
choose a low bond recovery rate. The opposite would be the case if the options are
priced more expensively than the CDS spreads. Thus, the recovery rate estimates
can be affected by the tensions between the two markets. Finally, when market
segmentation generates large idiosyncratic noise in the two markets, the noise will
reduce the observed co-movements between the CDS spreads and the implied
volatilities, and accordingly lower the estimated loading (β) of the return variance
rate on the default arrival rate.

4.3 The Term Structure of Credit Default Swap Spreads

Given the model parameter estimates in Table 6, we can compute the term struc-
tures of the CDS spreads at different levels of the credit risk factor z. In Figure 6,
we plot the model-implied mean term structure of the CDS spreads in solid lines,
where we set the risk levels to their respective sample averages. The two dashed
lines in each panel are constructed by setting the variance rate v to its sample mean
and the credit risk factor zt to its 10th and 90th percentile values. Since the loading
estimates (β) of the return variance rate vt to the default arrival rate are close to zero
for all eight companies, shocks on the return variance rate have negligible impacts
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Figure 6 The term structure of credit default swap spreads. The solid lines represent the mean
term structures computed from the estimated model and the sample mean levels of the two risk
factors. The two dashed lines in each panel are computed by setting the return variance rate vt to
the sample average and zt to its 10th and 90th percentile values.
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on the CDS spreads. Thus, we focus the analysis on the impact of the credit risk
factor on the CDS term structure.

The estimated model parameters on the eight companies generate different
average term structure shapes on the CDS spreads. Nevertheless, the impacts of
the credit risk factor show similar patterns. Given the high risk-neutral persistence
on the credit risk factor, shocks to this factor generate similar responses from CDS
spreads at both short and long maturities. A shift in the credit risk factor zt leads
to nearly parallel shifts in the CDS term structure.

4.4 The Implied Volatility Skew and Term Structure

To understand how the two risk factors contribute to the pricing of stock options,
we compute and plot the one-month implied volatility skew across different mon-
eyness levels in Figure 7 at different risk levels. In computing the option values and
constructing the implied volatility skews as a function of moneyness, we assume
zero interest rates and dividend yields, and define the moneyness as ln(K/S)/

√
vτ .

The solid lines are the mean implied volatility skews evaluated at the sample
means of the two risk factors. The two dashed lines in each panel are generated
with the variance rate fixed at its sample mean and the credit risk factor at its
10th and 90th percentile values. Hence, they capture the impact of shocks from the
credit risk factor. The two dash-dotted lines in each panel are generated by fixing
the credit risk factor at its sample mean and setting the variance rate at its 10th and
90th percentile values. Hence, the dotted lines capture the impact of shocks from
the return variance rate.

For all eight companies, the mean implied volatilities show similar skewed
patterns across moneyness. Variations in the variance rate level lead to relatively
uniform (parallel) shifts in the implied volatility skew across moneyness. In con-
trast, the impact of the credit risk factor is mainly at low strikes. The impact of the
credit risk factor on far out-of-the-money call option implied volatilities at high
strikes is small. Since the main effect of default on equity is to drive the stock price
to zero, it is understandable that the credit risk factor has its major impacts on far
out-of-the-money put options.

To see how the effects change at different maturities, we also plot in Figure 8 the
corresponding implied volatility skew for one-year options. Similar to the effects
on the one-month implied volatility skew, the shocks on the variance rate generate
relatively uniform responses across moneyness (dash-dotted lines), whereas shocks
on the credit risk factor generate larger impacts at lower strikes (dashed lines).
Comparing Figures 7 and 8 also brings out visible differences: The impact of the
credit risk factor becomes much larger at longer maturities. The exceptions are
on the AAA-rated Fannie Mae and AA-rated Citigroup, for which the default
probabilities are so small that their impacts on the implied volatilities are minimal
across all maturities.

Figure 9 plots the term structure of the at-the-money implied volatilities at
different risk levels. Again, we use the solid lines to denote the mean term structure,
the dashed lines to capture the impact of credit risk shocks, and the dash-dotted
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Figure 7 The one-month implied volatility smirks. The solid lines are the mean implied volatility
across moneyness at one-month maturity computed from the estimated model and the sample
mean levels of the two risk factors. Moneyness is defined as d = ln(K/S)/

√
vτ . Dashed lines are

computed by setting vt to its sample average and zt to its 10th and 90th percentile values. Dash-
dotted lines are computed by setting zt to the sample mean and vt to its 10th and 90th percentile
values.
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Figure 8 The one-year implied volatility skews. The solid lines are the mean implied volatility
across moneyness at one-year maturity computed from the estimated model and the sample
mean levels of the two risk factors. Moneyness is defined as d = ln(K/S)/

√
vτ . Dashed lines are

computed by setting vt to its sample average and zt to its 10th and 90th percentile values. Dash-
dotted lines are computed by setting zt to the sample mean and vt to its 10th and 90th percentile
values.
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Figure 9 The term structure of at-the-money implied volatilities. The solid lines are the mean
term structure of the at-the-money implied volatility computed from the estimated model and
at the sample mean levels of the two risk factors. Dashed lines are computed by setting vt to its
sample average and zt to its 10th and 90th percentile values. Dash-dotted lines are computed by
setting zt to the sample mean and vt to its 10th and 90th percentile values.
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lines to capture the impact of the return variance rate shocks. At short option
maturities, the impact of the return variance rate is much larger than the impact
of the credit risk factor. However, as maturity increases, the influence of the return
variance rate declines due to its mean-reverting behavior. By contrast, the influence
of the credit risk factor increases due to its high risk-neutral persistence, especially
for low-rating companies. For companies with BBB or lower credit ratings, the
default risk contributes to the option implied volatility as much as the return
variance risk does when the option maturity is two years or longer.

5 SUMMARY AND CONCLUSIONS

Based on documented evidence on the joint movements between CDS spreads
and stock option implied volatilities and implied volatility skews, we propose a
dynamically consistent framework for the joint valuation and estimation of stock
options and CDS spreads written on the same reference company. We model the
possible default of a company by a Cox process with a stochastic arrival rate, and
we assume that the stock price falls to zero upon default. We model the pre-default
stock price as following a jump-diffusion process with stochastic volatility. We
assume that the default arrival rate and the return variance rate follow a bivari-
ate diffusion with dynamic interactions that match the empirical evidence link-
ing stock option implied volatilities and CDS spreads. Importantly, our dynamic
specification allows both common movements and independent variations be-
tween the two markets.

Under this joint specification, we derive tractable pricing solutions for stock
options and credit default swaps. We estimate the joint dynamics of the variance
rate and the default arrival rate using data on stock option implied volatilities and
CDS spreads for eight companies that span a wide spectrum of industry sectors
and credit rating classes. Estimation results show that the default arrival rate is
much more persistent than the variance rate under both the statistical measure and
the risk-neutral measure. The statistical persistence difference suggests different
degrees of predictability. The risk-neutral difference in persistence suggests that
the default arrival rate has a more long-lasting impact on the term structure of
option volatilities and CDS spreads than does the return variance.

The estimation also highlights the interaction between market and credit risk in
pricing stock options and credit default swaps. The default arrival rate affects stock
option pricing through its direct effect on the risk-neutral drift of the return process.
We find that the impact of the diffusion variance rate on the implied volatility is
relatively uniform across different moneyness levels, while the impact of the credit
risk factor is mainly on options at low strikes. Furthermore, the impact of the credit
risk factor on stock options prices increases with the option maturity. At long option
maturities and for companies with significant default risks, the contribution of the
credit risk factor to option pricing can be as large as the contribution of the return
variance rate. We conclude that one can learn more about stock options and CDS
by developing a model that integrates both markets, rather than having separate
models for each market.
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APPENDIX

A Generalized Fourier Transform of Stock Returns

To derive the generalized Fourier transform

φ (u) ≡ Et

[
exp

(
−

∫ T

t

λsds

)
e iu ln PT /Pt

]
, u ∈ D ⊂ C, (A1)

we use the language of stochastic time change of Carr and Wu (2004) and define

Tt ≡
∫ T

t

vsds, T
z

t ≡
∫ T

t

zsds, T
λ

t ≡
∫ T

t

λsds = T
z

t + βTt .

Then, conditional on no default during the time horizon [t, T], with τ = T − t, we
can write the log stock return as

ln(PT/Pt) = (r (t, T) − q (t, T))τ + T
λ

t + (WP + J P )Tt
−

(
1
2

+ k J (1)
)
Tt , (A2)

where r (t, T) and q (t, T) denote the continuously compounded spot interest rates
and dividend yields of the relevant maturity; J P

t denotes a pure-jump Lévy process
with the jump arrival rate controlled by the Lévy density π (x) specified in (2); and
k J (s) denotes the cumulant exponent of the L’evy jump,

k J (s) ≡ ln E
[
es J P

t
]

= −ζ ln(1 − sv+)(1 + sv−). (A3)

The discounted generalized Fourier transform becomes

φ(u) = Et

[
exp

(
− T

λ
t + iu(r (t, T) − q (t, T))τ + iuT λ

t + iu(WP + J P )Tt

−
(

1
2

+ k J (1)
)

iuTt

)]
= exp(iu(r (t, T) − q (t, T))τ )EM

t

[
exp

(
− (1 − iu)T λ

t

−
(

1
2

(iu + u2) + ψJ (u)
)
Tt

)]
= exp(iu(r (t, T) − q (t, T))τ )EM

t

×
[

exp
(

−(1 − iu)T z
t −

(
(1 − iu)β +

1
2

(iu + u2) + ψJ (u)
)
Tt

)]
, (A4)

where the new measure M is defined by the following complex-valued exponential
martingale:

dM

dQ

∣∣∣∣
t

= exp
(

iu(WP + J P )Tt
+

(
1
2

u2 + ζ ln(1 − iuv+)(1 + iuv−)
)
Tt

)
;

and ψJ (u) = ζ (ln(1 − iuv+)(1 + iuv−) − iu ln(1 − v+)(1 + v−)) is the characteristic
exponent of the convexity-adjusted jump component.
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Under the new measure M, the drift of the variance rate dynamics changes to
μM

v = θv − κM
v v(t), with κM

v = κv − iuσvρ. The dynamics of zt does not change as
its variation is independent of the stock return innovations WP and J P . We can
rewrite the expectation in the last line of Equation (A4) as

φ(u) = exp(iu(r (t, T) − q (t, T))τ )EM
t

[
exp

(
−

∫ T

t

b⊤
0 xsds

)]

with xt = [vt , zt]⊤, b0 = [bv , bz]⊤, bv = (1 − iu)β + 1
2 (iu + u2) + ψJ (u), and bz = 1 −

iu. Since the risk factors x follow affine dynamics, the solution to the expectation
is exponential affine in xt ,

φ(u) = exp(iu(r (t, T) − q (t, T))τ ) exp(−a (τ ) − b(τ )⊤xt),

where the coefficients can be solved analytically as in (11) and (12).

B Unscented Kalman Filter and Maximum Likelihood Estimation

To estimate the model parameters, we cast the model into a state-space form, which
consists of a set of state propagation equations as in Equation (24) and measurement
equations as in Equation (25). We rewrite them in canonical forms:

xt = A+ �xt−1 +
√

Qt−1εt , εt ∼ N(0, I ), (B1)

yt = h(xt) + et , et ∼ N(0, R). (B2)

Let xt , �xx,t , yt , �yy,t denote the time-(t − 1) forecasts of time-t values of the state
vector, the covariance of the state vector, the measurement series, and the covari-
ance of the measurement series. Let x̂t and �̂xx,t denote the ex post updates on the
state vector and its covariance at the time t based on observations (yt) at time t. In
the case of linear measurement equations,

yt = Hxt + et , (B3)

the Kalman filter generates efficient forecasts and updates on the conditional mean
and covariance of the state vector and the measurement series. The Kalman filter
predictions on the state vector are

xt = A+ �x̂t−1, �xx,t = ��̂xx,t−1�
⊤ + Qt−1. (B4)

The predictions on the measurement and its variance and covariance with the state
are

yt = Hxt , �yy,t = H�xx,t H⊤ + R, �xy,t = �xy,t H⊤. (B5)

With new observations yt , the updated mean and covariance of the state vector
become

x̂t = xt + Kt(yt − yt), �̂xx,t = �xx,t − Kt�yy,t K ⊤
t , (B6)

where Kt = �xy,t(�yy,t)−1 is the Kalman gain.
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In our application, the state propagation in (B1) remains Gaussian linear, but
the measurement equation in (B2) is nonlinear. We take the unscented Kalman
filter approach and use a set of deterministically chosen sigma points to approxi-
mate the distribution of the state vector. We perform the nonlinear measurement
transformation on these sigma points and compute the mean and covariances of
measurements from these transformed points.

Specifically, let p be the number of states, δ > 0 be a control parameter, and χi

be the ith column of a matrix χ , we can generate a set of 2p + 1 sigma vectors χi

based on the mean and covariance estimates on the state vector. Taking the time-t
forecasted mean and covariance (xt and �xx,t) as an example, we have

χt,0 = xt , χt,i = xt ±
√

(p + δ)(�xx,t) j , j = 1, · · · , p; i = 1, · · · , 2p (B7)

with corresponding weights wi given by

w0 = δ/(p + δ), wi = 1/[2(p + δ)], j = 1, · · · , 2p. (B8)

We can regard these sigma vectors as forming a discrete distribution with wi being
the corresponding probabilities. We can verify that the mean and covariance of this
distribution are xt and �xx,t , respectively.

Given the Gaussian-linear structure of the state propagation equation, we can
still use Equation (B5) to predict the mean and covariance of the state vector xt

and �xx,t . Then, we generate the sigma points based on the predicted mean and
covariance according to Equations (B7) and (B8), and use these sigma points to
predict the mean and covariances of the measurement series:

yt =
∑2p

i=0 wi h (χt,i ; �) ,
�yy,t =

∑2p
i=0 wi [h(χt,i ; �) − yt][h(χt,i ; �) − yt]

⊤ + R,
�xy,t =

∑2p
i=0 wi [χt,i − xt][h(χt,i ; �) − yt]

⊤.
(B9)

With these predicted moments, the filtering follows the same steps as in Equation
(B6).

We define the log-likelihood for each day’s observations assuming that the
forecasting errors are normally distributed:

lt(�) = −
1
2

log |�yy,t| −
1
2

(yt − yt)
⊤(�yy,t)−1(yt − yt). (B10)

To attach equal weights to the CDS and the options markets, we partition the
observations from the two markets and define the log-likelihood for each market
separately, lC

t (�) for the CDS market and l O
t (�) for the options market. We scale

the two log-likelihood values by the corresponding number of observations each
day before we perform the maximization on the sum of the log-likelihood values
to obtain the model parameters

� ≡ arg max
�

N∑

t=1

(
lC
t (�)/nC

t + l O
t (�)/nO

t

)
, (B11)
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where N = 210 denotes number of days in our sample and nC
t and nO

t denote the
number of CDS and option observations each day. We have six CDS series (nC

t = 6
for all t) at six fixed time to maturities. The number of option observations nO

t

varies across different reference companies and different days.
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