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Abstract: As one of the main areas of value investing, the stock market attracts the attention of
many investors. Among investors, market index movements are a focus of attention. In this paper,
combining the efficient market hypothesis and the fractal market hypothesis, a stock prediction model
based on mixed fractional Brownian motion (MFBM) and an improved fractional-order particle
swarm optimization algorithm is proposed. First, the MFBM model is constructed by adjusting the
parameters to mix geometric Brownian motion (GBM) and geometric fractional Brownian motion
(GFBM). After that, an improved fractional-order particle swarm optimization algorithm is proposed.
The position and velocity formulas of the fractional-order particle swarm optimization algorithm are
improved using new fractional-order update formulas. The inertia weight in the update formula is
set to be linearly decreasing. The improved fractional-order particle swarm optimization algorithm
is used to optimize the coefficients of the MFBM model. Through experiments, the accuracy and
validity of the prediction model are proven by combining the error analysis. The model with the
improved fractional-order particle swarm optimization algorithm and MFBM is superior to GBM,
GFBM, and MFBM models in stock price prediction.

Keywords: stock forecast; fractional-order particle swarm optimization algorithm; mixed fraction
Brownian motion; Hurst

1. Introduction

Stock market investment, as one of the most profitable financial investments, is favored
by many investors. The forecast of stock price movement has also been the focus of investors’
attention [1,2]. From the establishment of the stock market to date, research on market
forecasting has never stopped [3]. There are many forecasting methods [4]. From the
mathematical finance perspective, there are two main categories. One is the approach based
on the efficient market hypothesis (EMH) [5,6] and the other is based on the fractal market
hypothesis (FMH) [7].

In the 1970s, Fama [8,9] proposed the famous EMH based on the random wandering
model. In EMH, the stock price trend follows the geometric Brownian motion (GBM)
model [10]. EMH argued that every investor in the market was rational. Every stock
price movement in the market is a comprehensive response to asset information. With
prices following a random walk model, it is hard for investors receive a “free lunch” from
the market. However, the efficient market hypothesis is only an ideal state and does
not correspond to reality. Not every investor in the market has a rational mind and the
information that occurs at each point in time is not fully embodied in the price. Some
investors make good profits from the market. Therefore, many investors are skeptical of
the efficient market hypothesis [11]. From the GBM model, GBM also has three conceptual
errors. (1) For the GBM model, future changes are independent of past changes, which is
not consistent with the fundamental characteristics of financial market development [12,13].
(2) The GBM model depicts a normal distribution, but real share prices have a “spike and
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a thick tail” [14]. (3) In stock prices, time series correlation is common everywhere [15].
That is to say, large decreases are usually accompanied by increases in volatility, while
large increases are usually accompanied by decreases in volatility. Therefore, GBM cannot
correctly describe the phenomenon and the laws of stock prices.

With further research, Peters [16] proposed the FMH from a nonlinear perspective
and integrated fractal theory into financial markets. In FMH, stock price changes follow
fractional Brownian motion (FBM) and yield obeys a fractal distribution characterized by
self-similarity and long memory. FMH believes that the structure of the stock market is
fractal and that it has a long memory [17]. The long memory is characterized by the Hurst
value. In 2001, Wu pointed out that capital market price movements were mostly the fractal
time series [18] and they explored the fractal dimension of stock prices using fractal and
chaotic methods. However, Rostek [19,20] thought that there would be arbitrage in applying
fractional Brownian motion to simulate prices under the fractal market assumption.

A better solution is to mix geometric Brownian motion and fractional Brownian motion.
Then, mixed fractional Brownian motion (MFBM) is constructed to describe the process of
asset price change [21]. In terms of the Hurst characteristic index, the standard Brownian
motion is just a particular state of price fluctuations. For example, when the Hurst value is
equal to 1/2, the fractional Brownian motion is converted to standard Brownian motion [22].
For another view of modern financial theory, the EMH and FMH are internally consistent,
and the former is a special case of the latter. The EMH and FMH depict the linear and
non-linear natures of financial markets. The fractal market is the general form and steady
state of the securities market, while the effective market is the special form and biased
state of the securities market. Therefore, the two theories have intrinsic uniformity. EMH
reveals the ideal and special state of financial markets. FMH describes the volatility of
market prices and the laws of market operation, and it provides a higher level of abstraction
and description of financial fields [23]. The combination of EMH and FMH, that is, the
combination of geometric and fractional Brownian to form MFBM, is the best model to
describe asset price changes [24]. The market under the MFBM model not only has no
arbitrage opportunity, but also is complete. It is more suitable for describing the operation
and development of the market.

A perfectly efficient market describes the ideal state of financial markets. The most
mature U.S. financial market is only between a weakly efficient market and a semi-strongly
efficient market. For the Chinese stock market, the limit on ups and downs will keep the
stock market in a relatively flat state, which satisfies the semi-strong EMH. In addition,
the Chinese stock market is highly cyclical (long memory) [25]. Given these facts, this
paper combines EMH and FMH. The price trends of the U.S. and Chinese stock markets are
predicted through mixed fractional Brownian motion to obtain better forecasting results.

In this paper, we analyze stock price forms under the EMH and FMH. Then, MFBM is
constructed by adjusting the parameters to mix GBM with FBM. The drift and diffusion
coefficients in the MFBM model are solved by the maximum likelihood estimation (MLE)
method. Then, the fractional-order particle swarm optimization algorithm is improved. The
drift and diffusion coefficients of the MFBM are optimized by the improved fractional-order
particle swarm optimization algorithm. Finally, the Hurst values are solved by the rescaled
range (R/S) analysis method. The solved Hurst values are optimized by the improved
fractional-order particle swarm optimization algorithm to find the optimal parameters and
analyze the stock price prediction. Three market indices are selected for the Hurst solution
and all results show that the three markets have long memory. The accuracy and validity
of the prediction model are proven by combining the error analysis. The model with the
improved fractional-order particle swarm optimization algorithm and MFBM is superior to
GBM, GFBM, and MFBM in stock price prediction.

The main contributions of this paper are summarized as follows. (1) The parameters
are adjusted to hybridize geometric and fractional Brownian motions. The MFBM model
is constructed and used for stock market forecasting. (2) The fractional-order particle
swarm optimization algorithm is improved. The MFBM model coefficients are optimized
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by the improved fractional-order particle swarm optimization algorithm. New variables
are added to reduce the dependence of the update formula on the order of the fractional
order. Both velocity and position formulas are derived for fractional order at the same time
to improve the convergence speed. (3) The inertia weight factor in the improved fractional-
order particle swarm optimization algorithm sets the linear decreasing principle in this
paper. This reduces oscillations and increases the randomness of the particles. Therefore,
the probability of the population falling into a local optimum is reduced.

The rest of this paper is organized as follows. Section 2 briefly introduces the gener-
alized form of Brownian motion and constructs a stock price prediction model based on
mixed fraction Brownian motion. In Section 3, the improvement process of the fractional-
order particle swarm optimization algorithm is described in detail. Then, the parameters in
the model are solved and optimized separately. In Section 4, three actual stock indices are
selected to verify the validity of the IFPSO-MFBM methodology. The conclusion is given in
Section 5.

2. MFBM Model

The MFBM model is constructed based on FBM and GBM. Then, some Brownian
motion forms are briefly described.

2.1. Geometric Brownian Motion

Geometric Brownian motion is a stochastic equation of motion in continuous time.
Since its trajectory is similar to the stock price trajectory, it is continuous but not derivable,
with independent increments [26]. Therefore, it is often combined with the Black–Scholes
model for stock price simulation in the field of financial mathematics. The stochastic process
of GBM is determined by

dS(t)
S(t)

= µdt + σdB(t), (1)

where S(t) represents the stock price. The dS(t)
S(t) is the logarithmic return on the stock price

and B(t) is the standard Brownian motion (or Wiener process) obeying N(0, t). The drift
percentage µ and the volatility percentage σ are both constants. µ is the mathematical
expectation of the asset price return. σ is the standard deviation of the asset price return.

From an economic point, Equation (1) can be interpreted using the Itô form stochastic
equation, whose solution can be written as a geometric (economic) Brownian motion
defined by

St = S0 exp
{
σB(t) +

(
µ− σ2

2

)
t
}

, (2)

where St is the stock price at time t and S0 is the initial share price.
Although the B–S pricing model is based on the geometric Brownian motion, the

geometric Brownian motion describes share prices that are only appropriate for strong
efficient markets. No market currently has strong efficient market conditions, so the
geometric Brownian motion does not describe real market share prices.

2.2. Fractional Brownian Motion

Fractional Brownian motion is a derivative form of Brownian motion in the fractal
market. There are two main differences between fractional Brownian motion and Brownian
motion. One is that increments in fractional Brownian motion are not independent, whereas
increments in Brownian motion are independent. The other difference is the dimensional
value [27]. Fractional Brownian motion (fractal noise) has a fractional dimensional value.
The value is equal to 1/H; here, H is the Hurst exponent [28]. Brownian motion (white
noise) has a fractional dimensional value of 2. The above properties of fractional Brownian
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motion make it a suitable tool for mathematical finance. The formula for the covariance
function of the FBM is determined by

E
[
BH(t)BH(s)

]
=

1
2

(
|t|2H+|s|2H − |t− s|2H

)
, (3)

The stochastic process of geometric FBM is as follows:

dS(t) = µ(t)S(t)dt + σS(t)dBH(t), (4)

where BH is the fractional Brownian motion. The share price is based on (5) as follows:

S(t) = S0 exp
(
σBH(t) + µt− 1

2
σ2t2H

)
, (5)

Fractional Brownian motion has long memory and is useful for financial market fore-
casting. Theoretically, there would be arbitrage in the model with FBM as the logarithmic
price. In particular, it has been shown that arbitrage opportunities exist when trading in
continuous or in discrete time [29,30].

2.3. Mixed Fractional Brownian Motion

Based on the intrinsic consistency of the EMH and FMH, a mixed fractional Brownian
motion is constructed by adjusting the parameters to hybridize the geometric Brownian
motion with the geometric fractional Brownian motion. The stochastic process of MFBM is
determined by

dS(t) = µ(t)S(t)dt + σS(t)dWH(t), (6)

dWH(t) = ρdBH(t) + (1− ρ)dB(t), ρ ∈ (0, 1), (7)

where ρ is the mixing factor to be adjusted. The drift percentage µ and the volatility
percentage σ are both constants. The B(t)

(
t ∈ R+

)
is a standard Brownian motion. The

BH(t)
(
t ∈ R+

)
is a fractional Brownian motion with a Hurst value of H. These are indepen-

dent of each other. The share price form is as follows:

St = S0 exp { µt + σWH(t)}, (8)

which converts to Itô form as follows:

St = S0 exp {µt + σWH(t)− 1
2
σ2ρ2t2H − 1

2
σ2(1− ρ)2t}, (9)

In the MFBM model, the solution process of BH(t) is as follows:

BH(t) =
∫ 0

t
KH(t, s)dB(s), (10)

KH(t, s) = c(H)
1

sH− 1
2

∫ s

t

uH− 1
2

u− s
3
2−H

du, (11)

c(H) =

√√√√ 2HΓ
( 3

2 −H
)

Γ
(

H + 1
2

)
Γ(2− 2H)

(H− 1
2
), (12)

In (12), KH(t, s) is a definite kernel, c(H) is the normalization constant, and Γ is the
Gamma function, which can be solved according to Euler’s residue formula. The definition
of the Gamma function over the real number field is defined by

Γ(x) =
∫ +∞

0
tx−1e−tdt(x > 0), (13)
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Then, the BH(t) value can be found here. The mixed fractional Brownian motion
removes the arbitrage of fractional Brownian motion and retains its memorability [31]. It
also combines the incremental and smooth characteristics of geometric Brownian motion.

3. IFPSO-MFBM

The MFBM model that is constructed in the previous section contains a large number
of parameters. Therefore, this section focuses on solving and optimizing the model pa-
rameters. Firstly, the fractional-order particle swarm optimization algorithm is improved.
Hurst values in the model are then solved using rescaled range (R/S) analysis. Finally,
the maximum likelihood estimate (MLE) method is used to find the drift and diffusion
coefficients and the coefficients are further optimized using the improved fractional-order
particle swarm optimization algorithm (IFPSO). The flow chart of stock index forecasting,
based on the MFBM model and IFPSO algorithm, is shown in Figure 1.
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3.1. Fractional-Particle Swarm Optimization Algorithm Improvement

The particle swarm optimization (PSO) algorithm originated from the simulation
of the foraging behavior of birds [32]. The PSO algorithm is conceptually simple. It is
easy to implement and converges quickly [33]. It is widely used to solve multi-objective
optimization problems [34]. The standard PSO algorithm velocity and position formula are
defined by

Vk+1
id = w×Vk

id + c1 × r1 ×
(

Pk
id − Xk

id

)
+ c2 × r2 ×

(
Pk

gd − Xk
id

)
, (14)

Xk+1
id = Xk

id + Vk+1
id , (15)
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where k is the number of iterations. Pk
id is the particle position and Vk

id is the particle
velocity. c1 and c2 are acceleration factors. r1 and r2 are random numbers distributed
between (0, 1). w is the inertia weight factor. The weight update equation is computed by

w(k) = wmax −
(wmax − wmin)∗k

kmax
, (16)

In the standard PSO algorithm, the particles converge slowly. Therefore, Pires [35]
introduced fractional order calculus into PSO and proposed the fractional order particle
swarm optimization (FOPSO) algorithm. The convergence speed of the algorithm is im-
proved by introducing fractional order integration in the particle swarm velocity equation.
However, the FOPSO algorithm is susceptible to falling into local solutions. When dealing
with complex multi-peaked problems, the FOPSO algorithm tends to the local optimum.
The convergence performance is directly dependent on the fractional order α. When the
value of α increases, the particles converge more slowly. When the value of α decreases, the
population tends to fall into a local optimum. In this paper, we improve the fractional-order
algorithm. The velocity and position equations are derived by fractional order calculus
simultaneously. The inertia weight factor w is set to be linearly decreasing to avoid falling
into a local optimum.

When improving the PSO algorithm, the fractional order Grunwald–Letnikov (G–L)
definition is used. Its α(R) order derivative is approximated in discrete time as follows:

Dαf(x) =
1

Ta ∑r
k=0

(−1)kΓ(α+ 1)f(x− kh)
Γ(k + 1)Γ(α− k + 1)

, (17)

where T is the sampling period and Γ is the Gamma function.
The PSO fractional order improvement process is as follows:
Step 1: A left-right transformation of the standard particle swarm algorithm is made;

then, there is the following equation

Vk+1
id −Vk

id = (w− 1)×Vk
id + c1 × r1 ×

(
Pk

id − Xk
id

)
+ c2 × r2 ×

(
Pk

gd − Xk
id

)
, (18)

where Vk+1
id −Vk

id is the derivative of the discrete state at fractional order α = 1;
Step 2: Assuming a sampling period T = 1, followed by a generalization of Equa-

tion (18) to fractional order differentiation:

Da
[
Vk+1

id

]
= (w− 1)×Vk

id + c1 × r1 ×
(

Pk
id − Xk

id

)
+ c2 × r2 ×

(
Pk

gd − Xk
id

)
; (19)

Step 3: Considering the decreasing relationship between the number of contemporary
particles and the number of particles of previous generations, Equation (19) is kept for
only the first four generations of vectors owing to the memory property of fractional order
calculus. The velocity formulation of the particle swarm algorithm is extended from first
order to arbitrary order through the fractional order G-L definition.

Da
[
Vk+1

id

]
= Vk+1

id − aVk
id −

1
2

a(1− a)V(k−1)
id − 1

6
a(1− a)(2− a)V(k−2)

id − 1
24

a(1− a)(2− a)(3− a)V(k−3)
id ; (20)

Step 4: Combining (19) and (20), the final velocity equation of the fractional-order particle
swarm algorithm with linearly decreasing weight coefficients is obtained

Vk+1
id = (w− 1 + a)Vk

id + 1
2 a(1− a)V(k−1)

id − 1
6 a(1− a)(2− a)V(k−2)

id +
1

24 a(1− a)(2− a)(3− a)V(k−3)
id + c1 × r1 ×

(
Pk

id − Xk
id

)
+ c2 × r2 ×

(
Pk

gd − Xk
id

)
,

(21)

By introducing fractional order differential operators, the current particle swarm
algorithm is made to relate to the particle velocities of previous stages. Therefore, the
algorithm is made to have a memory function;
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Step 5: Then, the same fractional-order improvement is performed for the position
update. The position updating formula of the fractional order particle swarm algorithm
with linearly decreasing weight coefficients is obtained:

Xk+1
id = (w− 1 + a)Vk

id + 1
2 a(1− a)V(k−1)

id − 1
6 a(1− a)(2− a)V(k−2)

id +
1

24 a(1− a)(2− a)(3− a)V(k−3)
id + c1 × r1 ×

(
Pk

id − Xk
id

)
+

c2 × r2 ×
(

Pk
gd − Xk

id

)
+ βXk

id + 1
2β(1− β)Xk−1

id + 1
6β(1− β)(2− β)Xk−2

id

(22)

The positions of the particles of the improved fractional-order particle swarm algo-
rithm (IFPSO) are no longer only influenced by the fractional order α. The introduction of
fractional order β allows the position update to be associated with the previous position.

The IFPSO offers significant improvements in convergence speed, stability, and accu-
racy, and further enhances the ability to find globally optimal solutions.

3.2. R/S Analysis for Hurst Index

When Hurst (the British hydrologist) studied the relationship between water flow
and storage capacity in the Nile reservoir, he found that the relationship could be better
described in terms of fractal Brownian motion [36]. He then proposed the Hurst index.
There are several methods for solving the Hurst exponent [37]. The earliest method
proposed by scholars in the time domain is the R/S estimation method. After that, wavelet
analysis, the variance method, and the mean value method were gradually derived [38].
This paper focuses on solving Hurst values using R/S analysis. The process is as follows:

1. Let a time series {xt}M
t = 1, of length M, be divided into N adjacent subintervals of

length | M
N |;

2. For the subintervals, let the sample mean be eu = 1
N ∑N

i=1 xi + (u− 1) × N(
u = 1, 2, . . . , | M

N |
)

;

3. For a subinterval u, take yu,i = xi + (u− 1) × N − eu(i = 1, 2, . . . , N) such that
zu,i = ∑N

i=1 yu,i. The zu,i is the cumulative return. Here, u = 1, 2, . . . ,| M
N |;

4. Calculate Ru = max1≤N≤NZu,i −min1≤i≤NZu,i as the extreme deviation of the subin-
terval u. Let Su be the standard deviation of the cumulative return for the interval;

5. Calculate the rescaled polar difference Ru/Su for each interval; | M
N | intervals can

obtain | M
N | values (u = 1, 2, . . . ). Take its mean value RN/SN as the rescaled polar

deviation value for an interval of length N;
6. Taking the logarithm of both ends of the RN/SN = bNH equation yields:

log(RN/SN) = HlogN + logby(n); b is a constant and H is the Hurst index;
7. Repeat Steps 1 to 6 for different interval lengths N to obtain different values of RN/SN.

By regression analysis, the slope is the desired H value.

Given a time series Xi, i = 1, 2, . . . , N, calculate the sum of the partial series as
y(n) = ∑n

i=1 Xi and define the sample variance as S2(n); then, one obtains the formula:

S2(n) =
1
n ∑n

i=1 X2
i −

1
n2 y2(n), (23)

The final R/S is calculated by

R
S
(n) =

1
S(n)

[
max0≤t≤n

(
y(t)− t

n
y(t)

)
−min0≤t≤n

(
y(t)− t

n
y(t)

)]
, (24)

When n→ ∞ , E[R/S(n)] ∼ CHnH, CH is a constant positive constant, taking the
logarithm of the above Equation (24). A log–log plot is drawn and a straight line is fitted
using least squares regression. The slope of this line is calculated as the Hurst index value
for a given time series.
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3.3. MLE Method for the Drift Coefficient µ and the Diffusion Coefficient σ

The MLE method [39] is chosen to estimate the parameters σ and µ in this paper.
According to the solution of ordinary differential equations, take the logarithm of the left
and right sides of Equation (9) to obtain:

ln(St)− ln(S0) = µt + σWH
t , (25)

Thus, the parameter estimate for Equation (25) is equivalent:

Yt = µt + σWH
t , t ≥ 0, (26)

The time series observation interval is h. The vector t = (h, 2h, . . . , Nh) is used to
represent the observation time point. The observation vectors Y = (Yh, Y2h, . . . , YNh) are
obtained. The MFBM process is WH

t =
(

WH
(h), WH

(2h), . . . , WH
(Nh)

)
. Then, the maximum

likelihood estimates of the drift coefficient µ and the diffusion coefficient σ are derived
from the following steps.

According to the joint density of the multidimensional normal distribution, the MFBM
model has the properties of a Gaussian process. Therefore, the observation vector Y obeys
a multivariate normal distribution. Substitute Y into Equation (26) and then derive the
specific expression for each covariance σ2

H in the discrete covariance matrix ∑H based on
(25) as follows:

σ2
H =

[
E
[
WH

(ih), WH
(jh)

]]
i,j=1,2,...N

=
σ2

2
h2H

(
i2H + j2H−

∣∣∣i− j
∣∣∣2H
)

i,j=1,2,...N
, (27)

The joint probability density function of the multidimensional normal distribution of
Y is defined by

g(Y) =
(

2πσ2
)−N

2 |ΓH|−
1
2 exp

(
− 1

2σ2 (Y− µt)′Γ−1
H (Y− µt)

)
, (28)

where ΓH = 1
2 h2H

(
i2H + j2H−

∣∣∣i− j
∣∣∣2H
)

i,j=1,2,...,N
.

Find the log-likelihood function for the joint probability density function:

lng(Y) = −N
2

ln
(

2πσ2
)
− 1

2
ln|ΓH| −

1
2σ2 (Y− µt)′Γ−1

H (Y− µt), (29)

Find the partial derivatives for µ and σ2 with respect to (26). Set the partial derivatives
equal to 0.

The maximum likelihood estimate of the drift coefficient µ is obtained by taking the
partial derivative of µ as:

µ̀ =
t′Γ−1

H Y

t′Γ−1
H t′

, (30)

Similarly, the maximum likelihood estimate for finding the partial derivative σ2 is as
follows:

σ̀2 =
1
N

(
Y′Γ−1

H Y
)(

t′Γ−1
H t
)
−
(

t′Γ−1
H Y

)2

t′Γ−1
H t

, (31)

3.4. IFPOS Algorithm Optimizing σ, µ, ρ, and H

In this paper, σ, µ, ρ, and H are optimized by the improved fractional PSO algorithm
in Section 3.1. The steps can be summarized as follows:

Step 1: The Hurst of the MFBM model is obtained from known stock market data and
the unknown parameters are determined based on R/S analysis;



Fractal Fract. 2022, 6, 560 9 of 20

Step 2: Using the maximum likelihood estimation method, the drift coefficient σ

and the diffusion coefficient µ are solved separately to obtain the original values of each
parameter of the model;

Step 3: The IFPSO algorithm is used to continue the optimization of the model param-
eters. The individual extreme value of each particle is set to the current position. According
to the weight update formula, the current inertia weight value is calculated and updated.
The velocity and position of the particle are updated according to the improved particle
velocity and position update formula;

Step 4: The updated fitness value of each particle is calculated according to the fitness
function of the particle. The fitness value of each particle is compared with its individual
extreme value. If the individual extreme value is better than the fitness value, the individual
extreme value is updated. Otherwise, the original fitness value is kept;

Step 5: The updated individual polar values of each particle are compared with the
global polar values. If the individual extreme value is better than the global polar value,
the global polar value is updated. Otherwise, the original global polar value is kept;

Step 6: The optimization search process is broken based on the setting fitness function
and iterations. Then, the final MFBM prediction model is established.

This section focuses on the solution and optimization of three parameters in the MFBM
model. The Hurst value is solved using R/S analysis and the MLE method is used to solve
the drift and diffusion coefficients. Finally, the fractional order particle swarm algorithm is
improved and used to optimize each parameter in the MFBM model.

4. Experiments

Three market indices are selected for research and analysis in this section. They are
the A-share SSE, the Hong Kong Hang Seng index, and the US Dow Jones index. Firstly,
the Hurst values of the three market indices are solved to verify the existence of memory.
Then, the parameters are solved and optimized by the above steps. Finally, the stock
price forecasting results from IFPSO-MFBM, MFBM, FBM, and GBM are compared. The
forecasting effect of the IFPSO-MFBM model is analyzed.

4.1. Model Evaluation Indicators

Three performance indicators are used to evaluate and compare the prediction ef-
fectiveness. They are mean absolute percentage error (MAPE), symmetric mean absolute
percentage error (SMAPE), and coefficient of determination (R2).

MAPE is one of the most popular indicators that can be used to assess predictive
performance. It is given by the following equation:

MAPE =
100%

n ∑n
i=1

∣∣∣∣ R̀i − Ri

Ri

∣∣∣∣, (32)

where R̀i is the predicted value and Ri is the true value.
SMAPE overcomes the asymmetry of MAPE. It is one of the commonly used indicators

to assess predictive performance. Its equation is as follows:

SMAPE =
100%

n ∑n
i=1

∣∣R̀i − Ri
∣∣(

R̀i + Ri
)
/2

, (33)

The benefit of the model is judged according to the value of R2, R2 ∈ (0, 1). If R2 is
closer to 1, it is better for the model fit.

R2 = 1−∑n
i=1

(R̀i − Ri)
2

(Ri − Ri)
2 , (34)

Table 1 shows the interpretation of the results acquired with MAPE and SMAPE.
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Table 1. Explanation of MAPE and SMAPE evaluation indicators.

MAPE Value SMAPE Value Predictive Performance Evaluation

<10% <10% Highly accurate forecasting
10–20% 10–20% Good forecasting
20–50% 20–50% Reasonable forecasting
>50% >50% Inaccurate forecasting

The physical significance, data units, and orders of magnitude of each attribute in the
selected dataset are different.

4.2. Experimental Data

The required stock price data are obtained from Yahoo Finance’s historical data for the
past five years (https://www.yahoo.com/finance, access date: 6 July 2022.). Three market
indicators are selected for model validation analysis. They are SSE, Hang Seng, and Dow
Jones. The main index data are the opening price, closing price, high price, and low price
of stock.

4.3. Experimental Verification and Analysis

Considering a long memory of fractional Brownian motion, this paper selected as a
market cycle [40] (252 day,) as the observation data set; the prediction is the next ten trading
days of the index trend, that is, 1 July 2019–15 July 2019, based on the past year’s trading
day data predicted from the same data after that. As shown in Figure 2, the experimental
data uses a sliding window (windows = 252) to move backward and forward by 10 trading
day lengths each time, so as to obtain the complete set of predicted data.
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Here, the prediction performance of the GBM, GFBM, MFBM, and IFPSO-MFBM
models proposed in this paper are compared for stock price trends. The forecasting results
of the four models are analyzed.

4.3.1. SSE Index Data Prediction Analysis

This experiment uses the Chinese A-share SSE index dataset to validate the model
prediction effect. The main data is the daily closing price of the SSE index from 1 July 2019–
1 July 2022.

1. Parameter solving and optimization

The parameters in the MFBM model are solved and optimized according to the steps
in Section 3.

From Figure 3, it can be seen that improved fractional-order particle swarm algorithm
(IFPSO) outperforms the particle swarm algorithm (PSO) in terms of both convergence
speed and merit-seeking effect. The results are shown in Table 2.

https://www.yahoo.com/finance
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Table 2. MFBM model parameters and optimization results for the SSE index.

Index Set Parameters R/S MLE IFPSO

SSE

µ - 0.0521 0.1209
σ - 0.1739 0.1221
ρ - - 0.7893
H 0.5214 - 0.5334

Based on the SSE index data, the mean Hurst value of 0.5214 is first obtained by R/S
analysis. Then, we obtain µ̀ = 0.0521 and σ̀ = 0.1739 by the MLE method. Since the value
by the MLE method is not optimal, it is further optimized by the IFPSO algorithm in this
paper to obtain µ = 0.1209, σ = 0.1221, and ρ = 0.789. To reduce the influence of the initial
value, the Hurst value is also optimized using the IFPSO, and H = 0.5334 is finally obtained.
The change in optimization is evident in the data. The final optimization effect is judged by
the magnitude of MAPE, SMAPE, and R2.

The seed is the random seed number of the random model. The experiment takes the
best seed value in the seed (1~200).

2. Comparison of Simulation Results

The parameters of the four models (GBM, GFBM, MFBM, and IFPSO-MFBM) are set
as in Table 3. The experimental comparison images are as follows:

Table 3. Parameters of the SSE in the four models.

Index Set Model Seed µ σ ρ Hurst

SSE

GBM 87 0.0521 0.1739 - -
GFBM 136 0.0521 0.1739 - 0.5214
MFBM 143 0.0521 0.1739 0.5 0.5214

IFPSO−
MFBM 143 0.1209 0.1221 0.7893 0.5334

Figure 4a shows the result of the predictive simulation of the SSE in the GBM. The
main parameters of the model are Seed = 87, u = 0.0521, and σ = 0.1739. Figure 4b is the
result of the predictive simulation of the SSE in the FBM model. The main parameters have
that Seed = 136, u = 0.0521, σ = 0.1739, and H = 0.5214. Figure 4c shows the result of the
predictive simulation of the SSE in MFBM model, with Seed = 143, u = 0.0521, σ = 0.1739,
ρ = 0.5, and H = 0.5214. Figure 4d shows the predictive simulation result of the SSE index
in the optimized IFPSO-MFBM model. The main parameters are Seed = 143, u = 0.1209,
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σ = 0.1221, ρ = 0.7893, and H = 0.5334. The specific error magnitudes can be shown in
Table 4.
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Table 4. Comparative error analysis of SSE index under four models.

Index Set Model MAPE% SMAPE% R2

SSE

GBM 4.3782 4.2857 0.6089
GFBM 3.6379 3.6439 0.7163
MFBM 4.3878 4.4227 0.6247

IFPSO-MFBM 3.3442 3.3262 0.7019

As can be seen, the MFBM model has the largest error in prediction, with a MAPE
of 4.3878%. The optimized IFPSO-MFBM has the smallest error, with a MAPE of 3.3342%.
The IFPSO-MFBM model has a reduced MAPE of 1.0436% compared to the MFBM model.
In addition, the forecasting errors of the SSE index in all four models are less than 10%. It
can be proven that all four models achieve high precision forecasting results.

Based on the forecast results, considering an incremental increase of more than 2% per
10 trading days and a forecast error of less than 1% (i.e., the trend is the same and the error
is less than 1%), the returns obtained are shown in Table 5.

The GBM model return of 17.14%, the GFBM model return of 14.41%, the MBM model
return of 15.45% and the IFPSO-MFBM model return of 28.15% can be seen. All four models
returned greater than 10%, and the MFBM model had the best return
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Table 5. Comparative analysis of SSE index returns under four models.

Index Set Model Returns (1 July 2019–1 July 2022)

SSE

GBM 0.1714
GFBM 0.1441
MFBM 0.1545

IFPSO-MFBM 0.2815

4.3.2. Hang Seng Index Data Prediction Analysis

This experiment uses the Hong Kong Hang Seng index dataset to validate the model
prediction effect. The main data is the daily closing price of the Hang Seng index from 1
July 2019–1 July 2022.

1. Parameter solving and optimization

The parameters in the MFBM model are solved and optimized according to the steps
in Section 3.

From Figure 5, it can be seen that IFPSO outperforms the PSO algorithm in terms of
the merit-seeking effect. The results are shown in the table below.
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As can be seen in Table 6, the mean Hurst value of 0.5651 is first obtained by R/S
analysis. Then, we obtain µ̀ = −0.0677, σ̀ = 0.2318 by the MLE method. This is further
optimized by the IFPSO algorithm in this paper to obtain µ = 0.2631, σ = 0.5820, and
ρ = 0.7496. The Hurst is also optimized using IFPSO and Hurst = 0.6160 is finally obtained.
The change in optimization is evident in the data. The final optimization effect is judged by
the magnitude of MAPE, SMAPE, and R2.

The seed is the random seed number setting of the random model, this experiment
takes the best seed value in the seed (1~200).

Table 6. MFBM model parameters and optimization results for the Hang Seng index.

Index Set Parameters R/S MLE IFPSO

Hang Seng

µ - −0.0677 0.2631
σ - 0.2318 0.5820
ρ - - 0.7496
H 0.5651 - 0.6160
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2. Comparison of Simulation Results

The parameters of the four models (GBM, GFBM, MFBM, and IFPSO-MFBM) are set
as in Table 7; the experimental comparison images are as follows.

Table 7. Parameters of the Hang Seng in the four models.

Index Set Model Seed µ σ ρ Hurst

Hang Seng

GBM 107 −0.0677 0.2318 - -
GFBM 121 −0.0677 0.2318 - 0.5651
MFBM 89 −0.0677 0.2318 0.5 0.5651

IFPSO−MFBM 89 0.2631 0.5820 0.7496 0.6160

Figure 6a shows a plot of the results of the predictive simulation of the Hang Seng in
the GBM. Figure 6b shows a plot of the results of the predictive simulation of the Hang Seng
in the FBM model. Figure 6c shows a plot of the results of the predictive simulation of the
Hang Seng in the MFBM model. Figure 6d shows a plot of the predictive simulation results
of the Hang Seng index in the IFPSO-MFBM model. For the specific error magnitudes, see
the table below.
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As can be seen from Table 8, the GFBM model has the largest error in prediction, with
a MAPE of 6.5526%. The IFPSO-MFBM has the smallest error, with a MAPE of 4.8857%.
The IFPSO-MFBM model has a reduced MAPE of 1.3307% compared to the MFBM model.
The IFPSO-MFBM after parameter optimization has been improved to a certain extent.
In addition, the forecasting error of the Hang Seng index in all four models are less than
10%. This proves that all four models achieve high precision forecasting results and have a
highly accurate forecasting effect.

Table 8. Comparative error analysis of Hang Seng index under four models.

Index Set Model MAPE% SMAPE% R2

Hang Seng

GBM 5.4472 5.3733 0.4893
GFBM 6.5526 6.5584 0.2990
MFBM 6.2164 6.1092 0.3836

IFPSO-MFBM 4.8857 4.9752 0.5348

Based on the forecast results, the returns obtained are shown in Table 9.

Table 9. Comparative analysis of Hang Seng index returns under four models.

Index Set Model Returns (1 July 2019–1 July 2022)

Hang Seng

GBM 0.1474
GFBM 0.1168
MFBM 0.1173

IFPSO-MFBM 0.2307

The GBM model return of 14.74%, GFBM model return of 11.68%, MBM model return
of 11.73%, and the IFPSO-MFBM model return of 23.07% can be seen. All four models
returned greater than 10%, and the MFBM model had the best return

4.3.3. Dow Jones Index Data Prediction Analysis

This experiment uses the US Dow Jones index dataset to validate the model prediction
effect; the main data is the daily closing price of the Dow Jones index from 1 July 2019–
1 July 2022.

1. Parameter solving and optimization

The parameters in the MFBM model were solved and optimized according to the
parameter solving and optimization process in Part 3.

From Figure 7, it can be seen that IFPSO outperforms the PSO algorithm in terms of
both convergence speed and merit-seeking effect. The results are shown in the table below.

As can be seen in Table 10, the Hurst value of 0.5939 is first obtained by R/S analysis;
then, µ̀ = 0.0804 and σ̀ = 0.2436 were obtained by the MLE method. Since the value obtained
by the MLE method is not optimal. It is further optimized by the IFPSO algorithm in this
paper to obtain µ = 0.0127, σ = 0.2790, and ρ = 0.3983. To reduce the influence of the initial
value, the Hurst is also optimized using IFPSO, and Hurst = 0.5480 is finally obtained. The
change in optimization is evident in the data and the final optimization effect is judged by
the magnitude of MAPE and SMAPE.
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Table 10. MFBM model parameters and optimization results for the Dow Jones index.

Index Set Parameters R/S MLE IFPSO

Dow Jones

µ - 0.0804 0.0127
σ - 0.2436 0.2790
ρ - - 0.3983
H 0.5939 - 0.5480

The seed is the random seed number setting of the random model, this experiment
takes the best seed value in the seed (1~200).

2. Comparison of Simulation Results

The parameters of the four models (GBM, GFBM, MFBM, and IFPSO-MFBM) are set
as in Table 11 and the experimental comparison images are as follows.

Table 11. Parameters of the Dow Jones in the four models.

Index Set Model Seed µ σ ρ Hurst

Dow Jones

GBM 170 0.0804 0.2436 - -
GFBM 188 0.0804 0.2436 - 0.5939
MFBM 52 0.0804 0.2436 0.5 0.5939

IFPSO−MFBM 52 0.0127 0.2790 0.3983 0.5480

Figure 8a shows the result of the predictive simulation of the Dow Jones in the GBM.
Figure 8b shows the result of the predictive simulation of the Dow Jones in the FBM model.
Figure 8c shows the result of the predictive simulation of the Dow Jones in the MFBM
model. Figure 8d shows the predictive simulation result of the Dow Jones index in the
IFPSO-MFBM model. For specific error magnitudes, see the table below.
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MFBM model. Figure 8d shows the predictive simulation result of the Dow Jones index in 

the IFPSO-MFBM model. For specific error magnitudes, see the table below. 
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Figure 8. True vs. predicted values of the Dow Jones index under the four models. (a) GBM,
(b) GFBM, (c) MFBM, (d) IFPSO-MFBM.

As can be seen in Table 12, the GBM model has the largest error in prediction, with a
MAPE of 6.0259%. The IFPSO-MFBM had the smallest error, with a MAPE of 4.4196%. The
IFPSO-MFBM model has a reduced MAPE of 1.0939% compared to the MFBM model. The
IFPSO-MFBM after parameter optimization was improved to a certain extent. In addition,
the R2 of the Dow Jones index in all four models is larger than 0.6, which proves that all
four models have a good forecasting effect.

Table 12. Comparative error analysis of Dow Jones index under four models.

Index Set Model MAPE% SMAPE% R2

Dow Jones

GBM 6.0259 6.1553 0.6816
FBM 4.9502 4.7362 0.7591

MFBM 5.5135 5.3750 0.7113
IFPSO-MFBM 4.4196 4.1912 0.7662

Based on the forecast results, the returns obtained are shown in Table 13.
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Table 13. Comparative analysis of the Dow Jones index returns under four models.

Index Set Model Returns (1 July 2019–1 July 2022)

Dow Jones

GBM 0.1426
GFBM 0.2158
MFBM 0.1033

IFPSO-MFBM 0.3083

The GBM model return of 14.26%, GFBM model return of 21.58%, MBM model return
of 10.33% and the IFPSO-MFBM model return of 30.83% can be seen. All four models
returned greater than 10%, and the MFBM model had the best return

From three experiments, it can be shown that the IFPSO-MFBM has the best result of
the four models. The MAPE is reduced by 0.9203% on average and the returns are greater
than 20%. The IFPSO-MFBM has a more significant improvement.

5. Conclusions

The efficient market hypothesis and the fractal market hypothesis are combined in
this paper to study the stock forecasting problem. Firstly, the shortcomings of geometric
and fractional Brownian motion are analyzed and the MFBM model is constructed. Then
the fractional-order particle swarm optimization algorithm is improved. Last but not least,
the IFPSO-MFBM is proposed to forecast stock price.

For the GBM model, there is a clear error in the price prediction. The graph is normally
distributed, but the real share price follows the “spike and thick tail”, which does not match
the specific form of the share price. The fractional Brownian motion model has arbitrage
and is not a sound mode. The MFBM has memory and eliminates arbitrage, and it enables
better forecasting of stock prices. However, its parameters are not optimal.

Most stock price time series have a long memory in nature. The Hurst index is the
most commonly characterized method. However, in practical applications, R/S analysis
method has some obvious shortcomings for calculating long memory parameters and the
obtained Hurst values are not optimal. Therefore, the Hurst values are further optimized
by IFPSO. Other coefficients are optimized by the improved fractional-order particle swarm
optimization algorithm. The final MFBM model with optimal parameters is obtained,
which is the IFPSO-MFBM model. Through experimental analyses, it can be found that the
IFPSO-MFBM model is superior to GBM, FBM, and MFBM models in stock price prediction.
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