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Abstract: Stock price crashes have occurred frequently in the Chinese security market during the
last three decades. They have not only caused substantial economic losses to market investors
but also seriously threatened the stability and financial safety of the security market. To protect
against the price crash risk of individual stocks, a prediction and explanation approach has been
proposed by combining eXtreme Gradient Boosting (XGBoost), the Non-dominated Sorting Genetic
Algorithm II (NSGA-II), and SHapley Additive exPlanations (SHAP). We assume that financial
indicators can be adopted for stock crash risk prediction, and they are utilized as prediction variables.
In the proposed method, XGBoost is used to classify the stock crash and non-crash samples, while
NSGA-II is employed to optimize the hyperparameters of XGBoost. To obtain the essential features
for stock crash prediction, the importance of each financial indicator is calculated, and the outputs
of the prediction model are explained by SHAP. Compared with the results of benchmarks using
traditional machine learning methods, we found that the proposed method performed best in terms
of both prediction accuracy and efficiency. Especially for the small market capitalization samples, the
accuracy of classifying all samples reached 78.41%, and the accuracy of identifying the crash samples
was up to 81.31%. In summary, the performance of the proposed method demonstrates that it could
be employed as a valuable reference for market regulators engaged in the Chinese security market.

Keywords: crash risk prediction; market regulation; financial indicators; model explanation; multi-objective
optimization

1. Introduction

The stock price crash is a phenomenon in the stock market in which a stock index or
individual stock price falls sharply in a short period [1]. During the last three decades,
stock price crashes have occurred frequently in the Chinese security market. Stock price
crashes significantly damage market investors’ wealth and confidence [2]. Furthermore,
they can cause dramatic fluctuations in stock prices, which can quickly induce systemic
financial risks and threaten financial security and the development of the Chinese social
economy [3,4]. Therefore, how to effectively warn of the occurrence of stock price crashes
is currently a frontier and focal point of concern for scholars in the field of financial risk
management.

Since the security market is an essential part of a country’s economy, it should be
extremely meaningful to effectively predict stock price crashes so that market regulators can
formulate effective protection policies in advance to reduce the losses brought on by stock
price crashes, thereby maintaining the stable development of the economy. It is commonly
believed that the management of a company deliberately conceals negative news about
the company, and the concentrated release of accumulated negative news in a short period
is the leading cause of stock price crashes [1]. The financial report is an essential channel
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through which investors receive information about listed companies [5], and many scholars
have also found a strong correlation between the quality of financial reports and stock
price crashes. Based on the principal–agent theory, Jin and Myers [1] firstly explained why
stock price crashes occurred from the perspective of individual firms. They found that
companies lacking information transparency are more likely to encounter a price crash in
their stocks. Hutton et al. [6] also stated that companies with high levels of financial opacity
are more likely to encounter stock price crashes. Kim et al. [7] concluded from their research
findings that stock price crash risk is positively correlated with corporate tax avoidance
behaviors. Furthermore, many scholars have verified the correlation between various
financial indicators of companies and their stock prices or stock crash risks, especially those
financial indicators reflecting the profitability [8,9] and cash flow [10,11] of companies.
They could significantly influence stock prices [12–14]. Thus, in this research, we assume
that financial indicators could be employed for predicting the stock crash risk of individual
companies, and a variety of financial indicators are selected as the variables for stock price
crash prediction.

Since the 1980s, to alleviate the great harm that stock price crashes cause to financial
markets and market investors, a large number of scholars have proposed prediction models
for warning of stock price crashes. The most critical models include the epidemic-type
aftershock sequence (ETAS) [15,16], the bond-stock earnings yield differential (BSEYD) [17],
and the log-periodic power law (LPPL) [18–21]. Nevertheless, those models were initially
applied to the fields of earthquake prediction, asset pricing, and physics, respectively, and
they do not use historical stock price data for stock price crash prediction. Furthermore,
these traditional models also have several problems, such as that they are difficult to
calibrate, they have an extensively broad range of predictions, and their prediction targets
are not consistent. Since the 21st century began, scholars have started to utilize data-driven
methods on crashed stocks to find predictive indicators for stock price crashes. The most
well-known prediction methods include linear models [22,23] and logistic regression [24].
However, since most data in financial markets are non-linear, the traditional prediction
models used for linear problems are weak in reflecting the non-linear relationships between
variables [25].

With the rapid development of artificial intelligence technologies in the last decade,
machine learning-based methods have been widely employed to address non-linear prob-
lems, and they have also been extensively applied to the research of finance. For instance,
Inthachot et al. applied the artificial neural network (ANN) and support vector machine
(SVM) models to predict the trends of the SET50 Index [26]. Jaiwang and Jeatrakul used
a Support Vector Machine (SVM)-based method to predict the buying and selling points
of stocks, and it produced excellent results in terms of accuracy [27]. Chatzis et al. pro-
posed a deep learning (DL)- based approach to build a stock market crisis early warning
system using daily stock, bond, and currency statistics from 39 countries [28]. However,
although a deep learning-based approach can produce an outstanding prediction result,
it requires large amounts of training data and is prone to overfitting in the prediction
process. Additionally, it has a significant shortcoming in model interpretation [29]. In 2016,
Chen and Guestrin proposed a novel classification and regression tree-based model called
XGBoost [30]. Compared with traditional machine learning algorithms, it adds regular-
ization parameters to the objective function, which could effectively alleviate overfitting
in the prediction process and significantly improve the generalizability of the model. To
date, XGBoost has been widely applied in various fields due to its high computational
speed, its excellent accuracy, and the modifiability of the model framework. For example,
Guang et al. used XGBoost to analyze spectroscopy results, making possible a fast and
accurate diagnosis of type II diabetes without reagents [31]. In their research on a new
hierarchical structure of metal-organic nanocapsules, Xie et al. applied an XGBoost-based
method to identify the proper synthesis parameters for a synthesis experiment from a large
number of experimental variables, and they could efficiently and accurately discover the
new materials [32]. Huang and Xie applied several machine learning models to predict the
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trends of price movement in 1 min data of CSI (China Securities Index) 300 stock index
futures. They compared the predictive effectiveness of three well-known methods (SVM,
ANN, and XGBoost). The results showed that XGBoost was significantly better than the
other two classical machine learning methods [33]. Therefore, considering the excellent
performance of XGBoost in practical applications [34,35], it is selected as the base prediction
model for forecasting stock price crashes in this research.

XGBoost has plenty of hyperparameters, and their values’ settings could lead to a
significant effect on its effectiveness [36]. Therefore, the hyperparameters of the XGBoost
model need to be optimized for the problem of stock price crash prediction. Commonly
used methods for hyperparameter optimization include artificial settings by experts, grid
search (GS) [37,38], and genetic algorithms (GA) [39–41]. Nevertheless, due to a large
number of hyperparameters of XGBoost and the complex combination of those hyper-
parameters, if we were to rely on experts’ experience to search for a proper setting of
hyperparameters, the uncertainty of the predictive accuracy would be very high, and the
efficiency could be extremely low. In addition, the GS-based method is a process of finding
the best setting by examining the performances of all combinations of parameters within
a user-designed value range [42]. As a result, parameter optimization based on the GS
method would be extremely time-consuming and inefficient. Although the traditional
GA method is efficient in finding the optimal parameters, and it has been widely applied
for optimizing the hyperparameters of machine learning methods, it is generally more
suitable for optimizing hyperparameters with a single optimized objective [43]. However,
in the current study, we attempt to improve not only the accuracy but also the efficiency
of the proposed method for stock price crash prediction. Therefore, the traditional GA
should also not be appropriate for the parameter optimization task of stock price crash
prediction. In contrast, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is
an algorithm based on a crowding distance sorting and elite retention strategy that can
quickly obtain a Pareto-optimal group of sets in the space of solutions. Moreover, it has
been widely applied in many applications [44–47], and it shows excellent performance in
multi-objective optimization tasks. Therefore, with the multiple objectives of maximizing
both the predictive accuracy and efficiency of the trained model, NSGA-II is adopted to
optimize the hyperparameters of the XGBoost model.

Since XGBoost is a kind of black-box machine learning model that lacks interpretability
of the prediction output, the related literature applying the XGBoost method generally
showed only the classification or regression results, but they lacked explanation of the
predictions [48]. In reality, however, it would be necessary for stock market regulators and
investors to understand the contributions of the financial indicators for stock price crash
prediction, as well as the essential variables for the predictions. It would then be possible
for them to better forecast and warn of stock price crashes in the market. Among the model
interpreting methods, the SHapley Additive exPlanations (SHAP) approach could be used
to solve the problem in the current research. The SHAP method is derived from cooperative
game theory [49,50]. It displays and visualizes the effects of each feature on the results of a
prediction model using its SHAP values. Until now, the SHAP method has been applied for
prediction model explanation in various machine learning algorithms [49–53]. Therefore,
in order to improve the interpretability of the proposed XGBoost–NSGA-II method, the
SHAP values for each financial indicator will be calculated to provide insights into the
extent and direction of each feature’s importance to the proposed prediction model. As a
result, the essential features for predicting stock price crashes could be generated, which
could provide a significant reference for understanding how the proposed method makes
predictions regarding stock price crashes.

To sum up, there are three main problems with the current machine learning methods
for stock price crash prediction: (1) They are easy to overfit in the model training period.
(2) Their hyperparameters are generally optimized according to a single objective. (3) They
lack explanation of their predictions. To solve those problems, the XGBoost–NSGA-II–
SHAP method is proposed. For the experiments, we firstly set labels to represent the



Systems 2022, 10, 108 4 of 25

occurrence of stock price crashes, and multiple types of financial indicators of companies
are selected as the features to identify the stock price crashes. Following that, the XGBoost
model is trained, and the hyperparameters are optimized using the NSGA-II to improve
the prediction accuracy and efficiency. Finally, the Gain and SHAP values of the features
are calculated separately, and the features that contributed significantly to the model’s
results are selected and analyzed. Based on this, the relationship between these critical
features and the model’s prediction results can be quantified and visualized. Additionally,
systematic risk factors, including economic policy [54], political factors [55], war factors [56],
and COVID-19 [57–59], will affect the short-term or long-term risk of individual stocks,
while the impact of those systematic risk factors has already been taken into account in the
measurement of the stock crash risk for individual stocks.

In summary, the main contributions of this research are summarized as follows: (1) A
novel prediction method based on the XGBoost–NSGA-II–SHAP model is proposed to
accurately and efficiently predict the occurrences of stock price crashes. (2) This study
utilizes many financial indicators as the features for predicting stock price crashes, and
it could provide explanations about the effectiveness of company financial indicators in
the prediction of stock price crashes. (3) We divide the whole dataset by market capital-
ization size, and we analyze the differences in their prediction effectiveness by using the
proposed model. (4) The SHAP method is used to measure the importance of each financial
indicator to the results of the stock price crash prediction model to precisely explain the
proposed model.

The rest of this paper is organized as follows: Section 2 explains the backgrounds of
the methods used in this study. In Section 3, the model proposed in this paper is introduced
in detail. Section 4 describes the experimental design of this study. Section 5 presents the
experimental results, and discussions of them are provided. Section 6 concludes this study,
and several research directions for other researchers to explore are provided.

2. Background

In this section, a brief description of the main methods used in the proposed method
is provided.

2.1. XGBoost

eXtreme Gradient Boosting (XGBoost) is an algorithm based on a gradient boost-
ing decision tree (GBDT). The traditional GBDT model uses first-order derivatives when
optimizing each sample at each leaf point. In contrast, the XGBoost algorithm applies
a second-order Taylor expansion to the loss function. It adds a regular term to the loss
function of each sample to suppress the complexity of the model, and it could alleviate
overfitting in the model training process [30]. The main procedures of XGBoost can be
summarized as follows:

Suppose that there is a training dataset containing n records and m explanatory vari-
ables. The predicted value of the i-th sample ŷi is described by the following formulation:

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (1)

where fk is a function corresponding to one of the regression trees. F is the space including
all regression trees.

We can then obtain the loss function for each sample by the equation below:

L = ∑
i

l(yi, ŷi) (2)

where l is a loss function that quantifies the difference between the predicted value and
the label yi for a given training dataset. Next, to prevent the model from becoming too
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complex, the method adds a penalty term Ω to the objective function. Its formula is shown
as follows:

Ω( fk) = γTk +
1
2

λ‖w‖2 (3)

where γ and λ are the penalty coefficients; Tk is the number of leaves of the k-th tree; and w
represents the score of the leaf.

Considering that a boosting approach proceeds in an iterative manner, the objective
function of the current iteration t is represented by the prediction of the previous iteration
ŷ(t−1)

i adjusted by the latest tree fk:

Lt =
n

∑
i=1

l
(

yi, ŷ(t−1)
i + fk(xi)

)
+ ∑

k
Ω( fk) (4)

A Taylor expansion is then performed on the objective function:

Lt ≈
n

∑
i=1

[
l
(

yi, ŷ(t−1)
i

)
+ gi fk(x) +

1
2

hi f 2
k (x)

]
+ ∑

k
Ω( fk) + constant (5)

where gi = ∂ŷ(t−1)l
(

yi, ŷ(t−1)
)

is the first-order derivative of the loss function for sample i;

hi = ∂2
ŷ(t−1)l

(
yi, ŷ(t−1)

)
represents the second-order derivative of the loss function.

Because the constant does not influence the optimization results, and the residuals
from the previous iteration can be omitted, the objective function can be simplified as
follows:

Lt =
n

∑
i=1

[
gi fk(x) +

1
2

hi f 2
k (x)

]
+ ∑

k
Ω( fk) (6)

Because the model is a combination of leaf nodes, substituting Equation (3) into
Equation (6) yields the following result:

Lt =
Tk

∑
j=1

[
Gjwj +

1
2
(

Hj + λ
)
w2

j

]
+ γTk (7)

where Gj = ∑
i∈Ij

gi and Hj = ∑
i∈Ij

hi. Ij are the training instances in leaf j. Moreover, by taking

the derivative of wj and making it equal to zero, we can obtain the best wj by minimizing
the objective function for each leaf. At this point, the equation for the best leaf weight w∗j
and the objective function for the best tree structure L∗t are calculated as follows:

w∗j = −
Gj

Hj + λ
(8)

L∗t = −1
2

Tk

∑
j=1

G2
j

Hj + λ
+ γTk (9)

Equation (9) is often used to measure the quality of any given split of the tree. Because
it is difficult to enumerate all possible tree structures, we use a greedy algorithm to expand
the tree to choose the split point with the maximum Gain. The Gain is defined as the
improvement in the objective function due to the creation of the split:

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
− γ (10)
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where GL = ∑
i∈IL

gi, GR = ∑
i∈IR

gi, HL = ∑
i∈IL

hi, and HR = ∑
i∈IR

hi, of which IL and IR denote

the sets of training instances of the left and right sub-leaves, respectively, after splitting the
tree’s leaves.

2.2. NSGA-II

Multi-objective optimization methods are approaches that involve more than one
objective function to be optimized simultaneously for obtaining a Pareto-optimal set of
solutions. Among multi-objective optimization methods, the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) is a well-known one that can quickly and accurately select
a uniformly distributed Pareto-optimal solution. The NSGA was developed in 1989 after
Goldberg first proposed using non-dominated ranking algorithms to optimize model
parameters [60]. In this algorithm, the non-dominant individuals in the population are
continuously selected, and their virtual fitness values are then shared and assigned until the
population is wholly divided into classes [61]. In 2002, Deb et al. proposed the NSGA-II [62],
which has the following main improvements compared to the NSGA: (1) The NSGA-II uses
a fast non-dominated sorting algorithm, which can significantly reduce the computational
complexity; (2) the NSGA-II uses the crowding distance sorting instead of the original
fitness value sharing method, resulting in a more uniform distribution of solutions in the
Pareto front surface; (3) the NSGA-II also uses an elite retention strategy that allows the
entire population to be selected for better individuals throughout the evolution. The main
procedures of the NSGA-II are listed as follows:

(1) Firstly, an initial population of N individuals is randomly generated.
(2) They are then selected, crossed, and mutated to obtain the first-generation offspring

population.
(3) Next, from the second generation, the parent populations are merged with the off-

spring populations for the fast non-dominated sorting. In the meanwhile, the crowding
distance is calculated for the individuals in each non-dominance layer, and the ap-
propriate individuals are selected to form a new parent population based on the
non-dominance relationship and the crowding distance of the individuals.

(4) Finally, new offspring populations are generated by the basic operations of the genetic
algorithm, and the above steps are repeated until the maximum number of iterations
is reached. At that time, the operation is stopped, and the Pareto-optimal solution for
multi-objective optimization is generated.

The main operational procedure of the NSGA-II is shown in Figure 1.
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2.3. SHAP

The SHapley Additive exPlanations (SHAP) method is used as a framework for
interpreting the predictions of machine learning models, and it is derived from the
theory of cooperative games (Shapley value) [63]. The Shapley value is based on the
contributions of each player to a collaborative game, and it is used to allocate the
costs and benefits of the alliance [64]. Lundberg and Lee applied this cooperative
game theory to feature attributions in 2017 [49,50] and proposed the SHAP approach.
In cooperative game theory, the Shapley value measures the value of each player’s
contributions to the collaborative game. In contrast, for the output of a classification or
regression model, the individual features become participants in the model’s outcome.
Therefore, each feature will have a SHAP value generated by considering each feature’s
contribution as its feature importance. Moreover, each SHAP value must satisfy the
following three properties:

(1) Local accuracy

This property indicates that the outcome of the model to be explained is equal to the
sum of the feature attributions, and it ensures that when approximating the model f to
be explained for the input x, the outcome of the explanation model g(x′) should at least
match f (x).

(2) Missingness

This property ensures that the missing values of the variables involved in the features
will not influence the output of the predictive model.

(3) Consistency

This property ensures that the SHAP value is robust and that the input’s simplified
contribution will not decrease, even if the predictive model changes, as long as its attribution
does not decrease.

There is only one possible explanation model that satisfies all the properties, so we
can obtain the contribution of a given feature x using the following equation:

φi( f , x) = ∑
z′⊆x′

|z′|!(M− |z′| − 1)!
M!

[
fx
(
z′
)
− fx

(
z′\i

)]
(11)

where f (x) is the original predictive model that needs to be explained; g(x′) is the
explanatory model that is a linear function of binary variables; φ0 represents the base
value; M is the number of input features; φi are the SHAP values of variable i; |z′| is
the number of non-zero terms in z′; fx(z′) = f (hx(z′)) = E[ f (Z)|ZS]; and S is the set of
non-zero indexes in z′. Therefore, we can calculate the contribution of each feature to
the prediction of the model as a measure of feature importance by Equation (11), and
the SHAP values allow us to interpret the predictions of the proposed model.

3. Proposed Method

In the proposed method, many financial indicators of listed companies in the
Chinese stock market are selected as the features for stock price crash prediction.
Additionally, we test the effectiveness of those financial indicators for predicting a
stock price crash and find the critical features for its prediction. The main procedures
of the proposed method in this study are shown in Figure 2, which mainly consists of
the following four components.
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(1) Data Collection and Pre-processing component

First, the following original data are derived from the CSMAR and the RESSET
databases [65]: (1) weekly returns of the individual stocks and weekly market returns,
which are used to calculate dummy variables measuring the occurrence of stock price
crashes; (2) market capitalization data for individual stocks, which are used to divide the
groups of datasets for experiments; and (3) financial indicators of the individual stocks for
the listed companies, which are used as the prediction features for the stock price crash
prediction model. The Pearson correlation test is then performed to remove the redundant
features. Finally, the whole dataset is divided into four subsets (overall dataset, large
market capitalization dataset, medium market capitalization dataset, and small market
capitalization dataset). Each dataset is then divided into a training dataset and a testing
dataset with a sample amount ratio of about 2:1.

(2) Model Training and Testing component

For the training dataset, XGBoost is adopted to train the stock price crash prediction
model, and the NSGA-II is utilized to optimize the hyperparameters of the prediction
model. Next, by using the testing dataset of each sub-dataset, the trained models for stock
price crash prediction are tested.

(3) Results Evaluation component

The predictive performance of the trained models is evaluated by four evaluation
measures, mainly from the view of prediction accuracy and efficiency.

(4) Model Explanation component

Using the Gain index of XGBoost, the proposed method ranks the importance of
individual features to identify critical financial indicators. Additionally, the SHAP approach
is applied to measure the effects of each feature on the prediction results of the stock price
crash prediction model. Subsequently, the SHAP results could be adopted to provide an
explanation for the prediction of the proposed method.

4. Experimental Design
4.1. Experiment Data

The previous literature mainly adopted two ways to measure the degree of stock
price crash risks: (1) setting up dummy variables to identify the occurrence of a stock
price crash [6]; and (2) calculating the negative conditional skewness (NCSKEW) or the
ratio of down-to-up volatility (DUVOL) to measure the stock price crash risk [66,67]. In
this article, following the research of Hutton et al. [6] and Kim et al. [7,67], the residuals
from an expanded index model regression are used to construct the dummy variables to



Systems 2022, 10, 108 9 of 25

describe the occurrence of stock price crashes within a given period (three months). The
main calculation procedures are listed as follows:

(1) Weekly returns of individual stocks and weekly value-weighted market returns of the
Chinese stock market ranging from 2015 to 2020 are derived from the CSMAR and
RESSET databases.

(2) The firm-specific weekly returns from the expanded market model regression are
calculated by:

rj,T = αj + β1,jrm,T−2 + β2,jrm,T−1 + β3,jrm,T + β4,jrm,T+1β5,jrm,T+2 + ε j,T (12)

where rj,T is the return of stock j in the week T; rm,T denotes the value-weighted
market returns in the week T. The firm-specific weekly return is measured using
the equation Wj,T = ln

(
1 + ε j,T

)
, where Wj,T is the firm-specific weekly return for

the stock j in the week T. ε j,T is the residual return in Equation (12). Therefore,
the occurrence of crashes is measured based on the number of firm-specific weekly
returns exceeding 3.09 standard deviations below or above their average value in
the given quarter, with 3.09 standard deviations chosen to generate profitability of
0.1% in the normal distribution. In other words, if a company satisfies the equation
Wj,T ≤ Average

(
Wj,T

)
− 3.09σj,T at least once within a season, it could suggest that

the company experienced a stock price crash during that period, and therefore its
stock crash label is set to 1 (CRASH = 1).

(1) Samples of individual stocks in the same industry that did not experience a stock
crash in the same period are selected as non-crash samples, with their labels set to 0
(CRASH = 0), and the ratio of stock-crash samples to non-crash samples in the dataset
is 1:1. For the experiment samples, we selected a total of 37 financial indicators from
six perspectives, which are debt-paying ability, operating capacity, growth ability,
profitability, capital structure, and cash flow. Those variables are used as the features
of the stock price crash prediction model (see Table 1).

(2) Next, the abnormal sample in the acquired initial dataset is handled using multiple
imputations to fill in the missing values of the dataset variables. The Pearson correla-
tion coefficients are then calculated for all the selected features to test the correlation
between them [68]. Based on this, the redundant features with Pearson correlation
coefficients greater than 0.8 are removed to improve the training speed and predictive
efficiency of the model [69]. Finally, the whole dataset is divided into a training set
and a testing set at a ratio of 2:1 for each experiment.

Table 1. The financial indicators that are used as features for predicting the stock price crashes.

Category Codename Features (Financial Indicator)

Debt-Paying Ability

a1 Current Ratio
a2 Quick Ratio
a3 Debt to Asset Ratio
a4 Equity Multiplier
a5 Debt to Equity Ratio
a6 Long-Term Debt to Asset Ratio

Operating Capacity

b1 Receivables Turnover Ratio
b2 Inventory Turnover Ratio
b3 Operating Cycle
b4 Current Assets Turnover Ratio
b5 Fixed Assets Turnover Ratio
b6 Capital Intensity Rate
b7 Total Assets Turnover Ratio

Growth Ability c1 Total Assets Growth Rate
c2 Sustainable Growth Rate
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Table 1. Cont.

Category Codename Features (Financial Indicator)

Profitability

d1 Return on Assets Ratio
d2 Return on Total Assets Ratio
d3 Return on Equity Ratio
d4 Gross Profit Margin Ratio
d5 Operating Expense Ratio
d6 Operating Profit Margin Ratio
d7 Net Profit Margin Ratio
d8 Expense to Sales Ratio
d9 Administration Expense Ratio
d10 Financial Expense Ratio

Capital Structure

e1 Current Assets to Total Assets Ratio
e2 Cash to Assets Ratio
e3 Working Capital Over Total Assets Ratio
e4 Fixed Assets Ratio
e5 Shareholder Equity Ratio
e6 Current Liability Ratio
e7 Non-Current Liability Ratio
e8 Operating Profit Percentage

Cash Flow

f1 Operating Cash Flow to Sales Ratio
f2 Net Operating Cash Flow to Sales Ratio
f3 Cash Return on Total Assets Ratio
f4 Cash Operating Index

4.2. NSGA-II Design

In the proposed method, XGBoost is applied for model training using the training
dataset. In the meanwhile, to obtain a set of hyperparameters for the Pareto optimum,
the NSGA-II is adopted to optimize the hyperparameters of the XGBoost model with two
optimization objectives: prediction accuracy and prediction efficiency. In this research,
according to the evaluation measures, the optimization objectives of the NSGA-II are
designed as follows:

Objective 1: Maximizing the ACC (Accuracy):

max(ACC) = max
(

TP + TN
TP + FN + FP + TN

)
(13)

Objective 1 represents the maximization of the ACC when the stock-crash samples and
non-stock-crash samples are correctly identified by the prediction model in the training
dataset. Using this measure as the optimization target for the prediction model, the predic-
tion model can generate a good accuracy result for both positive (stock-crash) and negative
(non-stock-crash) samples. The evaluation measure ACC is explained in Section 4.3.

Objective 2: Minimizing the FPR (False Positive Rate):

min(FPR) = min
(

FP
FP + TN

)
(14)

Objective 2 represents the minimization of the proportion of non-crash samples that
are incorrectly predicted to be crash samples in the training dataset. Using this measure
as the objective for optimizing the hyperparameters of the prediction model, it could be
possible to generate a hyperparameter solution with optimal prediction efficiency. The
result-evaluation measure FPR is explained in Section 4.3.

Additionally, due to the large number of hyperparameters of the XGBoost model to
be optimized and the choice of these hyperparameters potentially having a significant
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influence on the prediction accuracy of the proposed model, the hyperparameters of
the XGBoost model that have a significant influence on the prediction results [70,71] are
selected, and reasonable ranges of those values are designed (see Table 2). Moreover, since
the NSGA-II itself has several parameters that could also influence the prediction results
of the trained model, the parameters of the NSGA-II are designed as follows: generation
is the number of generations to breed, which is set to 150; popsize indicates the size of the
population in each sampling, and it is set to 100; cprob is the crossover probability, which is
set to 0.7; mprob is the mutation probability, which is set to 0.2.

Table 2. The value search range of the hyperparameters optimization for the XGBoost model.

Hyperparameters Brief Description Value Search Range

eta
It controls the learning rate, and it can be
used to prevent overfitting by making the

boosting process more conservative.
0.01~0.3

max_depth The maximum depth of a tree. 3~10

min_child_weight

The minimum sum of instance weight
(Hessian) needed in a child. If the tree

partition step results in a leaf node with a
sum of instance weight less than it, the
building process will give up further

partitioning.

0.5~6

colsample_bytree The subsample ratio of columns when
constructing each tree. 0.4~1

gamma

The minimum loss reduction required to
make a further partition on a leaf node of
the tree. The larger the gamma, the more

conservative the algorithm will be.

0~5

nrounds The maximum number of boosting
iterations. 75~100

4.3. Result-Evaluation Measures

The effectiveness of the proposed model for stock price crash prediction is verified
using the testing dataset to produce results that could be shown as a confusion matrix (see
Table 3).

Table 3. The confusion matrix for the out-of-sample prediction results.

Positive Sample Negative Sample

Positive prediction TP (True positive) FP (False positive)
Negative prediction FN (False negative) TN (True negative)

In Table 3, TP (true positive) denotes the number of positive samples that are correctly
predicted by the prediction model in the testing dataset; FN (false negative) is the number
of positive samples that are incorrectly predicted; FP (false positive) means the number of
non-crash samples that are identified to be stock-price-crash samples; TN (true negative)
denotes the number of non-crash samples that are correctly predicted in the testing dataset.
For the prediction results, we employ accuracy (ACC), true positive rate (TPR), false positive
rate (FPR), and positive predictive value (PPV) as the measures to evaluate the prediction
accuracy and efficiency of the proposed method. Among these evaluation metrics, ACC
and PPV are metrics to evaluate the model’s predictive accuracy, and TPR and FPR are
metrics to evaluate the model’s predictive efficiency. Those four evaluation measures are
explained and calculated as follows:
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(1) ACC is the accuracy of the prediction model for predicting stock-price-crash samples
and non-stock-crash samples:

ACC =

(
TP + TN

TP + FN + FP + TN

)
(15)

(2) TPR is the proportion of stock-price-crash samples that are correctly predicted:

TPR =

(
TP

TP + FN

)
(16)

(3) FPR is the proportion of non-crash samples incorrectly predicted to be crash samples:

FPR =

(
FP

FP + TN

)
(17)

(4) PPV is the proportion of the actual stock-crash samples out of the samples that the
model predicts to be stock-price-crash samples:

PPV =

(
TP

TP + FP

)
(18)

4.4. Model Explanation

For the proposed XGBoost–NSGA-II method that is applied to stock price crash
prediction, Gain values are calculated for each financial feature based on their contribution
during the model-training step of XGBoost. As shown in Equation (10), the Gain represents
the fractional contribution of each feature to the XGBoost–NSGA-II model based on the
total gain of that feature’s splits. A higher percentage of the Gain value suggests a more
important feature for stock price prediction. Therefore, the importance of the features in the
input datasets are ranked by their Gain values to select the critical features for predicting
stock price crashes.

Additionally, the SHAP approach is employed to measure and visualize the effects
of each financial indicator on the prediction of the proposed XGBoost–NSGA-II method
for stock price crash prediction. Using the SHAP results, it is possible to quantify the
contributions of each input feature to the stock crash prediction model to explain the
proposed model and to figure out the critical financial indicators for prediction. Moreover,
SHAP dependence plots will be drawn for those critical features, and the influences of
those features on the prediction results of the proposed model will be analyzed.

4.5. Benchmark Methods

Table 4 shows a list and brief descriptions of the proposed method and benchmark
methods. The benchmarks are prepared to verify whether the proposed method can
perform better than other classical machine learning-based methods. Method 1 (XGBoost–
NSGA-II–SHAP) is the proposed method of this research. In Method 1, XGBoost is used
as a base classifier for predicting the occurrence of a stock price crash, and in the mean-
time, the NSGA-II is applied to optimize the hyperparameters of the XGBoost method to
improve the prediction accuracy and efficiency. Moreover, the SHAP approach is adopted
to explain the prediction model. Methods 2–6 are benchmark methods. Among them, the
results comparison between Method 2 (XGBoost–GS) and the proposed method is used
to investigate whether or not the NSGA-II can effectively improve the effectiveness of
the XGBoost model as a hyperparameter optimization method when compared with grid
search (GS). Method 3 adopts a random forest (RF)-based model [72], and Method 4 uses a
decision tree (DT)-based model as the predictor. Both of them are classical and efficient tree
models. Methods 5 and 6 adopt two classical machine learning models, which are SVM
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and ANN. They are employed to compare their performances with the proposed method
for predicting stock price crashes.

Table 4. A list of the proposed method and benchmark methods.

No Methods Description

1 XGBoost–NSGA-II–SHAP
(proposed method)

It combines XGBoost, NSGA-II, and SHAP. XGBoost is
used to predict stock price crashes; NSGA-II is used to

optimize the hyperparameters of the XGBoost
prediction method; SHAP is adopted to explain the

prediction model.

2 XGBoost–GS
It integrates XGBoost and grid search (GS). XGBoost is
used to predict the stock price crash, and GS is used to
optimize the hyperparameters of the prediction model.

3 RF A stock price crash prediction model based on a random
forest (RF)-based method.

4 DT A stock price crash prediction model based on a
decision tree (DT)-based method.

5 SVM A stock price crash prediction model based on the
support vector machine (SVM)-based method.

6 ANN A stock price crash prediction model based on the
artificial neural network (ANN)-based method.

5. Experimental Results
5.1. Feature Correlation Test Results

Figure 3 shows the results of the correlation test produced by the Pearson correlation
coefficient for the 37 financial indicators of the listed companies. In Figure 3, Figure 3b
represents the results for the samples of companies with a market capitalization that is
less than CNY 5 billion; Figure 3c represents the results for the samples of companies with
a market capitalization between CNY 5 billion and CNY 10 billion; Figure 3d represents
the results for the sample of companies with a market capitalization greater than CNY 10
billion; and Figure 3a represents the test results for the whole sample. In each subplot,
the left and upper axes represent the names of the financial indicator used for the stock
price crash prediction, and the legends on the right side denote the degrees of the Pearson
correlation coefficients between every two features using colors. A color closer to blue
indicates a stronger positive correlation. In contrast, a color closer to red indicates a
stronger negative correlation, while a color closer to white indicates a weaker correlation.
Similarly, the central angle of the colored sectors within the graph also indicates the degree
of the correlation; the larger the central angle, the larger the absolute value of the Pearson
correlation coefficient between the two features. In general, two features are considered to
be strongly correlated if the absolute value of the Pearson correlation coefficient is greater
than 0.8 [68]. To improve the predictive accuracy and computational speed of the stock
price crash prediction model, the highly correlated features are removed according to the
correlation test results.

As shown in the sub-figures of Figure 3, even after individual tests of the samples by
market capitalization, several features that have strong positive or negative correlations
in the whole dataset maintain their strong correlations in the three individual datasets.
For instance, the a3 (debt to asset ratio) and e5 (shareholder equity ratio) had a strong
negative correlation in the whole dataset, and they were still strongly correlated in the three
sub-datasets. For most of the other features, the correlation between them changes after the
whole dataset is divided, such as the d6 (operating profit margin ratio) and b3 (operating
cycle); the result of the correlation test between them in the whole dataset was a red sector
with an angle smaller than 180 degrees, indicating that the Pearson correlation coefficient
between them was negative and the absolute value is smaller than 0.5. This means that the
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negative correlation between the two indicators is not very strong. However, the result
of the feature correlation test for both the small-capitalization and medium-capitalization
company datasets changes to be a dark red sector with a circular angle close to 360 degrees,
which indicates that the negative correlation between these two features gets stronger in
the small-capitalization dataset and the medium-capitalization dataset compared to the
whole dataset.
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Based on the correlation analysis results, we found that the correlations of some
features are apparent in the datasets. Therefore, in order to improve the training efficiency
of the proposed method for stock price crash prediction, it is necessary to remove the
redundant features. However, when removing redundant features from these datasets, it is
necessary to comprehensively analyze the intrinsic meaning of these financial indicators to
ensure that the input features are comprehensive and typical. For this reason, based on the
correlation analysis results, the removed features are shown in Table 5.
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Table 5. A list of redundant features that were removed from each dataset.

Category Filtered Features Codes Filtered Features

Whole dataset a2, a4, b6, b7, d1, d5, d7, d9, e5, e7,
f2

Quick Ratio, Equity Multiplier, Capital Intensity Rate, Total Assets
Turnover Ratio, Return on Assets Ratio, Operating Expense Ratio,

Net Profit Margin Ratio, Administration Expense Ratio,
Shareholder Equity Ratio, Non-Current Liability Ratio, Net

Operating Cash Flow to Sales Ratio.

Small-Capitalization
dataset

a2, a4, b3, b6, b7, d1, d5, d7, d9,
d10, e3, e5, e7, f2

Quick Ratio, Equity Multiplier, Operating Cycle, Capital Intensity
Rate, Total Assets Turnover Ratio, Return on Assets Ratio,

Operating Expense Ratio, Net Profit Margin Ratio, Administration
Expense Ratio, Financial Expense Ratio, Working Capital Over

Total Assets Ratio, Shareholder Equity Ratio, Non-Current Liability
Ratio, Net Operating Cash Flow to Sales Ratio.

Medium-
Capitalization

dataset

a2, a4, b3, b6, b7, d1, d3, d5, d6,
d7, d10, e5, e7, f2

Quick Ratio, Equity Multiplier, Operating Cycle, Capital Intensity
Rate, Total Assets Turnover Ratio, Return on Assets Ratio, Return

on Equity Ratio, Operating Expense Ratio, Operating Profit Margin
Ratio, Net Profit Margin Ratio, Financial Expense Ratio,

Shareholder Equity Ratio, Non-Current Liability Ratio, Net
Operating Cash Flow to Sales Ratio.

Large-
Capitalization

dataset

a2, a4, b6, d1, d3, d5, d6, d7, d10,
e5, e6

Quick Ratio, Equity Multiplier, Capital Intensity Rate, Return on
Assets Ratio, Return on Equity Ratio, Operating Expense Ratio,

Operating Profit Margin Ratio, Net Profit Margin Ratio, Financial
Expense Ratio, Shareholder Equity Ratio, Current Liability Ratio.

5.2. Stock Price Crash Prediction Results

Table 6 and Figure 4 show the prediction results in terms of four evaluation indicators
for the proposed method and benchmark methods. XGBoost–NSGA-II is the stock price
crash prediction model proposed in this study, and the other methods used classic machine
learning methods, including SVM, RF, ANN, DT, and XGBoost–GS, as bases for stock price
crash prediction models, serving as the benchmark methods.

Table 6. Results of stock price crash prediction for the proposed method and benchmark methods.

Method SVM RF ANN DT XGBoost–GS XGBoost–NSGA-II

Panel A. Stock samples of small market capitalization
ACC 63.31% 64.24% 55.90% 62.25% 59.60% 78.41%
TPR 85.88% 82.35% 58.43% 69.12% 54.12% 81.31%
FPR 59.52% 50.60% 47.22% 43.37% 33.33% 26.09%
PPV 59.35% 57.14% 60.47% 56.62% 67.65% 82.86%

Panel B. Stock samples of medium market capitalization
ACC 50.67% 57.04% 50.33% 61.96% 62.67% 73.83%
TPR 47.59% 55.71% 69.01% 59.74% 61.33% 75.90%
FPR 46.34% 41.67% 66.67% 36.05% 35.82% 28.09%
PPV 45.71% 56.52% 48.51% 59.74% 65.71% 71.59%

Panel C. Stock samples of large market capitalization
ACC 52.84% 54.03% 49.54% 58.82% 48.63% 63.93%
TPR 35.54% 39.60% 45.54% 50.47% 48.15% 60.81%
FPR 31.97% 32.73% 46.96% 34.35% 50.00% 31.25%
PPV 49.35% 52.63% 46.00% 54.55% 73.39% 75.00%

Panel D. Whole stock samples
ACC 55.30% 57.17% 55.13% 58.08% 57.34% 62.88%
TPR 53.61% 59.86% 49.26% 62.33% 58.92% 63.40%
FPR 43.20% 45.45% 38.58% 46.49% 44.29% 37.86%
PPV 52.61% 56.17% 57.76% 59.09% 57.76% 70.51%
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First, we focus on the prediction accuracy of stock price crashes by each forecasting
method. Among all the evaluation indicators, accuracy (ACC) is the correctness of the
model for predicting stock-price-crash samples and non-stock-crash samples, which can
reflect the accuracy of the prediction methods comprehensively. From the ACC results, we
could conclude the following findings: (1) The ACCs of the small-capitalization, medium-
capitalization, large-capitalization, and whole datasets were 78.41%, 73.83%, 63.93%, and
62.88%, respectively. Therefore, from the results of four categories divided by market capi-
talization size, it is found that the proposed XGBoost–NSGA-II prediction model produced
the greatest predictive accuracy among all the investigated methods. (2) Compared to the
other benchmark methods, the XGBoost model produced a better ACC in predicting stock
price crashes, indicating that XGBoost was more effective in identifying stock price crashes.
(3) The NSGA-II used for hyperparameter optimization of the XGBoost stock price crash
prediction model successfully improved the predictive accuracy. Regarding the benchmark
XGBoost–GS method that applied grid search for hyperparameter optimization of the XG-
Boost model: looking at all four datasets, i.e., small-capitalization, medium-capitalization,
and large-capitalization, as well as the whole dataset, the method only obtained ACC
results of 59.60%, 62.67%, 48.63%, and 57.34% respectively. Using the NSGA-II for hyperpa-
rameter optimization of the XGBoost model, the ACC results for the four datasets reached
78.41%, 73.83%, 63.93%, and 62.88%, all of which outperformed the prediction accuracy of
the GS method. (4) The accuracy of the proposed model consistently generated the best
ACC result for each category of different market capitalization, and it produced the largest
ACC result for the small-capitalization company stocks.

Second, the prediction accuracy of the proposed method and benchmark methods
are analyzed in terms of another evaluation measure: positive predictive value (PPV),
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which is the proportion of correct identifications of stock-price-crash samples. Similar to
the ACC results, it is evident that the proposed XGBoost–NSGA-II method generated a
higher PPV than all the benchmark methods. For the proposed method, its PPV results
for the small, medium, and large market capitalization datasets were 82.86%, 71.59%, and
75.00%, respectively. For the whole dataset, the proposed method obtained a PPV value
of 70.51%. Therefore, it could be concluded that the proposed method performed best in
predicting stock price crashes for the small-capitalization samples.

Additionally, for security market regulators to warn of stock price crashes effectively,
an excellent warning model should produce not only a high predictive accuracy for stock
crash prediction but also an excellent identification efficiency. Among the evaluation
measures, TPR and FPR are commonly used to measure prediction efficiency. The TPR
reflects the proportion of crash samples that are correctly predicted. Thus, a larger TPR
result indicates the model is more efficient in predicting stock price crashes. In addition,
FPR represents the proportion of non-crash samples that are incorrectly predicted as stock-
crash samples in all non-crash samples; a smaller FPR value indicates a lower error rate,
which could represent more efficiency in predicting stock price crashes. Therefore, TPR
and FPR are used as efficiency evaluation indicators for the prediction models to compare
the prediction efficiency of different methods. From the performances shown in Table 6, we
could obtain the following findings: (1) The TPR of the proposed XGBoost–NSGA-II method
was 81.31% in the small-capitalization samples. Although it was not the largest among all
the methods, it was only 4.57% lower than the TPR of the SVM-based method. However, it
is not sufficient to use TPR alone to reflect the predictive efficiency of a forecasting model.
In the small-capitalization samples, the FPR of the proposed method was only 26.09%,
which was the lowest value. Therefore, based on the results of TPR and FPR for prediction
efficiency evaluation, the XGBoost–NSGA-II prediction model had both a high TPR and a
low FPR in the small-capitalization samples, which indicates that it had an extraordinary
predictive ability in terms of prediction efficiency. (2) The XGBoost–NSGA-II prediction
model produced the largest TPR values in the medium-capitalization sample and the
large-capitalization sample, which were 75.90% and 60.81%, respectively. Additionally, the
proposed method also had the lowest FPR of 28.09% in the medium-capitalization sample.
For the large market capitalization sample, the FPR was only 31.25%, which was also the
lowest one. Therefore, in terms of these two evaluation indicators of stock price crash
prediction efficiency, the proposed XGBoost–NSGA-II method performed best in terms of
predictive efficiency in both the medium and large market capitalization samples. (3) In the
whole dataset, the XGBoost–NSGA-II prediction model obtained the greatest prediction
efficiency, with a TPR of 63.40% and an FPR of 37.86%. In summary, compared with the
benchmark methods, the proposed XGBoost–NSGA-II method could predict stock price
crashes with the highest predictive efficiency.

According to the results comparison of the prediction accuracy and efficiency of the
prediction models, it could be concluded that the proposed XGBoost–NSGA-II method
performed best compared to other machine learning-based algorithms. Next, we further
analyze the prediction results of the proposed method on different market capitalization
datasets based on these four evaluation indicators (see Table 7 and Figure 5). First, it
is evident from the experimental results that the XGBoost–NSGA-II stock price crash
prediction model had the worst prediction results in the overall dataset based on the
analysis of the four evaluation metrics. Therefore, it could be concluded from the results
that for the proposed model, dividing the dataset by market capitalization size and then
training the model could improve the prediction accuracy and efficiency. Next, we focus on
the prediction accuracy of the proposed method: the proposed XGBoost–NSGA-II model
generates the greatest ACC (78.41%) on the samples of the small-capitalization dataset.
Additionally, positive predictive value (PPV) shows the proportion of actual crash samples
that are correctly predicted by the method. Therefore, in practice, it is often used as an
evaluation measure for prediction methods, and a larger PPV value generally indicates
that a model is more accurate in predicting the occurrence of a stock price crash. The
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PPV of the XGBoost–NSGA-II model was up to 82.86% in the small-capitalization dataset,
which was 11.27% larger than the PPV of the medium-capitalization dataset, and it was
7.86% larger than the PPV of the large-capitalization dataset. Therefore, we could conclude
that the proposed XGBoost–NSGA-II method performed best in the small-capitalization
sample dataset.

Table 7. Results of the proposed XGBoost–NSGA-II method for stock price crash prediction on four
different datasets.

Category ACC TPR FPR PPV

Small-capitalization dataset 78.41% 81.31% 26.09% 82.86%
Medium-capitalization dataset 73.83% 75.90% 28.09% 71.59%

Large-capitalization dataset 63.93% 60.81% 31.25% 75.00%
Whole dataset 62.88% 63.40% 37.86% 70.51%
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different market capitalization sizes.

We then focus on the prediction efficiency of the proposed prediction model. In the
small-capitalization dataset, the TPR of the XGBoost–NSGA-II method reached 81.31%, which
was 5.41% larger than that in the medium-capitalization dataset and 20.5% larger than that in
the large-capitalization dataset. Moreover, XGBoost–NSGA-II produced the lowest FPR value
(26.09%) for the small-capitalization dataset. Therefore, similar to the prediction accuracy results,
it is obvious that the proposed XGBoost–NSGA-II method also produced greater prediction
efficiency in the small-capitalization dataset than in other datasets.

In conclusion, it was found that compared to other machine learning-based methods, the
XGBoost–NSGA-II stock crash prediction model successfully generated the best performances
in terms of prediction accuracy and efficiency for predicting stock price crashes. Additionally,
for samples from different market capitalization groups, the proposed model performed best in
the small-capitalization dataset. This conclusion is consistent with the findings in the previous
literature [73]. One possible reason for this could be that the stock price volatility of companies
with small capitalizations is more sensitive to changes in their financial indicators compared to
companies with medium and large market capitalizations [74].
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5.3. Feature Importance Analysis

Figure 6 shows the features that ranked in the top 10 for importance for the experiments
on each dataset. The features are selected by the Gain values of each feature in the training
step of the XGBoost model. In each sub-figure of Figure 6, the horizontal axis shows the Gain
value of each feature, and the vertical axis shows the name of each feature. In Figure 6a, for the
experiment on the whole dataset, it is clear that the total assets growth rate (c1) contributed more
than other features to the predictions by the proposed XGBoost–NSGA-II method. Additionally,
after dividing the whole dataset according to market capitalization size and then performing the
experiments individually, it could be found that financial indicators show apparent differences in
their contributions to stock price crash predictions by the proposed XGBoost–NSGA-II method
for samples of different market capitalization sizes. For instance, in the experiment on the large-
capitalization dataset, the long-term debt to asset ratio (a6) and the working capital over total
assets ratio (e3) were the features that contributed most to the prediction results of the proposed
method, while the fixed assets turnover ratio (b5) was the feature that contributed most to the
prediction results in the medium-capitalization dataset. However, before the whole dataset was
divided and investigated separately, the contribution of those features to the prediction results
of the proposed model was not critical in the experiment on the whole dataset. The largest
Gain value in the experiment of the small-capitalization dataset remained that of the total assets
growth rate (c1). Therefore, through the investigation of feature importance for the prediction
method, it is possible for market regulators to select the critical financial indicators for stock
samples in different market capitalization groups, which are beneficial for them in predicting
stock price crashes in a more targeted and efficient way. For the small-capitalization samples, the
key financial indicator for predicting the occurrence of a stock crash was the total assets growth
rate (c1), a measure indicator showing the growing ability of a company. The key financial
indicator for predicting a stock crash in the medium-capitalization dataset was the fixed assets
turnover ratio (b5), which is the operating capacity of a company. For the large-capitalization
samples, the key financial indicators for predicting the occurrence of a stock price crash included
the long-term debt to asset ratio (a6), which measures a company’s debt-paying ability, as well
as the working capital over total assets ratio (e3) that reflects its capital structure.

5.4. Results of the SHAP Approach

In Section 5.3, the importance of the most critical features is ranked and analyzed by
the Gain values generated during the model training of XGBoost. Although the Gain value
measures the magnitude of the influence of the features on the stock price crash predictions
of the model, it is still challenging to understand the influence direction of each feature on the
prediction results. Therefore, the SHAP method is further adopted to specifically analyze the
contributions of the critical features of each dataset to the respective model predictions [49,75].
Considering that the proposed XGBoost–NSGA-II method generated the best prediction results
in the category of small-capitalization samples, we focus on and analyze the critical features in
the small-capitalization dataset by using the SHAP method. Figure 7 shows the top 10 critical
features for prediction in the small-capitalization dataset, ranked by the importance of each
feature. The vertical axis represents the feature name in the dataset, and each point in the graph
is one variable of the feature. The colors of the points indicate the deviation of the feature value
for each stock variable, and the horizontal axis represents the SHAP values of the predicted
samples of each feature.

From Figure 7, we can observe the relationships between SHAP values and feature
values for the critical variables. For c1 (total assets growth rate) and e2 (cash to assets
ratio), the larger those feature values, the larger the SHAP values, which means a higher
possibility of a stock price crash. Additionally, the larger the feature values of d4 (gross
profit margin ratio), e1 (current assets to total assets ratio), and e4 (fixed assets ratio), the
lower the stock price crash possibility. We then focus on the top four important features,
and SHAP dependence plots are drawn for the features for further analysis of the influences
of the feature values on the prediction results.
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Figure 8 represents the SHAP dependence plots of the top four critical features (c1,
e2, d4, and e1) for stock price crash prediction in the small-capitalization samples. They
reflect the SHAP values of all corresponding samples for those features, from which it
is possible to analyze how the SHAP value of each feature changes as the feature value
changes. The vertical axis of each subplot in Figure 8 represents the SHAP values for
the stock samples, and the horizontal axis represents the feature value. First, when the
feature value of c1 (total assets growth rate) gradually became larger from the negative
values, its SHAP value was gradually decreased, indicating that as the feature value of c1
gradually rose, the possibility of a stock price crash gradually decreased until the feature
value increased to near zero. As the feature value continued to increase, the SHAP value
gradually increased, indicating that when the value of c1 was greater than zero, the larger
the feature value of c1, the higher possibility of a stock price crash. The possibility of a
stock price crash decreased as e2 (cash to assets ratio) grew from 0% to approximately
18%, while the possibility of stock price crash became greater as the feature value of e2
increased from about 18% to 80%. For d4 (gross profit margin ratio), the possibility of
a stock price crash gradually increased as its feature value gradually increased from a
negative value to approximately 25%, while the stock price crash possibility gradually
decreased as the feature value of d4 continued to increase from about 25% to approximately
100%. Furthermore, as e1 (current assets to total assets ratio) gradually increased from
0% to about 100%, the stock price crash possibility continuously decreased. By analyzing
the relationship between the feature values of the above four critical features and their
SHAP values, we could determine the specific influence of changes in feature values on
the prediction results. The results could therefore be utilized to interpret the proposed
prediction model, thus improving the interpretability of the proposed model.
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5.5. Managerial Insight

The proposed XGBoost–NSGA-II–SHAP method could provide investors and market
regulators with managerial insight. Firstly, the proposed method could be used as a
reference for market investors to reduce trading risk. Secondly, market regulators could
take appropriate actions (for instance, limiting the trading volume of a stock that has a large
possibility of a stock price crash) in advance to control trading risk. Thirdly, the results of
the Gain values and SHAP values could help market investors and regulators understand
which financial variables are the main features for predicting the stock price crashes of
individual stocks. In this regard, the proposed model could be used as an alternative
method to provide market regulations with guidance on the crucial features within the
financial indicators.

6. Conclusions

In this study, we have proposed a novel method named XGBoost–NSGA-II–SHAP for
the prediction and explanation of stock price crashes in the Chinese security market. The
proposed method employs financial indicators as features to predict stock price crashes. To
explain the proposed prediction model, the critical financial indicators are analyzed for the
different market capitalization samples, and the influences of those feature values on the
model’s prediction results are also explained. According to the experimental results, the
following main conclusions could be generated: (1) Compared to other classical machine
learning-based methods, XGBoost produced the best prediction results for stock price crash
prediction. (2) The NSGA-II was adopted for multi-objective optimization of the hyperpa-
rameters of the XGBoost method, which not only improved the accuracy of the model in
identifying stock price crashes, but also successfully enhanced the efficiency of stock price
crash warnings. (3) Compared to the benchmark methods, the proposed XGBoost–NSGA-II
method generated the best prediction accuracy and efficiency. In addition, comparing
the performance of the proposed models in different market capitalization datasets, it
could also be found that the proposed XGBoost–NSGA-II method for stock price crash
prediction obtained better prediction results in the small-capitalization dataset. (4) For the
small-capitalization samples, the critical feature for stock price crashes prediction is the
total assets growth rate, while for the stock samples with medium capitalization, the critical
feature is the fixed assets turnover. Moreover, for the large-capitalization samples, the key
indicators are the long-term debt to asset ratio and the working capital over total assets ratio.
(5) For the top four critical financial indicators from the experiments on small-capitalization
samples, the stock price crash possibility initially decreased and then increased as the
values of the total assets growth rate and the cash to assets ratio increased. As the value of
the gross profit margin ratio increased, the stock price crash possibility initially increased
and then decreased. For the current assets to total assets ratio feature, the stock price crash
possibility was continuously and gradually reduced as its value increased.

However, there are still several limitations of this study: (1) This study used only the
financial indicators of the firms as the features for stock price crash prediction. (2) We studied
only the stock price crashes of individual stocks of the Chinese stock market. (3) In the experi-
ments, we divided the group of stocks only from the perspective of company capitalization.

There are several possible research directions for other researchers to expand on this
research. (1) Other scholars could consider using other factors, such as investor sentiments,
market trading indicators, war factors, COVID-19, and so on, as the prediction features for
predicting stock price crash risks. (2) Other scholars can also apply the method proposed
in this study to research on price crashes in other stock markets or financial markets, such
as futures markets and foreign exchange markets, to predict and explain their price crashes.
(3) Other researchers could divide the stocks from other perspectives, such as industries or
markets (Main Board market or Second Board market).
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