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ABSTRACT

Motivation: The availability of a huge amount of molec-
ular data concerning various biochemical reactions pro-
voked numerous attempts to study the dynamics of cellular
processes by means of kinetic models and computer sim-
ulations. Biochemical processes frequently involve small
numbers of molecules (e.g. a few molecules of a transcrip-
tional regulator binding to one ‘molecule’ of a DNA reg-
ulatory region). Such reactions are subject to significant
stochastic fluctuations. Monte Carlo methods must be em-
ployed to study the functional consequences of the fluctu-
ations and simulate processes that cannot be modelled by
continuous fluxes of matter. This provides the motivation
to develop software dedicated to Monte Carlo simulations
of cellular processes with the rigorously proven Gillespie
algorithm.

Results: STOCKS, software for the stochastic kinetic
simulation of biochemical processes is presented. The
program uses a rigorously derived Gillespie algorithm
that has been shown to be applicable to the study of
prokaryotic gene expression. Features dedicated to the
study of cellular processes are implemented, such as
the possibility to study a process in the range of several
cell generations with the application of a simple cell
division model. Taking expression of Escherichia coli beta-
galactosidase as an example, it is shown that the program
is able to simulate systems composed of reactions varying
in several orders of magnitude by means of reaction rates
and the numbers of molecules involved.

Availability: The software is available at ftp://ibbrain.ibb.
waw.pl/stocks and http://www.ibb.waw.pl/stocks.
Supplementary information: Parameters of the model of
prokaryotic gene expression are available in example files
of software distribution.

Contact: andrzejk@ibb.waw.pl

INTRODUCTION

The determination of rates of reactions involved in
cellular metabolism is one of the classic research topics
in biochemistry. As data for the rates of single reactions
accumulate, it becomes possible to study more complex

biochemical pathways by means of kinetic models and
computer simulations. The ultimate goal of these studies
is to understand the dynamics of the living cell in terms
of the interactions among its molecular components. The
advances in genomics that yield unprecedented capabil-
ities of controlled modifications of protein function and
gene expression levels further motivate the development
of models that are able to predict dynamic effects, within
metabolic networks, resulting from these changes.

The kinetic model involves a set of substances interact-
ing through a network of reactions. If the reactions are
described by differential equations, the time evolution of
the system can be simulated by numerical integration of
the rate equations. From the rate equations, elasticity coef-
ficients can also be computed that quantitatively describe
the susceptibility of the system to the perturbation of the
selected parameter of the model. The latter approach is
also known as Metabolic Control Analysis (MCA). There
are numerous computer programs that perform these
calculations e.g. E-CELL (Tomita ef al., 1999); DBSolve
(Goryanin et al., 1999); GEPASI (Mendes, 1993, 1997);
MEG (Mendes and Kell, 2001); KINSIM (Barshop et al.,
1983; Dang and Frieden, 1997); MIST (Ehlde and Zacchi,
1995); METAMODEL (Cornish-Bowden and Hofmeyr,
1991); SCAMP (Sauro, 1993). E-CELL software has
been applied in an attempt to build a whole-cell kinetic
model (Tomita et al., 1999). The authors either collected
from the literature or fitted rate constants describing
metabolic reactions involving the products of 127 genes
of Mycoplasma genitalium—the cell with the smallest
known genome. The results of the computer simulations
have been discussed in context of genome engineering.

The methods presented above use a deterministic
formulation of chemical kinetics, i.e. they treat reactions
as continuous fluxes of matter. This approach is correct
if there is a very large number of molecules present
in the system. The average outcome of a very large
number of random molecular collisions is a continuous
and deterministic process. Several authors argued that
the deterministic approach is inappropriate for many
biochemical processes involving very small numbers
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of molecules (McAdams and Arkin, 1997; Levin et al.,
1998; Hume, 2000; Kierzek et al., 2001). An example is
the regulation of gene expression when the number of
transcription regulators present in the cell may be as low
as ten molecules and regulators bind to a single ‘molecule’
of the DNA regulatory region (e.g. Lac repressor and
LacZ promoter; Levin, 1999). In the case of a reaction
involving such a small number of molecules stochastic
fluctuations of time intervals between individual random
molecular collisions become significant. This also implies
significant random fluctuations in the numbers of various
molecular species present in the system. The influence of
the stochastic effects on the course of biological processes
has been shown in works on the kinetics of phage lambda
life cycle regulation McAdams and Arkin, 1997; Arkin
et al., 1998). The authors have shown that the lytic or
lysogenic fate of the particular phage molecule can be
determined by a random event due to stochastic fluctua-
tions of the numbers of regulatory proteins. This implies
that the complex regulatory networks of deterministic
behaviour, which is crucial for cell function, must contain
mechanisms that compensate for random changes in the
numbers of regulatory proteins. It has been postulated
that checkpoints in the eukaryotic cell cycle serve that
purpose (Alberts et al., 1994). The variability of cell
behaviour in the isogenic population is another example
of a phenomenon that can be explained by the stochastic
fluctuations in biochemical processes. Individual cell
responses to subsaturating inducer concentrations in the
lactose and arabinose operons (Siegele and Hu, 1997) and
individual swimming behaviour of Escherichia coli cells
have been attributed to stochastic processes (Levin et al.,
1998).

The above examples show that, in order to correctly
model the dynamics of many cellular processes, stochastic
effects must be taken into account. In order to do so,
Monte Carlo approaches to chemical kinetics must be
employed. In these methods, individual molecular en-
counters are explicitly simulated with the use of computer
generated random numbers following the appropriate
probability distributions. There were several attempts to
formulate Monte Carlo computer simulation protocols
applicable to the studies of biochemical kinetics. Carrier
and Keasling (1999) proposed an algorithm dedicated to
the studies of prokaryotic gene expression. They applied
the method to test various hypotheses concerning the role
of mRNA degradation in prokaryotic gene expression and
to the modeling of an all-or-none phenomena in lactose
operon regulation. Morton-Firth and Bray (1998) applied
their own Monte Carlo simulation algorithm to study
signal transduction in bacterial chemotaxis. Simulations
were able to explain individual swimming behaviour of
E. coli cells. The algorithm has been implemented as the
STOCHSIM program.

The Gillespie algorithm (Gillespie, 1977) is the gen-
eral method for Monte Carlo simulation of the systems
composed of coupled chemical reactions. The physical
validity of the method is rigorously proven. The algorithm
has already been applied to the simulations of various
biochemical processes. Arkin et al. (1998) studied the
role of stochastic phenomena in the bifurcation of the
development pathway of bacteriophage A. Garcia-Olivares
et al. (2000) applied the Gillespie algorithm to stochastic
simulations of the cyclic dynamics in glycolitic and glu-
coneogenetic cycle. Laurenzi and Diamond (1999) used
the algorithm to investigate the aggregation kinetics of
platelets and neutrophils. In a recent paper (Kierzek et al.,
2001), the Gillespie algorithm has been applied to study
the relationship between transcription and translation
initiation frequencies and the magnitude of stochastic
fluctuations in prokaryotic gene expression. Taking into
account the applications listed above, the method is worth
implementing as publicly available software. To my best
knowledge, the only software suitable for biochemical
kinetics simulations with the Gillespie algorithm is
SIMULAC (http://genomics.lbl.gov/~aparkin) written by
Adam Arkin. Here I present the software STOCKS which
implements the Gillespie algorithm and new functions
dedicated to the simulation of cellular processes. I show
that the program is able to accurately compute the time
evolution of systems composed of reactions with rates
varying by several orders of magnitude (gene expression
and the enzymatic reaction of synthesized protein). An-
other example shows that the method is computationally
fast enough to allow for intensive parameter scanning.
In this example, new results concerning magnitude of
fluctuations in prokaryotic gene expression are also
presented.

IMPLEMENTATION

STOCKS is software written in standard C** language. It
can be compiled on any platform with a C** compiler.
The program has been tested under Linux and Irix
operating systems. The interface of STOCKS is best suited
for running the program as a background job under UNIX
operating systems. The following sections present the
background of the Gillespie algorithm, details concerning
the implementation of this algorithm and formats for input
and job control files. Additional utility programs aiding
the analysis of the results are also presented.

Gillespie algorithm

Let us consider a system composed of N chemical
species S;(i = 1, ..., N) interacting through M reactions
R,(w = 1,..., M) in the volume V. Every reaction u
is characterized by its stochastic rate constant c,,, which
depends on the physical properties of the molecules taking
part in the reaction and the temperature of the system.
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The stochastic rate constant has the meaning of ‘reaction
probability per unit time’ as the product c, dt is the
probability that one elementary reaction p happens in
the next infinitesimal time interval d¢. By an elementary
reaction I mean a single, reactive molecular collision
between the species taking part in the reaction. Taking a
specific example, if the reaction formulais A + B — AB
the elementary reaction will remove a single A and
single B molecule from the reaction environment and add
single molecule of AB.

There is a simple and intuitive relationship between the
stochastic rate constant and deterministic rate constant
used in chemical kinetics. It is important, as it allows
the direct application of experimentally determined rate
constants in the Gillespie algorithm simulation. For first
order reactions, both constants are equal. In the case of
second order reactions, the stochastic rate constant c,
equals the deterministic rate constant k,, divided by the
volume of reaction environment:

cu =kyu/(NAV) (D

(N4 is Avogadro’s number). In the case of second order
reactions of two molecules of the same substance (e.g.
A+ A — AA) stochastic rate constant is calculated as
follows:

¢y =2k, /(NAV). 2)

This is caused by the fact that the number of distinct
pairs of molecules that can reactively collide is smaller in
the case of (2). For example, in reaction A + B — AB
the number of distinct molecular encounters is XaXp
where XA, Xp denote the numbers of the molecules A
and B. In the case of homodimer formation reaction A +
A — AA, the number of distinct molecular encounters
is XA(Xa — 1)/2. Let us denote the number of distinct
reactant combinations available for the reaction R, at the
given state of the system as /. For the derivation of the
above relations, see the original paper of Gillespie (1977).

For the system of reactions considered above, the
Gillespie algorithm proceeds as follows. In every step
of the simulation, two questions are answered: (i) what
is the waiting time for the next reaction to occur and
(i1) which one of all reactions in the system will occur.
These questions are answered by generating two random
numbers according to the following probability density
function:

P (7, ) = ay exp(—aor) 3
where
ay=hycy
ap = Xay.

P (7, n)dr is the probability that the next reaction will
occur in the system in the infinitesimal time interval dt

and that it will be an R, reaction. After determination
of the waiting time for the next reaction and the identity
of this reaction, numbers of molecules in the system
and the time of the simulation are adjusted accordingly
and simulation proceeds. The practical procedure for
performing simulations consistent with (3) is shown in
Figure 1.

As the algorithm shows, the way in which the identity
of the next reaction is determined is very intuitive. The
larger the reaction rate is, or the larger are the numbers of
substrate molecules, the greater is the chance that a given
reaction will happen in the next step of the simulation.
There is no constant timestep in the simulation. The
timestep is determined in every iteration and it takes
different values depending on the state of the system. The
practical consequence of this fact is that it is difficult
to determine in advance the computational cost of the
simulation. As the timestep changes and depends on the
numbers of reactant molecules, the number of program
iterations that need to be executed in order to reach a preset
maximal time of the simulation is unknown in advance.

The rigorous derivation of the algorithm has been given
elsewhere (Gillespie, 1977). The author argued that the
algorithm is ‘exact’ in the sense that it never approximates
the infinitesimal time increment df by discrete timesteps.
The algorithm determines the exact times at which
individual molecular reactive encounters occur. From the
practical point of view, it is useful as one does not have
to test the sensitivity of the simulations to the timestep
values. In contrast to the deterministic formulation of
chemical kinetics, the algorithm remains exact for arbi-
trary low numbers of the molecules. Repeated runs of
the simulation can be used to study fluctuations in the
numbers of molecules.

Implementation

STOCKS has an object oriented data structure. The
reaction object contains pointers to substance objects
which in turn held the names and numbers of molecules
of particular reactants. Separate arrays, within reaction
objects, contain pointers to substrate and products and
their stochiometric coefficients. The reaction object also
encapsulates the functions that compute a,, h, and
update the numbers of substrate and product molecules
according to single elementary reactions. The simulator
object contains the list of all reactions in the system.
While performing a step of the Gillespie algorithm, the
simulator computes a,,, h, for every reaction by calling
its encapsulated functions. Then it generates the waiting
time, chooses a reaction and executes a single elementary
reaction by calling its encapsulated function. The data
structure described above is dynamically built according
to the input file defining the system.

There are three features added to the software that are
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Initialisation:

e Load reactions and the values of their stochastic rate constants c; (i=1,..,M).

e  Load initial values for the numbers of reactant molecules X; (i=1,..,N).

e Set time of the simulation t = 0.

Iteration:

e For every reaction calculate a, = hyc, (u=1,...M).

e Calculate ap= X a,

e Generate two random numbers r; and r, uniformly distributed over unit interval (0,1)

e Calculate the waiting time for the next reaction as T = (1/ap) In (1/1)).

e  Take the index W of the next reaction so that (a; + a, + ... + a,.) <ap < (a; + a +...+ a,)

e Change the numbers of molecules in the system by executing one elementary reaction L.

e  Set time of the simulationt=t+ 71

Termination:

e Terminate simulation when time of the simulation t exceeds preset maximal time of the simulation or

when all substrates of all reactions in the system are consumed (a,=0).

Fig. 1. Gillespie algorithm.

dedicated to the simulation of biological systems: the
growing volume of the reaction environment, simulation
of cell division and random pools of reactants. The first
two features allow simulation of cellular process in the
time scale of several cellular generations. During a single
generation, the cell doubles its volume. Then, cell division
is simulated and the ‘attention’ of the program is switched
to one of the new cells with the volume reset to its initial
value.

In the current version of the software, only a linear
volume change is implemented in the following way. The
stochastic rate constants given in the input file must be
specific for the initial volume of the system. Therefore, the
initial volume is set to 1 and during the generation time 7'
grows up to 2 according to the formula:

Vie)=>0+1t/T) 4)

where ¢ is the time of the simulation.

Before each step of the Gillespie algorithm, the rates
of all second order reactions are divided by the current
volume. Therefore, at the beginning of every generation
the stochastic rate constants of second order reactions are
equal to the values given in the input file and at the end
of generation they are twice as small. In a similar way, any

growth law for the volume can be added in future, although
a linear one was so far sufficient to give reasonable results
in the simulation of prokaryotic systems (Arkin et al.,
1998; Kierzek et al., 2001).

Cell division has been modeled as follows. First, the
numbers of all reactants that model DNA elements are
doubled. This is implemented by a separate set of reaction
objects that do not take a part in the Gillespie algorithm
calculations and are executed only when the system
reaches the generation time. Then, all the numbers of
molecules present in the system are divided by 2 and
the volume is reset to the initial value. In this way, the
program continues the simulation with the system which
has half of the molecules present at the end of the previous
generation and the proper number of DNA elements.
Future versions of the software will account for the fact
that, in bacterial cells, genes are replicated at different
times and expressed from two copies during bacterial
generations. I also plan to add the possibility of setting
random variation in generation times.

Random pools of reactants have been added in order
to model the pools of cellular substances which are in
dynamic equilibrium as a result of the large number of
competing processes. If the number of molecules in the
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pool results from many small contributions of other pro-
cesses and the fluctuations of this number are fast com-
pared to the time-scale of the simulation, its distribution
should be Gaussian. Let us take a specific example. In
bacterial cells, the number of RNA polymerase molecules
which are free to bind to the promoter region of a given
gene is determined by the following processes: synthe-
sis of polymerase subunits and their degradation, bind-
ing of RNA polymerase to the promoter region of other
genes, engaging polymerase in the transcription of other
genes and nonspecific binding to DNA (McClure, 1985).
All these processes are in a delicate and dynamic balance
keeping the number of polymerase molecules fluctuating
around some constant mean value. Detailed modeling of
all these processes would be extremely difficult, if possi-
ble at all. In this example, the STOCKS software allows
modeling of the RNA polymerase pool as a random vari-
able with Gaussian distribution. The mean of the distri-
bution can be set according to experimental estimates and
the sensitivity of the results to various values of standard
deviation can be checked.

The pools are implemented as follows: before comput-
ing h;, and a, values in the Gillespie algorithm, the num-
ber of molecules in a random pool is drawn from the Gaus-
sian distribution with a specified mean and standard devi-
ation. Then, the simulation continues as described above.
The mean value of the number of molecules in the pool
grows, together with the volume so the concentration of
molecules remains constant. This simulation protocol has
been justified in more detail in a previous paper (Kierzek
et al., 2001). Arkin et al. (1998) used a similar strategy
to model equilibrated binding reactions. The number of
molecules being in a free and bound state were drawn from
an appropriate distribution before executing the step of the
Gillespie algorithm. Random pools of reactants, although
first implemented in order to model the numbers of ribo-
somes and RNA polymerase molecules for the purpose of
modeling prokaryotic gene expression, will also be use-
ful in the case of other processes in which the number of
reactant molecules is buffered by a large number of the
processes which are difficult to be modeled explicitly.

One should note at this point that, although the applica-
tion of random pools can be justified in many cases, there
is no rigorous, mathematical proof of this simulation pro-
tocol. Simulations with the rigorously proven Gillespie al-
gorithm can be performed with STOCKS software if ran-
dom pools are not included into the model.

The program uses the random number generator of
Marsaglia and Zaman (1990) with the cycle of 2!44,
Figure 2 shows the schema of the Gillespie algorithm
implementation in STOCKS software.

Load input file. Allocate substance and reaction objects. Set reaction type fo one of the following:
| first order reaction e.g. A->B; Il second order reaction eg. A + B -> AB
Il second order reaction of two molecules of the same substance e.g. A + A ->AA

v

Load control file. Set following simulation confrol parameters:
Tgen generation time Tmon  monitor time
Nmc  number of Monte Carlo experiments. Nsave  frequency of writing restart file
Ngen maximal number of generations
v
Set number of Monte Carlo experiment nmc = 1
Set variables 1 =0 and nsave = 0

v

Reset numbers of molecules fo initial conditions. Set fime of the simulation t = 0
and number of generations ngen=0.

|

Calculate volume according to formula V = (1+t/Tgen). Divide stochastic rate constants of type Il reactions by V
and stochastic rate constants of type Ill reactions by 2V. Set numbers of molecules in random pools
according to gaussian ditributions defined in the input file.

!

GILLESPIE ALGORITHM CALCULATIONS: Find waiting time for the next reaction and index
of the next reaction by Gillespie algorithm. Execute single elementary reaction and add waiting
time to time of the simulation t. Add waiting time to t1

NO /\YES
t1>Tmon

—>

Store the time t and the numbers
of for the n
to be monitored. Set t1 =0

YES | Save time tand
nsave > Nsave numbers of
molecules of all
reactants to
restart file.

Set nsave = 0

Execute all replication reaction
and divide numbers of molecules NO
of all substances by 2. Reset
Vto1landtto O

NO
YES
NO YES

Fig. 2. Implementation of Gillespie algorithm in STOCKS software.

nsave = nsave + 1

NO

t>Tgen
%

Save trajectory
<— | files for all
substances to be
monitored.

nmc =nmc + 1

User interface and utility programs

As will follow in the next section, the tasks for which
STOCKS software has been written may be computa-
tionally expensive and require execution times of a few
hours or even days. I believe that this kind of computation
are most conveniently executed as background jobs
under UNIX operating systems. Therefore, although the
software can be compiled and used on other operating
systems, its user interface is best suited to the UNIX
environment.

The simulation is specified by three text files. The first
one specifies the names of the input, control, restart and
log files and the directory in which the output is written.
The input file contains the specification of the system.
The control file contains job control variables—names of
reactants to be monitored, the number of Monte Carlo
experiments to be performed, etc.

Within the input file, the reaction formulas and stochas-
tic rate constants are specified using a simple syntax which
is shown in Figure 3 and described in detail in the pro-
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(a) (b)

Monitor RbsLacZ

Monitor RbsRibosomelLacZ
Monitor LacZ P

# RNA polymerase binding

reaction
formula "PLac+RNAP->
rateC 0.17

end comment

CRNAP"
GenerationTime 2100
NumberOfExperiments 100 |Treactants
NumberOfGenerations 10 |tobe
MonitorTime 10 monitored

Seed 8263
Saveperiod 10

simulation parameters

# RNA polymerase dissociaXion
reaction reaction formula
formula "PLacRNAP->PLac+RNAP"

rateC 10 -~

end

stochastic rate constant (€
Input lacz/lacz.inp
Control lacz/lacz.ctrl
Restart lacz/lacz.rst
Log lacz/lacz.log

# DNA replication

replication
formula "PLacRNAP->2*PLac"

end
‘\\{\\\ (d

# Random pools Of RNAP and ribosomes  TRAJECTORY 1

pool reaction to be executpd | 12-036666

22.047362
RNAP 35 3.5 at the end of generatjon
32.060464
Ribosome 350 35 42.406770
end <~ mean and std .

52.407499
of the random 62.560014

pool 72.579104
82.619557
initial numbers of 92.620212
molecules 102.625379

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

initial_conditions
Plac 1 «——
end

WNNNHROOOO

linear_volume_change

4 # TRAJECTORY 2
/ 10.066583
20.102360
___ 3]30.107631
40.432332
50.446612
60.489264
70.492122
80.492696
90.514114
100.527866

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

double the volume

" " . Time of the
during generation time

simulation

Number of
molecules

WO N R HRPOOOO

Fig. 3. Examples of input, output and control files. (a) Input
file. (b) Control file. (c) The file containing names of input,
control, restart and log files and the name of the output directory.
(d) Example of trajectory files. Two 100-s long trajectories are
shown.

gram’s MANUAL file. The input file also contains speci-
fication of replication reactions. A single elementary reac-
tion is executed for each replication reaction at the end of
generation. Therefore, the number of molecules of every
reactant which is interpreted as a DNA element must be
doubled by specifying the appropriate replication reaction.
After execution of all replication reactions, the numbers of
all reactants in the system are divided by 2 (see Figure 2).
The replication reaction entry in the input file allows the
execution of an arbitrary elementary reaction at the end of
a generation.

Initial conditions need to be defined in the input file by
setting the initial number of all reactants for which this
number is not equal to zero. Random pools of reactants
can also be specified in the input file by setting the reactant
name and two parameters for the Gaussian distribution.

The control file lists the names of reactants to be moni-
tored. For each specified reactant, the program records the
number of molecules at specified time intervals. Trajec-
tory files, containing numbers of molecules as a function
of time, are saved after every generation time which is also
specified in the control file. One can set the time interval in
which the restart file is written. This file contains the num-

ber of all reactant molecules in the system which allows
the resumption of the job in case it has been interrupted.
Other variables in the control file specify the number of
Monte Carlo repetitions and the seed of the random num-
ber generator.

Trajectory files are saved in the output directory speci-
fied by the user. They are text files in a simple two-column
format that can be imported into any plotting software.
The files are optimized for GNUPLOT software as the tra-
jectories are separated by blank lines, so they are treated
as a separate data series in GNUPLOT.

Data analysis is aided by four utility programs. The first
one calculates average trajectories. It reads trajectory files
that contain results of repeated Monte Carlo experiments
and computes the average number of molecules. Within
each specified time interval, the program computes the
mean number of molecules and the standard deviation. It
outputs the mean and +/— n trajectories where n is the
number of standard deviations specified by the user. An
alternative output format is the ratio of standard deviation
and the mean at every time interval. This value expresses
the magnitude of the random variation at a given time. The
ratio of standard deviation to its mean will be referred
to as the variation coefficient. In many cases, the user
may want to know the sum of the numbers of some
molecules (e.g. in Michaelis—Menten reactions the number
of enzyme molecules is the sum of the numbers of free
enzyme molecules and those with the bound substrate).
One of the utility program can be used in such a case to
add or subtract trajectories i.e. add or subtract numbers of
molecules at corresponding times in two trajectory files.
There are two additional programs that can compute the
mean number of molecules and fit the linear function to the
specified part of the trajectory. The first one can be applied
in the case when the number of molecules of the given
substance achieves a stationary level i.e. fluctuates around
a constant value. This value can be estimated by taking
the mean number of molecules in part of the trajectory. In
the case in which the numbers of molecules increases or
decreases with a constant rate that rate can be estimated
by fitting the linear function to the appropriate part of the
trajectory.

Both the main and utility programs are very well suited
to be run under the control of PERL or UNIX shell scripts.
This allows the user execution of complex simulations.
In the distribution of the software, I include an example
PERL script for the fully automatic calculation of a two
dimensional phase plot in which the variation coefficient
of a specified reactant is computed as the function of
two specified stochastic rate constants. A very limited
knowledge of PERL basics is required to modify this script
for any other parameter-scanning task.
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EXAMPLES OF PROGRAM APPLICATION

Example 1. Dependence between frequencies of
transcription and translation initiation and
stochastic fluctuations in prokaryotic gene
expression—two dimensional phase plot

In a previous paper (Kierzek et al., 2001), the kinetic
model of prokaryotic gene expression was presented.
Gillespie algorithm simulations were performed with a
pre-release version of the STOCKS software. The model
was tested against experimental data concerning the speed
of protein synthesis and mRNA levels in the LacZ gene of
E. coli (Kennell and Riezman, 1977). A good agreement
with experimental data was achieved. In this paper, I
present a refined version of this model with an improved
quantitative agreement with experimental data. Parameters
of the model and initial conditions for the simulations are
presented in Table 1. Table 2 shows the comparison to
experimental data. For a detailed discussion of the model’s
assumption and the way parameters have been derived and
justified see Kierzek et al. (2001).

The model has already been applied to study the mag-
nitude of random variation in the number of synthesized
protein molecules as a function of promoter strength and
the strength of the Ribosome Binding Site (RBS). Figure 4
presents 100 independent trajectories obtained for a very
weak promoter with an effective frequency of transcription
initiation of the order of 107 s. Every trajectory corre-
sponds to a single cell in which the expression of the gene
under investigation is monitored. One can see that the pro-
tein is expressed in ‘bursts’ rather then continuously. For
such a weak promoter, the gene is, in most cases, inactive
throughout the whole cell generation and slow decay of
the number of molecules due to protein degradation is ob-
served. In cells in which transcription events occur, there
is a sudden increase in the number of protein molecules.
The time intervals between ‘transcription bursts’ undergo
significant random variation. Therefore, what, at the cell
culture level, is observed as constitutive gene expression
at a very low level is actually the average of the cases in
which the gene is transcriptionally active and inactive. In
the works of McAdams and Arkin (1997) and Kierzek et
al. (2001) the consequences of such fluctuations in the ex-
pression of regulatory proteins have been discussed.

In the previous work, only two series of simulations
were performed. In the first, the promoter strength was
decreased with respect to the LacZ model by increasing
the RNA polymerase dissociation rate. In the second,
the translation initiation frequency was decreased by
increasing the ribosome dissociation rate. In this work
I present the two-dimensional phase plot in which the
magnitude of the random variation in the number of
protein molecules is plotted as the function of transcription
and translation initiation frequencies. In order to do this it

1000 — T T T
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800 B
700 B
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400

300

Number of protein molecules
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0
19000

19500

20000
Time[s]

20500 21000

Fig. 4. Simulation of prokaryotic gene expression performed for
the case of a very weak promoter. The model presented in Table 1
was used but the RNAP dissociation rate was set to 10000 1/s. The
plot shows 100 trajectories recorded in the 10th cellular generation
(generation time 2100 s).

is necessary to define the quantitative measure of random
variation. For that purpose I use the variation coefficient of
the number of protein molecules i.e. the ratio of standard
deviation to the mean number of protein molecules at the
given time interval. The simulations previously performed
showed that the variation coefficient converges to a
constant value if the simulations are carried out in the
timescale of several bacterial generations. Therefore, the
value to which the variation coefficient converges can
be used as the measure of the magnitude of the random
variation for the given strength of promoter and RBS site.

Figure 5 shows the variation coefficient of the number of
protein molecules computed as a function of transcription
and translation initiation frequencies. Each of the 256
points on this plot corresponds to one simulation with
different rates of RNA polymerase dissociation (reaction 2
in Table 1) and ribosome dissociation (reaction 7). In
every such simulation, 100 independent trajectories were
computed and every trajectory spanned ten generations
of the cells with a generation time of 2100 s. It has also
been checked for several points on the plot (data not
shown) that increasing the number of Monte Carlo runs
to 1000 does not significantly change the results. After
the results of the 100 program runs have accumulated, the
variation coefficient of the number of protein molecules,
as a function of time, was computed by a utility program.
The value to which the variation coefficient converges was
computed as the mean value from the last 1000 s of the
simulation and plotted in Figure 5. The actual values of
transcription and translation initiation frequencies were
also calculated.

The phase plot shown in Figure 5 confirms, by a
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Table 1. Kinetic model of LacZ gene expression

(a) Reaction formulas and stochastic rate constants

Reaction Stochastic rate constant [1/s]? Meaning

PLac + RNAP — PLacRNAP 0.17 RNA polymerase binding/ RNAP—RNA polymerase.
PLac—promoter, PLacRNAP closed RNAP/promoter complex

PLacRNAP — PLac + RNAP 10 RNA polymerase dissociation

PLacRNAP — TrLacZl1 1 Closed complex isomerization TrLacZ1—open RNAP/promoter
complex

TrLacZ1 — RbsLacZ + Plac + TrLacZ2 1 Promoter clearance. RBSLacZ—RBS, TrLacZ2—RNA polymerase
elongating LacZ mRNA

TrLacZ2 — RNAP 0.015 mRNA chain elongation and RNAP release

Ribosome + RbsLacZ — RbsRibosome 0.17 Ribosome binding. Ribosome—ribosome molecule,
RbsRibosome—ribosome/RBS complex

RbsRibosome — Ribosome + RbsLacZ 0.45 Ribosome dissociation

RbsRibosome — TrRbsLacZ + RbsLacZ 0.4 RBS clearance. TrRbsLacZ—ribosome elongating LacZ protein chain

TrRbsLacZ — LacZ 0.015 LacZ protein synthesis

LacZ — dgrLacZ 6.42e—5 Protein degradation dgrlLacZ—inactive LacZ protein

RbsLacZ — dgrRbsLacZ 0.3 Functional mRNA degradation. dgrRbsLacZ—inactive mRNA

(b) Initial conditions

Substance Initial number of molecules

Plac 1

RNAP The number of RNAP molecules available for the LacZ gene was modeled as a random pool with mean 35 and standard deviation 3.5
molecules. Therefore, the initial number of molecules was also drawn from this distribution

Ribosome The number of ribosomes available for the LacZ gene was modeled as the random pool with mean 350 and standard deviation 35
molecules. Therefore, the initial number of molecules was also drawn from this distribution

Other substances 0

4Second order rate constants calculated for a volume of the cell equal to 10~15 1. Stochastic rate constants of two second order reactions equal to 0.17 1/s

correspond to second order rate constants of 108 M~ 11,

more systematic approach, the conclusions of the previous
paper. One can see that fluctuations in the number of
protein molecules grow along the x-axis corresponding
to transcription initiation frequency. Translation initiation
frequency can be decreased without introducing large
fluctuations. It was also checked (data not shown) that the
speed of protein synthesis (expression level) is comparable
for points B and C on the phase plot. This shows that
the same average magnitude of gene expression can
be achieved by controlling it at either the promoter or
RBS level, but control at the promoter level introduces
significantly larger random fluctuations. Discussion of the
biological consequences of this fact are given elsewhere
(Kierzek et al., 2001).

The calculations of the data shown in Figure 5 have
been done fully automatically by executing a PERL script

running STOCKS and utility programs. Execution of this
task took about 22 h CPU time on a single Pentium III
800 MHz processor under the Linux operating system.
The script is given in the distribution of the software
and can be used as a framework for executing parameter-
scanning simulation protocols.

Example 2. Simulation of LacZ and LacY genes
expression and enzymatic/transport activities of
LacZ and LacY proteins

The computational costs of the Gillespie algorithm are
proportional to the number of elementary reactions that
need to be simulated in order to cover the preset time
of the simulation. For that reason, it is not possible
to simulate reactions that involve macroscopic numbers
of molecules as it would imply that the numbers of
elementary reactions would have an order of magnitude
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Table 2. Comparison of the LacZ gene expression model with experimental
data?

Experimentally Calculated
Quantity determined valueP value®
Transcription initiation frequency 0.3 1/s 0.26 1/s
The speed of protein synthesis 20 1/s 22 1/s
Stationary number of
mRNA molecules 62 61

Ribosome spacing 110 nucleotides 118 nucleotides

4Except quantitative agreement with the experimental data presented by
Kennell and Riezman (1977), the model also reproduces decrease of
mRNA level resulting from a decrease of the strength of RBS
(experimental data in Yarchuk et al., 1992; see Kierzek et al., 2001 for
details).

bExperimemal data from Kennell and Riezman (1977).

€Calculations has been performed with the model presented in Table 1.
Results for the first bacterial generation (2100 s), were taken as
measurements of Kennell and Riezman, were done immediately after
LacZ gene induction.

of Avogadro’s number. In the previous example, it was
shown that for numbers of molecules characteristic for
gene expression phenomena, the algorithm is fast enough
to allow parameter scanning tasks that involve long-
timescale simulations (several bacterial generations). The
purpose of this example is to test the applicability of
the software to biochemical systems involving enzymatic
processes and small-molecule reactants. The numbers of
elementary reactions in such a systems are much greater
than in systems composed exclusively of macromolecular
reactants.

As an example, I took the expression and activity of
LacZ and LacY proteins in E. coli. As the purpose of
the calculations is to test the computational limits of
the software rather than building a detailed model of
the lactose operon, regulation by the lac repressor was
unaccounted for. Therefore, the example corresponds to
the Lacl™ strain of E. coli—the mutant lacking active
lac repressor and expressing LacZ and LacY proteins
constitutively.

Transcription initiation and LacZ expression were mod-
eled using reactions and parameters listed in the Table 1.
Transcription of LacY mRNA was modeled in the follow-
ing way. Reaction 5 in Table 1 was modified so that at the
end of LacZ transcription, a new ‘reactant’ (TrLacY1) ap-
pears which models RNA polymerase transcribing LacY
mRNA:

TrLacZ2 — TrLacY1
0.015 1/s.

Formula:
Stochastic rate constant:

Then, RBS synthesis, mRNA degradation and ribosome
binding/dissociation have been modeled by the same
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Fig. 5. Variation coefficient of the number of protein molecules as
the function of transcription and translation initiation frequencies
calculated for the model of prokaryotic gene expression presented
in Table 1. For each 10 s time interval, the mean number of protein
molecules and its standard deviation were computed from 100
independent runs. In every simulation the ratio of standard deviation
to the mean (variation coefficient) converged to the constant value
shown in the plot. (a) Parameters of LacZ gene. (b) Gene with
weak RBS and strong promoter. (c) Strong promoter and weak
RBS. (d) For very low both transcription and translation initiation
frequencies, very high values of variation coefficient (2.94) were
obtained. These values are not shown on the plot.

reactions as in the case of LacZ protein. The reaction
modeling protein chain elongation has the stochastic rate
constant of 0.36 1/s.

The Michaelis constant and turnover number of E. coli
beta-galactosidase were assigned values of 7.52 mM
and 431 1/s respectively according to the BRENDA
database entry for EC 3.2.1.23. The Michaelis constant
was expressed as the number of molecules (7.52 - 10°)
in the volume of the cell (10715 1). The dissociation
of the ligand was neglected and the stochastic rate
constant of ligand binding was computed as the ratio of
turnover number and Michaelis constant. Therefore, the
enzymatic activity of beta galactosidase was modeled by
the following reactions:

LacZ + lactose — LacZlactose (5a)
Stochastic rate constant: 5.731-10~% 1/s
LacZlactose — product + LacZ  (5b)
431 1/s.

Formula:

Formula:

Stochastic rate constant:

The turnover number of lactose permease was assigned as
14 1/s, according to the measurements of Lolkema et al.
(1991). I assumed that the external lactose concentration
is saturating and lactose is transported into the cell with
a maximal rate during the whole time of the simulation.
Thus, the permease action was modeled by a single
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Fig. 6. The number of enzymatic reactions performed as a func-
tion of time. The number of reactions were determined by counting
‘product’ molecules (each product molecule corresponds to one di-
gested lactose molecule; see (5b). (a) Results of 3 independent sim-
ulations spanning 10 bacterial generations. After every generation
the number of product molecules is divided by 2, as for all other
molecules in the system. As one can see, the system reaches a sta-
tionary state in which approximately 2 - 10° enzymatic reactions are
performed in one generation. (b) Results of 100 independent simu-
lations spanning a single generation.

reaction:

Formula: LacY — lactose + LacY (6)

Stochastic rate constant: 14 1/s.

This treatment of the permease reaction exaggerated the
number of lactose molecules present in the cell which
serves the purpose of our benchmark.

The results of simulations for the system described
above are presented in Figure 6. As expected, the com-
putations were much more time consuming than in the
case of Example 3. Computation of the single trajectory
for one bacterial generation (2100 s) took approximately
2.5 h on a Pentium III 800 MHz processor. Simulation
of a single trajectory spanning ten bacterial generations
took approximately 90 h. This is caused by the fact that
the number of reactions needed to be executed in the first
generation is much smaller than the number of reactions
appearing in subsequent generations. In Figure 6, one can
see that in the last generations the number of ‘product’
molecules produced per generation was about 2 - 10°,
whereas in the first generation 5-10® molecules were
produced.

DISCUSSION

The software for stochastic simulations of biochemi-
cal processes that implements the rigorously justified
Gillespie algorithm have been presented. The algorithm
remains correct for reactions involving arbitrary small
numbers of molecules, which is very important in the
modeling of biochemical reactions. It allows the study,
not only of the average course of the process, but also
fluctuations in the number of molecules influencing

various cellular processes. The simulation algorithm does
not approximate infinitesimal time increments by finite
timesteps so the user need not to be concerned in setting
arbitrary timesteps. This property of the algorithm is
also advantageous from the point of view of numerical
stability. The calculations are numerically stable even in
the case of a system that is composed of reactions that
differ by 8 orders of magnitude in the number of reactant
molecules involved and reaction rates (Example 3).

Arbitrary reaction networks can be defined and simu-
lated by STOCKS software, provided that they are com-
posed exclusively of first and second order reactions. The
Gillespie algorithm can be applied only if the system is
defined in terms of elementary reactions. Therefore, if ki-
netic parameters of a complex mechanism (e.g. Michaelis—
Menten reaction in Example 3) are available, the user must
express them in terms of elementary first and second order
reactions. This usually needs to be done at the expense
of additional assumptions, e.g. assuming the irreversibil-
ity of ligand binding in the case of reaction (6). On the
other hand, application of the complex mechanism is usu-
ally correct only for a system in the stationary state (this is
also the case in reaction (6)). If parameters of elementary
reactions can be found/approximated and the time evolu-
tion of the system is numerically simulated, the severe as-
sumption of the stationary state can be avoided. This is
especially important if regulated processes are under in-
vestigation. When, for instance, the gene changes its ex-
pression level as the result of induction or repression, the
system is far from being in the stationary state.

As was mentioned in the introduction, computer
simulations of biochemical systems with the Gillespie
algorithm can also be performed by SIMULAC software.
The major difference between STOCKS and SIMULAC
is the implementation of a simple model of cell divi-
sions that allows application of STOCKS to simulate
several cellular generations. This feature of the program
was applied, for instance, to show that, in timescales
longer than a single bacterial generation, the variation
coefficient of constitutively expressed gene converges
to a stationary level (Kierzek et al., 2001). Another
difference between STOCKS and SIMULAC software
are the utility programs that aid analysis of trajectories
calculated by STOCKS. One feature of SIMULAC that is
not implemented in STOCKS is a dedicated mechanism
to model the binding of transcription factors to DNA sites.
It is assumed that the binding of transcription factors
to regulatory regions is much faster than transcription
initiation at the promoter. Using this rapid equilibrium
assumption, the promoter state is chosen randomly at each
instant using probabilities calculated by partition function
formulated by Shea and Ackers (1985). In the input file
of SIMULAC, the binding of protein to a DNA site is
described by free energies rather than rate constants.
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In the previous paper, it was shown that application of
a pre-release version of the software allowed building of
a reliable, kinetic model of prokaryotic gene expression
and yielded insights into stochastic phenomena involved
in this process. Here I show that the software is compu-
tationally fast enough to allow for parameter scanning
tasks in modeling systems involving macromolecular
reactants with realistic numbers of molecules and re-
action rates. Modeling of processes involving intensive
metabolic reactions is much more computationally de-
manding. Example 3 shows that the computational cost
of simulating metabolic reactions together with gene
expression processes is very high. Calculations of this
kind are affordable if the user limits the simulation time
scale to a single generation. If several generations need
to be computed, a multiple processor platform would
be necessary. From the point of view of parallelization,
Monte Carlo simulations are convenient, as independent
Monte Carlo experiments can be run in parallel on differ-
ent processors/computers. If, in the case of Example 3,
independent Monte Carlo experiments would be run
on a few independent processors the statistics could be
collected within 1 week even in the case of a simulation
spanning 10 bacterial generations. Therefore, I conclude
that the current version of the software can be applied to
exact simulations of large metabolic networks if run, for
instance, on a PC cluster—the platform which becomes
affordable for most laboratories.

There is an ongoing effort towards improving com-
putational efficiency of exact algorithms for simulation
of kinetics of coupled chemical reactions. Gibson and
Bruck (2000) formulated the next reaction method—an
exact algorithm to simulate coupled chemical reactions
that use only one random number per elementary reaction
event and takes a time proportional to the logarithm of
the number of reactions instead of the time proportional
to the number of reactions itself. The authors (Gibson,
2000) have also formally analyzed the problem of kinetic
parameter estimation in stochastic simulations. In his
recent paper, Gillespie (2001) presented ideas of how to
significantly decrease computational costs by ‘linking’
stochastic and deterministic regimes with an acceptable
loss of accuracy. Further development of STOCKS
software will be directed towards implementation of these
theoretical concepts.

STOCKS software is available under a GNU GPL
licence from an anonymous ftp site ftp://ibbrain.ibb.waw.
pl/stocks. Distribution of the program includes parameters
of the model of LacZ gene expression and all examples
presented in this paper including the PERL script which
can be easily customized for complex simulation tasks.
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