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Abstract. The sedimentation of a red blood cell (RBC) through the blood plasma

is described as the translation of a rigid inverted prolate spheroid through a quiescent

unbounded viscous fluid. The inverted spheroid is moving with constant velocity along

its axis of symmetry. The physical characteristics of the RBC and the blood plasma allow

us to consider this problem as a Stokes flow problem. The Kelvin inversion method and

the concept of semiseparation of variables for the Stokes operators, which we used for

solving the Stokes flow past an RBC, are also employed here. The stream function is then

expressed as a series expansion in terms of Gegenbauer functions of even order. Through

this, important hydrodynamic quantities such as the drag force, the drag coefficient and

the terminal settling velocity of the RBC are calculated. The celebrated Stokes formula

for the drag force exerted on a sphere is now expanded in order to account for the shape

deformation of an RBC. Sample streamlines are depicted showing the dependence of

these quantities on the geometrical characteristics of the RBC and also of any inverted

prolate spheroid. The obtained results seem to be directly applicable in medical tests

such as the Erythrocyte Sedimentation Rate (ESR).

1. Introduction. A theoretical investigation of the blood flow aims, in a general

sense, for a better understanding of its overall hydrodynamic properties and the re-

sulting rheological behaviour. Needless to say this knowledge allows for more accurate
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predictions and effective treatment of several diseases. Human blood is considered as a

Newtonian fluid which incorporates three kinds of cells suspended in it, namely, the red

blood cells (RBCs), the white blood cells and the platelets.

Many studies have dealt with the modelling of the flow through blood vessels, in

which the RBCs are moving together with the plasma, with due attention to the shape

deformation of the RBCs. The majority of these studies are concerned with numerical

simulations [1], [2], [3], [4], [5], but certain analytical treatments have been applied as

well [6].

Another category of studies are motivated by the modelling of processes such as the

sedimentation of RBCs, dealing with the relative motion of RBCs with respect to the

blood plasma. Of particular interest is the haematological test called the Erythrocyte

Sedimentation Rate (ESR), which is clinically used either for the diagnosis of some in-

fectious, or autoimmune, or malignant processes and inflammatory conditions or as a

tool for the prognosis of several diseases such as prostate cancer, coronary artery disease,

stroke, etc. [7], [8], [9], and is based on the calculation of the rate at which the RBCs

fall in vitro. In some of these cases, ESR is also employed for monitoring the response

to the therapy.

Oka [7] proposed a physical theory for the erythrocyte sedimentation that takes into

account the aggregation of the erythrocytes. He demonstrated the dependence of the

sedimentation velocity on the ultimate size of the aggregation and on the retardation

time. Reuben and Shannon [8] looked into the factors that are influencing the ESR

and they showed that in non-healthy situations, the RBCs aggregate in arrays along

a single axis, which is perpendicular to the plane of the cell. He also showed that

if the terminal velocity U∞ is known, the concentration of the RBCs can be derived

by solving an ordinary differential equation. Furthermore, one can also calculate the

sedimentation curve [7] or the instant when all the RBCs have reached the bottom of

the tube [10]. Yamaikina and Ivashkevich [9] studied the erythrocyte sedimentation in

capillaries. They built a mathematical model, employing only a rheological parameter

and the hydrodynamic radius, through which they assessed their experimental data.

In the present work we study the onset of sedimentation of an RBC through the blood

plasma as a result of its having a higher density than the blood plasma itself. The RBC

is primarily treated geometrically as a biconcave disk [3], [4], [5], which, at rest, has

a major diameter [11] of about 8μm and thickness of at least 2μm. Its mathematical

representation is given by an inverted prolate spheroid moving along its axis of symmetry

within a viscous fluid being at rest at infinity. The shape of the RBC remains unchanged.

The process is assumed to be reduced to a Stokes flow problem caused by the translation

of a rigid inverted prolate spheroid within a quiescent unbounded viscous fluid. This

assumption is justified by taking into account the physical properties of the blood plasma

and the geometrical characteristics of the RBC [12]. Furthermore, Stokes flow appears

in the flow in capillaries [13].

The solution of the problem is based on the methods and the results that were devel-

oped in [6], where the blood plasma was considered to flow around a stationary RBC.

These methods are the semiseparable spectral decomposition of the Stokes flow operators

in the spheroidal geometry and the Kelvin transformation for the Stokes flow.
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In fluid mechanics, Stokes flow is considered to be the slow motion of a small particle

through a viscous fluid when the inertial forces are neglected, that is to say, for small

Reynolds number. Stokes flow has been studied extensively in the literature because of

the important role it plays in fluid dynamics. G. Stokes [14], [15] introduced a scalar

function ψ, the so-called Stokes stream function, and through this he derived represen-

tations for the velocity and the pressure field in the case of a viscous, incompressible,

axisymmetric creeping flow. As a consequence, the stream function ψ has to satisfy

a fourth order partial differential equation (E4ψ = 0) which is linear, but it has non-

constant coefficients [16]. Due to the very complicated form that this equation takes in

the various curvilinear systems, a complete form of the stream function has been obtained

only for the spherical geometry [16] and for the prolate and the oblate spheroidal ones

[17], [18]. Recently Hadjinicolaou and Protopapas [19] derived the eigenfunctions of the

Stokes operator and developed an accurate method for the calculation of the generalized

eigenfunctions of the Stokes operator in the modified inverted prolate coordinate system,

providing a new analytical expression for the stream function in this particular system.

The Stokes stream and bistream operators for the axisymmetric flow are the partial

differential operators of the second and fourth order E2 and E4, respectively. The stream

functions that belong to the ker{E2} represent irrotational flows, while the rotational

flows can be described through functions that belong to the ker{E4} but don’t belong

to the ker{E2}. It has been shown in [17] that in spheroidal coordinates the solutions of

the equation E4ψ = 0 are in semiseparable form and are given in particular products of

Gegenbauer functions. The general solution is then represented as a series expansion in

terms of the eigenfunctions of the E2 and the generalized eigenfunctions of the E2.

Kelvin inversion, or the method of reciprocal radii, is based on a domain transforma-

tion which, in the case of R3, is an inversion with respect to a sphere. Early in 1845,

Lord Kelvin, inspired by Green’s ideas [20], presented this inversion method as a method

for solving boundary value problems for partial differential equations. According to this,

the solution of a boundary value problem in an interior domain can be obtained from the

solution of the ‘analogous’ problem in the exterior domain and vice versa. Dassios and

Kleinman [21], [22] used it in acoustic scattering problems, while Baganis and Hadjinico-

laou [23], [24], through Kelvin’s inversion, derived, for the first time, analytical solutions

of exterior Dirichlet and Neumann problems for a non-convex domain. Dassios [25] in-

vestigated the application of the Kelvin inversion to the Stokes operators. Some key

results regarding the application of the Kelvin transformation in medical problems are

given in [26]. The concept of semiseparation was first introduced in [17] in order to ex-

press the general solution for the Stokes flow in prolate spheroidal coordinates, and since

then it has been applied to studies in chemical engineering such as flow and transport

phenomena in particle systems, fluidised beds, etc. [18].

We further exploit the applicability of the obtained theoretical results to a medical

application related to the microscale perspective of the blood flow. Specifically, we study

the onset of sedimentation of an RBC through the blood plasma as a result of its higher

density compared to the one of the blood plasma. The obtained results seem to be suit-

able for medical applications such as the clinical haematological test called Erythrocyte

Sedimentation Rate (ESR). They may also be employed in engineering applications and
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Fig. 1. Translating an RBC

the study of transport processes. Besides, they provide a basis for numerical implemen-

tation [27], [28] and the assessment of existing numerical results. The structure of the

manuscript is as follows. In Section 2 we derive the stream function that describes the

flow around the RBC by using appropriately the series expansion describing the stream

function for the Stokes flow past a rigid and stationary inverted prolate spheroid. A

numerical investigation is presented that reveals the significance of the first two terms of

the series. In Section 3 we derive the drag force, the drag coefficient and the terminal

velocity. The obtained results are discussed in Section 4.

2. Translation of the RBC. We consider a solid RBC moving through an un-

bounded quiescent fluid V ′, with constant velocity U , parallel to the x3-axis in the

positive direction. The RBC is considered to be an inverted prolate spheroid having its

centre at the origin of a Cartesian coordinate system (x1, x2, x3), as shown in Figure 1.

Let V ′ be the exterior fluid domain, ∂V ′ denote the surface of the RBC, E′2 be the

Stokes operator, E′4 = E′2 ◦ E′2 be the Stokes bistream operator, r′ be the position

vector and ψs(r
′) be the stream function. The problem at hand in any axisymmetric

system is defined as

E′ 4ψs (r′) = 0, r′ ∈ V ′, (2.1)

ψs (r′) +
1

2
�′2U = 0, r′ ∈ ∂V ′, (2.2)

∂ψs (r′)

∂n
= −1

2

∂

∂n
�′2U, r′ ∈ ∂V ′, (2.3)

ψs

r′2
→ 0, r′ → +∞, (2.4)

where �′ is the cylindrical coordinate. Relation (2.2) denotes that there is no relative

tangential velocity component on the surface of the RBC, relation (2.3) implies that

the RBC is impenetrable, and relation (2.4) expresses that the blood plasma extends to

infinity where it is at rest.

The problem (2.1) to (2.4), translated to the inverted prolate spheroidal coordinate

system (τ ′, ζ ′), reads

E′ 4ψs (τ ′, ζ ′) = 0, (τ ′, ζ ′) ∈ V ′, (2.5)

ψs (τ ′, ζ ′) = −b4(1 − ζ ′2)(τ2 − 1)

2c2(τ2 + ζ ′2 − 1)
U, (τ ′, ζ ′) ∈ ∂V ′, (2.6)
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∂ψs

∂τ ′
= −U

∂

∂τ ′
b4(1 − ζ2)(τ ′2 − 1)

2c2(τ ′2 + ζ2 − 1)2
, (τ ′, ζ ′) ∈ ∂V ′, (2.7)

ψs

r′2
→ 0, r′ → +∞, (2.8)

where ψs(τ
′, ζ ′) is the stream function in the inverted system, r′ = c

√
τ ′2 + ζ ′2 − 1 and

(τ ′, ζ ′) ∈ ∂V ′ denotes the surface of the RBC.

It is known [16] that once the stream function ψa(τ
′, ζ ′) for the Stokes flow past a

stationary solid has been obtained, the stream function ψs(τ
′, ζ ′) for the translating solid

is given through the relation

ψs(τ
′, ζ ′) = ψα(τ ′, ζ ′) − ψ∞(τ ′, ζ ′), (2.9)

where ψ∞(τ ′, ζ ′) is the stream function for the unperturbed flow at infinity. In the case

of a uniform flow with constant velocity U it becomes

ψ∞(τ ′, ζ ′) =
1

2

b4(1 − ζ2)(τ2 − 1)

c2(τ2 + ζ2 − 1)2
U, (2.10)

where (τ ′, ζ ′) is the prolate spheroidal coordinate system [30], b > 0 is the radius of the

sphere of inversion and c > 0 is the semifocal distance.

The blood plasma flow around a solid RBC has been studied in [6], and the stream

function ψa(τ
′, ζ ′) was obtained by employing Kelvin’s inversion method [25] and the

concept of the semiseparation of variables [17]. Accordingly, the stream function for the

Stokes flow problem in the interior of a prolate spheroid is

ψ(τ, ζ) =
∞∑

n=1

g2n(τ )G2n(ζ). (2.11)

Using results from [25] we derive the stream function

ψα(τ ′, ζ ′) =
b3

r3
ψ(τ, ζ) (2.12)

for the blood plasma flow past an inverted prolate spheroid, which represents the RBC.

This is given through a series expansion in terms of Gegenbauer functions of the first

and the second kind [29], as follows:

ψα(τ ′, ζ ′) =
b3

c3
√
τ2 + ζ2 − 1

3

∞∑
n=1

g2n(τ )G2n(ζ), (2.13)

where

g2(τ ) = A2G2(τ ) − 9bcU

5
H2(τ ) − bcUG1(τ ) + E2G4(τ ) − 6bcU

5
H4(τ ), (2.14)

g2n(τ ) = A2nG2n(τ ) +
bcU

2
(−wn−1e

2
n−1 − wnd

2
n)H2n(τ )

+
bcU

2
wn−1en−1dn−1H2n−2(τ )

+E2nG2n+2(τ ) +
bcU

2
wndnenH2n+2(τ ), n ≥ 2, (2.15)
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A2 = bcU

∣∣∣∣95H2(τ0) + G1(τ0) + 6
5H4(τ0) G4(τ0)

9
5H

′
2(τ0) + G′

1(τ0) + 6
5H

′
4(τ0) G′

4(τ0)

∣∣∣∣∣∣∣∣G2(τ0) G4(τ0)

G′
2(τ0) G′

4(τ0)

∣∣∣∣
, (2.16)

E2 = bcU

∣∣∣∣G2(τ0)
9
5H2(τ0) + G1(τ0) + 6

5H4(τ0)

G′
2(τ0)

9
5H

′
2(τ0) + G′

1(τ0) + 6
5H

′
4(τ0)

∣∣∣∣∣∣∣∣G2(τ0) G4(τ0)

G′
2(τ0) G′

4(τ0)

∣∣∣∣
, (2.17)

A2n =
bcU

2

∣
∣
∣
∣

(wn−1e
2
n−1 + wnd

2
n)H2n(τ0) − wn−1en−1dn−1H2n−2(τ0) − wndnenH2n+2(τ0) G2n+2(τ0)

(wn−1e
2
n−1 + wnd

2
n)H

′
2n(τ0) − wn−1en−1dn−1H

′
2n−2(τ0) − wndnenH

′
2n+2(τ0) G′

2n+2(τ0)

∣
∣
∣
∣

∣
∣
∣
∣

G2n(τ0) G2n+2(τ0)

G′
2n(τ0) G′

2n+2(τ0)

∣
∣
∣
∣

,

(2.18)

E2n =
bcU

2

∣
∣
∣
∣

G2n(τ0) (wn−1e
2
n−1 + wnd

2
n)H2n(τ0) − wn−1en−1dn−1H2n−2(τ0) − wndnenH2n+2(τ0)

G′
2n(τ0) (wn−1e

2
n−1 + wnd

2
n)H

′
2n(τ0) − wn−1en−1dn−1H

′
2n−2(τ0) − wndnenH

′
2n+2(τ0)

∣
∣
∣
∣

∣
∣
∣
∣

G2n(τ0) G2n+2(τ0)

G′
2n(τ0) G′

2n+2(τ0)

∣
∣
∣
∣

,

(2.19)

wn =
(−1)n(4n + 1)(2n)!

22n(n!)2
, (2.20)

en =
2(2n + 1)(n + 1)

4n + 1
, (2.21)

dn =
2n(2n− 1)

4n + 1
, (2.22)

and τ = τ0 denotes the surface of the prolate spheroid. Then, by employing the relations

(2.9), (2.10), (2.13) to (2.22) and taking into account that

1

2

bc(1 − ζ2)(τ2 − 1)√
τ2 + ζ2 − 1

U =
bcU

2

[
−2G1(τ ) − 18

5
H2(τ ) − 12

5
H4(τ )

]
G2(ζ)

+
bcU

2

∞∑
n=2

wn−1en−1dn−1H2n−2(τ )G2n(ζ)

+
bcU

2

∞∑
n=2

(−wn−1e
2
n−1 − wnd

2
n)H2n(τ )G2n(ζ)

+
bcU

2

∞∑
n=2

wndnenH2n+2(τ )G2n(ζ), (2.23)

we finally arrive at

ψs(τ
′, ζ ′) =

b3

c3
√
τ2 + ζ2 − 1

3

∞∑
n=1

[A2nG2n(τ ) + E2nG2n+2(τ )]G2n(ζ), (2.24)

where the coefficients A2n, E2n are defined by (2.16) to (2.22) and the prolate spher-

oidal coordinates (τ, ζ) are related to the inverted prolate spheroidal coordinates (τ ′, ζ ′)
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through the expressions

ζ2 =
b4 + c2r′2 −

√
(b4 + c2r′2)2 − 4b4c4τ ′2ζ ′2

2c2r′2
, (2.25)

τ2 =
2c2b4τ ′2ζ ′2

r′2
[
b4 + c2r′2 −

√
(b4 + c2r′2)

2 − 4b4c4τ ′2ζ ′2
] . (2.26)

In the next graphs, we demonstrate sample streamlines, assuming U = 0.01 and radius

of the sphere of inversion b = 5, for various values of the aspect ratio k (length /thickness).

Due to the fast convergence of the series, we use only the first term or we add the second

one. In order to demonstrate this result we define

ψ(1)
s (τ ′, ζ ′) =

b3

c3
√
τ2 + ζ2 − 1

3 [A2G2(τ ) + E2G4(τ )]G2(ζ), (2.27)

ψ(2)
s (τ ′, ζ ′) = ψ(1)

s (τ ′, ζ ′) +
b3

c3
√
τ2 + ζ2 − 1

3 [A4G4(τ ) + E4G6(τ )]G4(ζ), (2.28)

and

ψ(3)
s (τ ′, ζ ′) = ψ(2)

s (τ ′, ζ ′) +
b3

c3
√
τ2 + ζ2 − 1

3 [A6G6(τ ) + E6G8(τ )]G6(ζ), (2.29)
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where the coefficients of the Gegenbauer functions are calculated by applying appropri-

ately the boundary conditions and using orthogonality arguments.

In Figures 2 and 3 we depict the streamlines ψ
(1)
s , ψ

(2)
s , ψ

(3)
s for the same value ψ

(1)
s =

ψ
(2)
s = ψ

(3)
s = −0.3 and for two different values of the axis ratio, i.e., k = 2.5 and k = 4

respectively. From both cases we may deduce that the first term provides the qualitative

behavior, while the second and third terms of the series provide quantitative corrections.

To this end, in Figures 4 and 5 we illustrate indicatively, for k = 2.5 and k = 4, sample

streamlines when the stream function has successively the values −0.01,−0.3,−0.7 as

they emanate from the surface of the inverted prolate spheroid towards infinity, and by

employing only the first term of the series.

3. Drag force, drag coefficient, terminal settling velocity. An important quan-

tity for the study of the sedimentation of RBCs is the so-called terminal settling veloc-

ity. When a particle is moving within a viscous fluid under the influence of gravity, it

ultimately gets a uniform velocity due to counterbalance of the gravitational and the

hydrodynamic forces. It is then falling at this constant speed called the terminal settling

velocity [16]. The force exerted by the fluid on a body can be calculated as the integral

of the stress dyadic over the entire surface of the body. Due to the symmetry of the flow,

only the force acting parallel to the axis of revolution is significant, and provided that
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the fluid is at rest at infinity, it is given [16], [31] by the relation

Fz = 8πμ lim
r→+∞

rψs

�′2 , (3.1)

where μ is the shear viscosity and

�′ =
b2
√

1 − ζ2
√
τ2 − 1

c(τ2 + ζ2 − 1)
(3.2)

is the radial cylindrical coordinate in the inverted prolate coordinate system.

Using (2.24) and (2.30) we arrive at

Fz = −4πμb

c2

[
3

2
bcUQ0(τ0) +

∞∑
n=2

(A2n + E2n)(−1)n+1 1 · 3 · ... · (2n− 3)

2 · 4 · ... · (2n)

]
(3.3)

or

Fz = −4πμbU

c2

[
3

2
bcQ0(τ0) +

∞∑
n=2

(
A2n + E2n

)
(−1)n+1 1 · 3 · ... · (2n− 3)

2 · 4 · . . . · (2n)

]
, (3.4)

where

Q0(x) =
1

2
ln

x + 1

x− 1
(3.5)

is the zeroth order Legendre function of the second kind and

A2n = A2nU, (3.6)

E2n = E2nU. (3.7)

The drag coefficient is

CD =
−8μ(τ20 − 1)

ρU2b3

[
3

4
bcU ln

τ0 + 1

τ0 − 1
+

∞∑
n=2

(A2n + E2n)(−1)n+1 1 · 3 · ... · (2n− 3)

2 · 4 · ... · (2n)

]
,

(3.8)

where all the coefficients have been calculated previously through (2.16) to (2.22).

Denoting by FG the buoyant force, the terminal velocity U∞ of the RBC is defined

[16] as the velocity of the RBC when

Fz = FG. (3.9)

We know that

FG = (ρ′ − ρ)gVRBC , (3.10)

where ρ′ is the density of the RBC, ρ is the density of the blood plasma, g is the

gravitational constant and VRBC is the volume of the RBC, so using the relations (3.4),

(3.9), (3.10) we get

U∞ = − c2(ρ′ − ρ)gVRBC

4πμb

[
3
2bcQ0(τ0) +

∞∑
n=2

(
A2n + E2n

)
(−1)n+1 1·3·...·(2n−3)

2·4·...·(2n)

] , (3.11)

with

VRBC =
b6π(2α2 + 3β2)

6α2β3
+

βb6π

4α3c
ln

α + c

α− c
, (3.12)
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Fig. 6. Plot of |ReC
(2)
D | with respect to k

where α is the length of the large semiaxis, β is the length of the small semiaxis and c

stands for the semifocal distance of the original prolate spheroid with

α2 = β2 + c2. (3.13)

Since we know that

α = cτ0 (3.14)

and

β = c
√
τ20 − 1, (3.15)

we arrive at

τ20 =

a2

b2

a2

b2
− 1

, (3.16)

while, by recalling that k > 1 is the axial to radial aspect ratio of the semiaxes, from

(3.16) we get

τ0 =
k√

k2 − 1
> 1. (3.17)

In order to depict qualitative results regarding the behavior of the drag coefficient CD

with respect to the variations of the aspect ratio k, we use indicatively only the first term

of the series expansion of the CD given in (3.8), and we get

Re C
(2)
D = −12

√
τ20 − 1ln

τ0 + 1

τ0 − 1
, (3.18)

and by using (3.17) we find that

Re C
(2)
D =

−24√
k2 − 1

ln
(
k +

√
k2 − 1

)
, (3.19)

which shows that the first term of the drag force and the drag coefficient are given through

a logarithmic function of the aspect ratio, which is in accordance with the spherical results

provided in the literature [16]. Taking the limit of |ReC
(2)
D | when k → 1 we find that it

is 24, which is the value of ReCD in the sphere. In Figure 6 we can see the monotonical

decreasing of the |ReC
(2)
D | as the axes ratio changes vary from 1 to 10.
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4. Discussion. In the present work, we derive an analytic solution for the creeping

motion of an RBC within the blood plasma, which is modelled as the creeping motion

of an inverted prolate spheroid within a Newtonian fluid being at rest at infinity. This

assumption is thoroughly discussed and justified in the introduction.

We employed the stream function for the Stokes flow around a stationary inverted

prolate spheroid and we took into account the term representing the unperturbed flow

field at infinity. Through this procedure, we obtain the stream function for the relative

motion of the RBC within the fluid which is given as a series expansion of Gegenbauer

functions of even order.

Reduction to the spherical geometry is obtained by setting the aspect ratio of the

spheroidal axes close to the value one, where the already known spherical solution [16]

is regained. Furthermore, by using the stream function expansion, we further calculate

important hydrodynamic quantities, such as the drag force exerted by the fluid on the

surface of the inverted spheroid, the dimensionless quantity: drag coefficient and the

limiting value of the velocity, which is called the terminal settling velocity. The obtained

expressions expand the well known Stokes formula for a sphere to the case of a non-convex

body, described by an inverted prolate spheroid. Rewriting the obtained expressions with

respect to the aspect ratio of the axes of the prolate spheroid that is inverted, we may

reduce our results to the spherical ones. The dependence of the stream function, the drag

force and the drag coefficient on the geometrical characteristics of the inverted prolate

spheroid has also been investigated for various values of the aspect ratio of the spheroid.

We provide this way, ready to use hydrodynamic expressions for RBCs or for any inverted

prolate spheroid having various geometrical characteristics.

It turns out that when we adopt an almost spherical description for the RBC, the drag

force exerted by the fluid on the RBC gets smaller values compared to those it gets when

departing from the spherical shape, where we observe that it increases monotonically.

This result indicates the significance of an RBC resembling an inverted spheroid rather

than employing other sphere-like shapes.

Sample streamlines have also been plotted, depicting the flow field around the trans-

lating RBC using indicatively the first term. One gets similar flow behaviour by using

more terms of the series expansion. The obtained analytical expansions are expected

to be useful in medical applications, such as the calculation of the sedimentation rate

(ESR) of RBCs, the study of the aggregation of RBCs the drug delivery, the study of

transport processes and also for deriving more accurate predictions concerning the blood

flow behaviour.
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