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STOKES PHENOMENON AND MATCHED ASYMPTOTIC
EXPANSIONS*

A. B. OLDE DAALHUIS-, S. J. CHAPMAN,-, J. R. KINGS, J. R. OCKENDON,
AND R. H. TEW$

Abstract. This paper describes the use of matched asymptotic expansions to illuminate the
description of functions exhibiting Stokes phenomenon. In particular the approach highlights the way
in which the local structure and the possibility of finding Stokes multipliers explicitly depend on the
behaviour of the coefficients of the relevant asymptotic expansions.

Key words. Stokes’ phenomenon, matched asymptotic expansions, Airy function, error func-
tion

AMS subject classifications. 41A60, 33C10, 33B20

1. Introduction. The role of Stokes phenomenon in describing the asymptotic
behaviour of an analytic function as its argument tends to an isolated singularity has
been studied intensively in recent years (Berry [1], Berry and Howls [3], McLeod [4],
Meyer [5], Olde Daalhuis and O1ver [8], O1ver [10], Paris [12], Paris and Wood [13]).
As originally discussed by Stokes, the basic picture is that an asymptotic expansion of
the function that is uniform in phz can be constructed only if an exponentially small
correction (in terms of distance from the singularity) is made as certain directions are
traversed in the Argand diagram. These directions are called Stokes lines, and when
the function under consideration is a complementary function of a certain class of linear
holomorphic second-order differential equations, they are characterised as lines where
one complementary function is maximally dominant over another. The Stokes lines are

separated by other directions, called anti-Stokes lines, which are practically important
because, across them, a complementary function switches from being dominant to

subdominant; however, there is no nonuniformity in their vicinity, and all the action

takes place near the Stokes lines.
What has emerged recently is the detailed structure of the behaviour in the vicin-

ity of Stokes lines, at least for a class of functions whose asymptotic expansions diverge
in a certain way. Thus, instead of the traditional asymptotic representation in terms
of divergent expansions in different sectors, with discontinuous coefficients that are

related by the Stokes connection formulae, the smoothness inherent in the analyticity
can be restored, and this can be done universally in terms of error functions [1].

The purpose of this paper is to interpret this state of affairs in terms of theory
of matched expansions (MAEs) (van Dyke [14]), not just with the aim of simplifying
the representation of the above-mentioned new developments but also to pave the way

for these developments to be exploited in problems other than the linear ordinary
differential equations (ODEs) that have been considered hitherto.

To fix ideas, we will begin by recalling Stokes phenomenon for some linear ODEs
where there are explicit integral representations. These examples will then be used
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to motivate the construction of the MAE framework with which we will be working.
It will first enable us to study the relevance of the phenomenon for a class of linear
homogeneous ODEs in order to explain how to decide when connection formulae can
be calculated explicitly rather than by numerical computation. Then we use the MAE
format to present new results concerning the asymptotic behaviour of inhomogeneous
ODEs. Finally, in the conclusion, we will be able to make some conjectures about
the applicability of our framework to other ODEs and partial differential equations
(PDEs).

A crucial aspect of our approach is the reinterpretation of Stokes phenomenon in
terms other than that of maximal dominance of complementary functions of ODEs.
One interpretation that emerges naturally from Berry [I] is that of the rapidity with
which the difference between the solution of an ODE and its optimally truncated
asymptotic expansion varies as ph varies. This is tied in with the description of
Stokes phenomenon not as a change in the coecient of a complementary function
but rather as a change in the remainder of the asymptotic expansion of the dominant
complementary function in the region where this remainder is comparable with the
subdominant complementary function. This remainder or error will have relatively
smooth variation away from a Stokes line, and the change traditionally ascribed to
the Stokes multiplier is aaqa of the rapid variation in this error rather than
its cause. However, yet another characterisation has been proposed by Wright [15]
in terms of the equality of the phase of certain solutions of linear PDEs when inter-
preted as waves, and this is the one that will emerge most naturally as a result of our
investigation.. Examp|e The complementary error function. The complementary
ror function s a well-known function defined by

(2.1) erfc(z) e dr, z C.

It is an entire function with the following asymptotic behaviour:

(2.2a) erfc(z)
e- (2s)l 3

z 0(-1) sl(4z2) ]Ph(z)l < w’
e (2s) 3

 rfc( ) + <
s0

as [z[ -- cx. Notice that both asymptotic expansions are valid in the sector 7r <
phz < }7r. So the asymptotic behaviour of erfc(z) is the infinite expansion of (2.2a),
plus a constant. In the sector -r < phz < r, where exp(-z2)/zv/- is subdominant,
this constant is 0. In the sector r < phz < 7r, where, again, exp(-z2)/Zv/- is sub-
dominant, this constant is 2. And in the sector r < phz < r, where exp(-z)/zx/
is dominant, this constant changes from 0 to 2 (see Fig. 2.1).

We want to obtain the change of the asymptotic behaviour directly from the
differential equation

d2 d
w+ o,

without use of (2.1). Both erfc(z) and the constant function are solutions of this
differential equation. To obtain more information on the change in the sector 1/47r <
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exp

FIG. 2.1. The asymptotic behaviour of erfc(z) for 0 <_ phz <_ r.

phz < }r, we truncate (2.2a) after N terms:

(2.4) erfc(z)
e-

(-1) s!(4z2)----- + RN(Z).ZV/ s=0

The remainder RN(Z) is a solution of

d2 e-z (--1)N(2N)!
dz2 RN(Z) + 2z RN(Z) zx/ (N- 1)!4N-lz2N"

To show where the significant changes take place, we introduce polar coordinates
(2.6)

d ie- d d2 ie- d e- d
z rei, O < O < Tr,

dz r dO’ dz2 r2 dO r2 dO2’

where we have deliberately written z in terms of the "fast" variable 0 rather than
the "slow" variable r. Equation (2.5) in terms of polar coordinates is

(2.7)
r2 dO2 N(Z)’}-i T2

2 -RN(Z)
exp[-r2e2 + UTvi- (2N + 1)iO](2N)!

x/(N- 1)!4N-rU+

The magnitude of the right-hand side of (2.7), as a function of N, is minimal for
N r. Therefore, we take N r2 + a, where a is bounded as r c. With this N
the right-hand side of (2.7) reads

(2.8)

exp[-r2(e2i + i(20 7r)) + aTri (2a + 1)Oi](2r + 2a)!
V(r2 + a 1)!4r+a-lr2r+2+1

8r
e-(-)-exp[-r(e + 1 + i(20- ))1

as r - c. The dominant factor in the right-hand side of (2.8) is lexp[-r2(e2i d- 1 +
i(20- r))]l, and it is maximal at 0 1/27r, where it is O(1), as r -- xz. The value
0 1/2r has two other special properties. First, the phase of the second exponential
is both zero and stationary at this point (so that the right-hand side ceases to be
oscillatory as r - cxz in the vicinity of the Stokes line). Second, and most importantly
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for the present point of view, the right-hand side of (2.8) is independent of c when
0 Tr. This latter property allows us to use matched asymptotic expansions to solve
for RN in the neighbourhood of the Stokes line. We write

ro 1
(2.9) r=-- 0= 7r+500,

where e and 5 are the new small parameters. With the substitution of (2.9) into (2.7),
we obtain

as 5, e -- 0. From the final exponential we only obtain an interesting result when
5 e. Then the dominant terms are the e-1 terms, and we obtain

(2.11)
dOo
t:tN(Z) 4exp(_2r00),

VzTr

with the solution

ro 1/2r+eOo)(2.12) IN(Z) A + erf(v/roOo), z --e’( -- O,

where erf(z) is the error function. Matching as 00 --, -oc, the remainder Rw(z) is
exponentially small. Thence, A 1. Thus all the change in the constant term takes
place in the neighbourhood of the Stokes line phz 1/27r, and the change reads

(2.13) RN(Z) 1 + erf(Vr000),

in agreement with [1]. Figure 2.2 shows the appearance of the constant term in the
asymptotic behaviour of erfc(z) in the sector 0 _< phz _< 2r. Notice that the constant

5term appears at the Stokes line phz Tr, it is dominant in the sector Tr < phz < Tr,
and it disappears at the Stokes line phz Tr.
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3. The Stokes phenomenon for solutions of a class of ODEs. The general
homogeneous linear differential equation of the second order is given by

(3.1)
d2 d

+ + o.

We suppose that the point at infinity is an irregular singularity of rank 1. The asymp-
totic theory of solutions of (3.1) in these circumstances is well known and will be
found, for example, in Olver [9, Chap. 7, 1-2]. Without loss of generality we may
assume that f(z) and g(z) can be expanded in the power series

(3.2) f (z) 1-
p +2- g(z) E g8

Z Z -8"-’2

which converge for Izl >_ p. The two unique solutions of (3.1) have the following
asymptotic behaviour"

as 3
(3.3a) Vl(Z) e-zz"E -Z-’ Iph(z)[ < Tr ,

8--0

3
(3.35) v2(z) 1, Iph(z) 7r _< Tr- .
Here and elsewhere in the paper denotes an arbitrary small positive parameter. We
choose a0 1, and the other coefficients are determined by

s--1 s--2

(3.4 -sa8 s(s 1 t)as-1 -4- E (gs+l-m fs+l--m)am E (m #)L-,a,,

s >_ 1. A direct consequence of (3.2) is that Vl (Ze -27ri) is also a solution of (3.1), and
note that vl(z) and e2"Vl(ze-2i) are dominant solutions in the sector 1/27r + <

3phz < Tr- and have exactly the same asymptotic expansion there. Thus there is
a Stokes multiplier C such that

Vl (Z) e27riPvl (ZC-2r{ -}- CV2(Z).

With this connection formula we obtain the following asymptotic behaviour for vl (z)’

1 1
(3.6a) Vl(Z) e-zz -Tr < phz < r, subdominant

2
1 3

(3.65) v(z) e-zz, r < phz < 7r, dominant,

3 5
(3.6c) v(z) C, r < phz < Tr, dominant.

3Again, somewhere in the sector gr < phz < -, new exponentially small terms
appear. To obtain more information concerning the change in this sector, we truncate
(3.3a) after N terms

N-1

(3.7) vl (z) e-zz" E a-2- + RN(Z).
Z

8=0
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In the appendix we shall prove that the remainder is a solution of the following inho-
mogeneous differential equation:

d2 d
dz---’-tN(Z)+f(z)-ztN(Z) + g(Z)N(Z) e-Zzt-N-1NaN

e-zz" E z-k E a..[g#_.. fk-,- (m
k=N+2 m=0

Olver shows in [11] that

(3.9) aN

where A is a constant. From this result we obtain that the first term of the right-hand
side of (3.8) is minimal for N Iz I. We take N ]z + , with/ bounded. In the
appendix we shall show that with this N we can estimate the right-hand side of (3.8)
by its first term:

right-hand side of (3.8) e-Zz"-N-1NaN

A eW(,-)-(-)exp(-r[eW + 1 + i(O-

[z]+, z=rew, N=r+3.
Note again that (3.10) is maximal, ceases to oscillate, and is independent of 3 when
0 7r. Again, we use matched asymptotic expansions, but now with r role and
0 r + 500,

(3.11)
C--2i60o 2 d2

RN(z) + i((l + #)
e-ui u e-io

5 ro 5
F ...) d_oRN(z)

/2 (r (ei5o l iSOo))A re(+eo)(,-)-ieoexp
A

2e
e(u-1)exp

r0

as 5, 0. From the final exponential we obtain that we have to take 5 in
order to obtain an interesting balance. The dominant terms are the e terms, and we
obtain

with the solution

[ 1 (Ooiro)(3.13) RN(Z) h27ciei,
L
A + erf

as e 0, with z (ro/e)exp(i(r+v/Oo)). Matching as 00 -oc, we find that RN(Z)
is exponentially small. Thence, A 1/2. And from (3.6c) we obtain that A27riei, C
such that the change in the neighbourhood of the Stokes line phz is given by

(3.14) RN(z)C[+erf 1

in agreement with [8].



STOKES PHENOMENON AND MATCHED ASYMPTOTIC EXPANSIONS 1475

Remark. We note that, had we not assumed the expansions (3.2) (which can be
achieved by a transformation of the general equation (3.1)) but worked with (3.1)
directly with general f and g, then it would have been necessary to write RN Sv,
where v2 is the leading-order behaviour of v2, and formulate the equation for the Stokes
multiplier S. In the case considered, v 1 and RN S. Note also, however, that the
Stokes lines can be determined from the condition that the right-hand side of (3.10)
is independent of , for which it is not necessary to know the leading-order behaviour
of the solution v2 that is to be "switched on." Indeed, the leading-order behaviour of
this second function can then be deduced; i.e., given only the asymptotic expansion of
Vl, both the Stokes lines and leading-order behaviour of v2 can be deduced without
reference to the differential equation! In fact, for second-order equations that have
solutions

cn eirl
Vl zPl e_."yl zkE zkn

n-"-O

V2 Zlt2 e"Y2

where cn is real and positive, there are Stokes lines switching on v wherever eE is
nc_l e_iv" Of course, when we are dealing with second-real, and "yl -"y. limn__, cn

order equations, it is much easier in general to determine the "yi than the cn. However,
for higher-order equations, and in particular for PDEs, the asymptotic behaviour of
the solution to be switched on may not be known beforehand.

4. The connection coefficient C. The result (3.9) describes the growth of
the coefficients of asymptotic expansion (3.3a), where A is a constant. At the end
of the previous section we showed that A Ce-i/27ri, where C is the constant in
connection formula (3.5). Thence

(4.1) aNC
(-1)N
27ri e-F(N- #) as N

Since we have the recurrence relation (3.4), we can use (4.1) for the numerical com-
putation of C, but in general it is very difficult to obtain the value of C analytically.
Indeed, only when (3.4) is simple enough for us to find aN analytically can (4.1) be
used to obtain the exact value of C. For example, for the confluent hypergeometric
functions, (3.4) is a two-term recurrence relation, but for these functions there are
also different methods (e.g., by integral representations) that can be used to obtain
the connection constants. There are, however, more complicated differential equations
for which the result (4.1) can be used to obtain the exact value of C. Consider the
equation

(4.2)
d2

dzv(z) + X + -z + - zV(Z) O’

with the solutions

Vl (z) e-zz-1 -, Iphz] <_ r- ,
(4.3) =0

The recurrence relation for the coefficients can be written in the form a0 1, and for
s>l

(4.4) s(a, + 8as-l) =/(as-1 -t-(8- 1)a_2),
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from which we obtain

(4.5)

Hence, the constant C in

is

as (-1)ss! (_X)k

=0
(/!)

Vl (Z) Vl (Z{? -2rri) "-H C

-as
o (_A)k(4.6) C slimoo (_l)ss E (k!)

-J(2v/)"
k=0

There are also cases where the connection constants can be written down almost by
inspection. An example is the differential equation for the Airy function Ai(z), namely,

d2
(4.7) dz.2 u(z) zu(z) O.

This differential equation is not of the form (3.1), but the transformation z x}
leads to a differential equation of that form. From 3 we obtain that equation (4.7)

2 4has Stokes lines at phz 0, 5rr, and 5rr. The Airy function Ai(z) is the subdominant

solution at phz 0. A second solution of (4.7) is Ai(ze-i), which is the subdominant
2solution at phz 5rr. These two solutions have the following asymptotic behaviour:

[ph(z)] < 9r- v,Ai(z) -e-- z z

Ai(ze-i) ei(4.8) as Izl oo.

It is now possible to obtain the connection formula for Ai(z) just from (3.5) and the
fact that Ai(z) is an entire function. From (3.5) we obtain that

(4.9) Ai(z) e-1/2iAi(ze-1) + CAi(ze-).
A similar argument gives

(4.10) Ai(z) C2Ai(ze) + e1/2rAi(ze}ri).
Since the Airy function is an entire function, we know that Ai(ze-) Ai(ze)

4
and that Ai(ze -) A](zei). Therefore, we obtain from (4.9) and (4.10) the
connection formula

(4.11) Ai(z) e-1/2iAi(zei) + e1/2iAi(ze--i).
Figure 4.1 shows the appearance of exponentially small terms in the asymptotic

behaviour of Ai(z) in the sector 0 _< phz _< 2r.

FIG. 4.1. The appearance of exponentially small terms in the asymptotic behaviour of Ai(z).
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Remark. In [9] the result (4.11) is obtained by the knowledge that there are
constants a, b, and c, not all zero, such that

(4.12) aAi(z) + bAi(ze) + cAi(ze-i) 0.

The values of a, b, and c are obtained by looking at the asymptotic behaviour of the
left-hand side of (4.12) at the Stokes lines at phz 0, +gr. Alternatively, we can
use arguments involving the deformation of contour integral representations of Ai(z)
to derive (4.11).

5. An inhomogeneous differential equation. In this section we show that
our matched asymptotics method also works for inhomogeneous differential equations.
We take as an example the differential equation

(5.1)
d2 d___w+ ez

dz
z xp(-z).

This is a rather special differential equation because the corresponding homogeneous
differential equation (2.3) has an irregular singularity of rank 2 at infinity, which means
that the solutions growth like exp(p.(z)) as z oc, where p2(z) is a polynomial of
degree 2. Hence, there is a difference in the exponential growth of the solutions of
the corresponding homogeneous differential equation and the right-hand side of (5.1).
(Compare [9, Chap. 7, 14].)

The general solution of (5.1) is of the form

w(z) Aerfc(z) + B + Wp(Z),

where A and B are arbitrary constants and wp(z) is a particular solution of (5.1). By
variation of parameters we find the two particular solutions

From these integral representations we see that

(5.4)

1 1 5
Wp+ (Z) ---e as Z --> O0 in r < phz < r,

1 5 1
Wp_(Z)-e as z--oc in -7r<phz<

When we substitute the formal solution e cs=0 asz into (5.1) we obtain

1 1
2’ al --, 2as+l (1-2s)as+2(s-1)as_l+(s-2)(s-1)as_2, s >_ 1.

It is not difficult to show that
o

5E as -r < phz </ () -z ;, ,,
8--0

as 5 1
Wp_ (z) e -, -7r < phz <

1E.g., by using the method that is used in [9, Chap. 7, 14].
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as z -- x and that2

(5.7) aK(-1)F(s)

as s -- c, where K is a constant.
A direct consequence of (5.3b) is the connection formula

(z) Wp_ (z) + --Te-1/4 erfc(z).Wp+

With this connection formula we obtain the following asymptotic behaviour for Wp+ (z):

1 1 3
4r < phz < ,

1 a 5
(5.9b) wp+(z)-e-, -r4 < phz < r,

v/ e z2 5 7
(5.9c) Wp+(Z) ---e 4

z < phz < ,
subdominant,

dominant,

dominant.3

Hence, somewhere in the sector r < phz < -}r, new exponentially small terms
appear. Again, we write

N-1

(5.10) Wp+ (z) e-z E a-A + RN(Z)
Z8

8--0

and, with the method of 4, we obtain

(5.11) (1)--Rg(z) iKv/2’oexp -ro0
where z (ro/e)exp(i(7 + v0o)) and N (ro/e) +/,/ bounded. Hence

(5.12) Rg(z) KTd [A + erf(0oro) ]
as e - 0. Matching as 00 - -c, RN(Z) is exponentially small, and so A 1. When
00 --* +ec, we obtain that 2K7i 1/47de-1/4erfc(z) 1/27ie 1/4 and thus K e-z.
Therefore, the change in the neighbourhood of the Stokes line phz is given by

ri [1+ erf(001_ )1t N(Z) ro

We now encounter a major obstacle that confronts efforts to generalise the results of
3. We were able to use our MAE method in the sector 1/47 < phz < for the very

reason that the minimal remainder RN(z) is of the same order as erfc(z) as z
However, since in the sector -r <: phz < r the minimal remainder RN(Z) is expo-
nentially large compared with erfc(z), we cannot use our MAE method to determine

2E.g., by using the method that is used in [11].
3In the derivation of (5.9c) we use that all solutions of (5.1) are entire functions such that (5.6b)

is also valid for }r < phz < 1/4r.



STOKES PHENOMENON AND MATCHED ASYMPTOTIC EXPANSIONS 1479

where and how the function erfc(z) is switched on in this section. Hence, it is still
an open problem what the Stokes smoothing in the sector -Tr < phz < Tr should
be. In this connection, we note that inhomogeneous second-order equations are inti-
mately linked with homogeneous third-order equations. Indeed, differentiating (5.1)
and eliminating the inhomogeneous terms yields a holomorphic third-order differential
equation for w.

The failure to detect the other Stokes lines in the example above is due to the
information about them being "swamped" by the information about the Stokes line
that we were able to find. Such a situation will occur generically whenever two diver-
gent asymptotic series are multiplied together. Consider, for example, the function
v(z) E1 (Z)E1 (--Z), where E1 is the exponential integral. Since Jl has a Stokes line
at phz r, v(z) will have Stokes lines at phz 0 and phz 7r. Asymptotically
expanding v(z), we have

v(z) --l ( -. J! ) ( (-1)kk!
z

j=O k=O

where c (2n + 1)!/(n + 1), c2n+l 0. Hence, in this case, the leading-order
behaviour of the c’s contains the information for both Stokes lines. However, if we
consider instead the function

(J’)( (-1)k’) o cn-- Zk zn
j=l k--0

then c, (n + 1)!/(n + 2)- (-)n!/(n
contains no indication of the Stokes line at phz

Things are even worse when the value of n corresponding to optimal truncation
differs for the two series. Consider, for example, the function v(z) El(z)erfc(z).
Then

j=0 k=0

Again, c n! as n oc. However, whereas in the example above the second Stokes
line could have been detected by considering the second term in the expansion of
c, for large n, in this case the largest term corresponding to the tail of the asymp-
totic expansion of the error function to appear in the asymptotic expansion of c is

((- 1) } n!)/( !2), which is exponentially smaller than the leading-order behaviour of
Crt.

We note that all of the examples given above are all solutions of homogeneous
fourth-order holomorphic differential equations. Thus, for the solutions of inhomo-
geneous second-order equations and third- and higher-order homogeneous equations,
one of the Stokes lines will be easy to detect from the leading-order behaviour as
n - oc of the coefficients in the asymptotic expansion of a solution, but the informa-
tion about the other Stokes lines may be buried deep in the asymptotic expansions of
these coefficients.

6. Discussion and conclusion. Using the format of matched asymptotic ex-
pansions, we have presented as unified an account as possible for the location of the
Stokes lines of certain analytic functions and for the description of the asymptotic
behaviour in the vicinity of these lines. When the functions satisfy certain ODEs, the
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local behaviour of IN(Z), the error in the optimally truncated asymptotic expansion
of the dominant solution, is affected by the dependence of N on z and the precise
growth of an as defined in (3.3a) for r > N. This behaviour is characterised by ex-
pressions such as (2.13) and (3.4), where both the argument of the error function and
also the region over which ftx(z) varies rapidly depend crucially on the properties of
N and an: this region is wedge shaped in 2 but can, for example, be parabolic in the
cases such as those considered in [10].

For the problems considered in 3, we have presented a systematic procedure
for determing the requisite information about _Rx(z); in many cases this involves the
numerical solution of the recurrence relation (3.4) (see [11]), and it seems likely that a

necessary and sufficient condition for the existence of a closed formula for the Stokes
multipliers is that a closed-form solution exists for (3.4). However, any attempt to
apply our method to higher-order or inhomogeneous generalisations of those in 3 is
bedeviled by the possibility of there being a hierarchy of Stokes lines. Hence it is
appropriate to conclude with a summary of the different characterisations of Stokes
lines that are available with the aim of highlighting those which are likely to be of
most value for more general problems.

By focusing on the remainder IN(Z), we have been able to assert that on a Stokes
line

(i) (3.10) is maximal;
(ii) the phase of (3.10) and its 0-derivative are independent of r;
(iii) (3.10) is independent of .
Moreover, the discussion at the end of 3 has shown that (iii) above can sometimes

allow us to identify Stokes lines directly from the asymptotic expansion of a function
without reference to any differential equation. However, reverting to the examples
in 3, we can consider what would have happened to (3.10) had we not made the
assumption (3.2). Then, after transforming in accordance with the remark after (3.14),
the right-hand side of (3.8) would have involved a factor exp(l-.-Il-21), where
the phases ui are such that vi exp(ui) as Izl-+ oc. Hence, on the Stokes line

(iv) R(ul)-R(u2) is maximal when considered as a function of 0 on r constant;
iv)
This last characterisation coincides with the definition of Stokes phenomenon

given by Wright [15] in his Fourier analysis of linear wave propagation (see also Berry
and Howls [2]). Indeed, if it is possible to write a wave field in the frequency domain as
a Fourier integral, then it is clear that a new wave is switched on whenever a steepest
descent path crosses a singularity or a new stationary point, in which case (iv) and
(9) are clearly satisfied. In this spirit we can, if we consider holomorphic functions
of two complex variables, give a physical interpretation of Stokes phenomenon that is
quite different from the consideration of remainders in asymptotic expansions and is
in the spirit of Meyer [6].

Suppose a solution of Helmholtz’s equation, say, with large wavenumber / is
approximated using ray theory in two dimensions. The associated rays will, in general,
be both real and complex; while it is a simple matter to trace the phase and amplitude
along real rays, the same is not true for complex rays, which are best thought of as two-
dimensional manifolds in the four-dimensional complexified space of the independent
variables. On these complex manifolds, the amplitude can vary by exponentially large
amounts in terms of k, a typical situation being near a caustic. On the bright side of
a caustic there are two families of real rays, and on the dark side there is one family of
complex rays carrying exponentially small amplitude. However, an exponentially large
amplitude wave field could also exist on the dark side in principle, and some rule has to
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be prescribed for legislating against complex rays carrying such large amplitude. Now
it is natural to characterise Stokes "surfaces" as those points of C2 where two rays can
exist with equal "phases" (i.e., the respective waves are exp(ikuj), where Rul Ru.).
These points form a three-dimensional manifold across which exponentially small wave
fields can be switched on or off as in 2. The details of the generalisation of that
discussion to this higher dimensional situation are too complicated to give here, but
it is clear that the information that a complex ray carries en route to real space is
profoundly affected by what happens at the intersection of that ray with the Stokes
surface. This is exactly analogous to the change of dominance that occurs on anti-
Stokes lines being profoundly affected by what happened at a remote Stokes line.
Hence a knowledge of the position of the Stokes surface and the switching rules that
apply across it are vital if complex rays are to be of practical value. Incidentally, the
connection formulae for any point of the Stokes surface emanating from a caustic can
be read from an argument similar to that leading to (4.11); locally, near the caustic,
the wavefield is, of course, described by an Airy function.

We conclude by mentioning that there has also been much recent research on the
effect of nonlinearity on Stokes phenomenon (see, e.g., Novokshenov [71). Although
nonlinear connection formulae exist, say, for Painlev II, they seem never to have been
analysed by MAEs; indeed, it seems possible that nonlinearity may completely swamp
the delicate switching of exponentially small terms that underlies Stokes phenomenon.

Appendix. We use the notations of 3, and we define

N-1
as(A.1) ?l(Z)- --z E Zs--#

8--0

such that

Vl (Z) )1 (2;) -}- N(Z).

When we use (3.4) several times, we obtain

(A.3)
d d
-Z2I(Z) -- f(Z)-ZI(Z -- g(Z)I(Z)1 #)aN-1 Ee-Zzl

zN+I E z-k am(fk-m gk-rn)
k=N+I m=0

N-2 N-1

z-(N+1) E (?Tt .)amfN-m E z-k E (m #)amfk-l-m]
m--0 k=N+2 m--0

NaN--, e--Zzt.t
zN+I

k=N+2 rn=0

where in we have used (3.4) with s N. The combination of (A.2) with (A.3) leads
to (3.8). To estimate the infinite sum in the final line of (1.3), we use

(A.4a) la,l < KIIF(m- )[, m > 0,

(A.4b) If.l, IgJl KpJ, j >_ O,
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where/{1 and/2 are constalltS. To obtain (A.4a), we use (3.9), and to obtain (A.4b),
we use the fact that the expansions of (3.2) converge for Izl >_ p. We substitute (A.4)
into

(A.5)

Z Z-k Z arn []k-rn Sk-rn (Tt )Sk_ 1--rn]
k=N+2 rn=0

m-t-I#K1/2 Z - pm p
k=N+2 rn=0

()Nq-2 E111---77 ,,m
2 /

m=0 P

N-1 pN-mx II ,)(, + ).( )

-<*KIK2(2P2+(N-I+I#[)PI[Z[N+2 Z IZI-D
N

i1,+
Ir(N )10(1)

Np
Ir(x- ,)IK(,, p)

N- 1 ,1

as zl--+ . In we have used

(A.6)
pN-rn p

I(rn #)(rn + 1 #)... (N 1 #)1 <- K(lt, p) IN 1 #1’

rn 0, 1,..., N- 1, where K(#, p) does not depend on N. From (3.9) we obtain

(A.7) NaN
zN+I

N
A

’z’N+II’ Ir(N- ,)1

N Izl-+ oo. The combination of (A.7) and (A.5) leads to the first line of (3.10).
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