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STOKES5 PHENOMENON;

SMOOTHING A VICTORIAN DISCONTINUITY

par M. V. BERRY

Dedicated to Reni Thorn.

Summary

Small exponentials in asymptotic representations of functions y(k\ X) (k ->co)

can appear and disappear across sets of codimension 1 in the space of variables X. These

changes are not discontinuous but happen smoothly and according to a universal law.

1. Problem

My aim* is to present a new result in asymptotics, with a strong connection to

some of Rend Thorn's beautiful ideas about singularities. As will become obvious, the

treatment is far from rigorous, and the same is true of a more technical version being

published elsewhere [1]. But I gain comfort from the conjectured converse of one of

Thorn's aphorisms: what is non-rigorous might not be insignificant. The work is however

insignificant in (at least) one respect, because it deals with exponentially small quantities,

which are frequently negligible (and more frequently neglected).
Stokes5 phenomenon concerns the behaviour of small exponentials whilst hidden

behind large ones. A simple context in which it arises is the approximation of integrals

(1) y(k, X) = f^dsg{s; X) exp{^, X)}

as k -> oo. Here G is an infinite contour in the complex s plane and 0 is an analytic

function of s depending also on variables X = (X^, X^ ...). Asymptotically, contri-

butions can come from critical points (saddles) of 0, i.e. s == ^,(X) where

(2) 3.0{,,(X),X}=0.

* Lecture delivered at the Colloque Rene Thorn, Paris, September 26-October 1 1988.
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To isolate these, it is customary to deform C to pass through the different accessible

critical points on paths of steepest descent. These paths lie along gradient lines of Re 0,

that is level lines of Im O. The (complex) heights of the critical points are

(3) y,(X) =<D{. , (X) ;X}.

Each critical point gives an exponential contribution to y. The dominant contribution

has the largest value of Re <p^$ other contributions (subdominant) are exponentially
smaller.

As X varies, the steepest-descent contours can change discontinuously in two

different ways, illustrated in figures 1 and 2. First, critical points Sj can coalesce; this

happens on the (complexified) catastrophe set in the X-space [2], and corresponds to

large values ofy because on the set the critical point is of higher order. Second, critical

values Im 9, can coalesce; this happens on the Stokes set in the X-space [3] and corres-

ponds to the appearance or disappearance of a subdominant exponential in a <( non-local

bifurcation " [2]. The Stokes set is a subset of the saddle-connection set (there may

FIG. 1. — Coalescence and separation of saddles in s plane as X varies across the catastrophe set. Hi and Lo
denote asymptotic ridges and valleys ofRe(&; light lines are steepest paths, i.e. contours of ImO; heavy lines are
steepest descent contours through the saddles + and —; the dashed line in ( a ) is a possible defining contour for
the integral. The catastrophe occurs at ( b ) . At (a), both saddles contribute; at ( c ) , one contributes.
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FIG. 2. — Coincidence of heights ImO of saddles as X varies across the Stokes set. Notation as in figure 1.
( b ) is on the Stokes set. At ( a ) , both saddles contribute; at ( c ) , one contributes.

be non-contributing connected saddles, through which the deformed G does not pass),
which is itself a subset of the Maxwell set, consisting of those X for which any pair of Im <p.

are equal (if the corresponding Sj are distant they need not be connected by a level

line). Although the Stokes set has codimension 1 and so is a hypersurface in X, it is
commonly called the Stokes line because in examples X is often two-dimensional (e.g. the
plane of a complex variable Z = X^ + z'Xg).

It is the second case with which we are concerned here, because the fact that

small exponentials in asymptotic representations can appear and disappear as X varies
is the Stokes phenomenon. In the general case we have, to leading order,

(4) y(k, X) = M+(^; X) exp{AO^(X)}

+ iS{k; X) M_(A; X) exp{A<D_(X)} +

Here + and — denote the dominant exponential and the principal subdominant one

(i.e. Re y^ > Re <p_), the prefactors M+ and M_ are slowly-varying functions of k

and X, and ... denotes any further (smaller) exponentials and asymptotic corrections
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(in higher powers of k~
1
) to the leading terms. The quantity of principal interest is the

Stokes multiplier S, whose increase from 0 to 1 describes the switching-on of the small

exponential across the Stokes line. S can vary rapidly with k and X. (The factor i is
included for later convenience.)

Stokes9 opinion was that S varies discontinuously, even thought is continuous.
After half a century's reflection on the subject, he wrote [4]

"... the inferior term enters as it were into a mist, is hidden for a little from view, and comes out with its

coefficient changed. The range during which the inferior term remains in a mist decreases indefinitely as the [asymp-
totic parameter] increases indefinitely. "

He had come to this view by analyzing [5] the divergence of the principal asymp-
totic series which begins with the first term in [4], namely

(5) Ak; X) = M,. exp { ̂  } Z; a,
r = 0

(^0 = l;^^-11).

The coefficients a, decrease and then increase. Stokes found that away from the Stokes
line the phases of the a, vary, causing a degree of cancellation which enabled him to

perform a crude resummation of the divergent tail of the series. On the Stokes line,

however, the a^ all have the same phase and he was unable to resum the series. He

concluded that the divergence is incurable, and that after summing down to the smallest a

the asymptotic expansion specifies^ only up to an irremovable vagueness. This vagueness
is just sufficient to allow the discontinuous emergence of the small exponential.

Stokes' understanding of his phenomenon was not won easily. On 19 march 1857
he described his discovery in a letter to his fiancee, Mary Robinson [6]:

" When the cat's away the mice may play. You are the cat and I am the mouse. I have been doing what

I guess you won't let me do when we are married, sitting up till 3 o'clock in the morning fighting hard against a

mathematical difficulty. Some years ago I attacked an integral of Airy's, and after a severe trial reduced it to a

readily calculable form. But there was one difficulty about it which, though I tried till I almost made myself ill,

I could not get over, and at last I had to give it up and profess myself unable to master it. I took it up again a few

days ago, and after a two or three days' fight, the last of which I sat up till 3, I at last mastered it. I don't say you

won't let me work at such things, but you will keep me to more regular hours. A little out of the way now and then

does not signify, but there should not be too much of it. It is not the mere sitting up but the hard thinking combined
with it..."

He had to fight so hard with his discontinuity because he mistakenly strove to

relate it to a superficially similar one he had explored in detail ten years before [7],

and which is now commonly attributed to Gibbs, who rediscovered it half a Century

later: the ability of Fourier series to represent discontinuous functions, by converging
more slowly near discontinuities.
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2. Solution

The new result I will present here derives from the fact that it is possible to resum
the divergent series of a, beyond the least term, even on the Stokes line, and thereby

control the asymptotics ofy to an exponential accuracy in k, sufficient to establish the

precise variation of S across the line. The variation is not discontinuous but smooth.

Moreover the multiplier is universal in form, that is the same for all functions in a wide
class. I will state the result and list the elements of its derivation; details appear else-
where [I],

The natural measure of disparity between the dominant and subdominant expo-
nentials is the singulant [8]

(6) F(A; X) = k{ (p^(X) -- 9-(X)}.

On the Stokes line, F is positive real. In terms of the Stokes variable

(7) a{k,X) = ImF^ReF)172

describing the crossing of the Stokes line, the Stokes multiplier is

(8) S ( a ) = S _ + — — r Aexp(-^)

where S_ is the value of the multiplier below the line (i.e. for Im F <^ 0).

This result is surprising, because it shows that hidden in the asymptotics of a huge
variety of functions (including the special functions of classical analysis—Bessel, hyper-

geometric, etc.—and the diffraction catastrophes of optics [9]) is the humble error

function. It is revealed by subtracting fromjy the dominant series (5), summed to its
least term, that is

r*
(9) fee" ^'Ml1 {j/ exp(- A<p_) - M+ exp(F) S a,} == S((r)

r=0

where | a^ | < | a^\ (r =(= r*).

Before outlining the derivation I should remark that it is impossible to study

Stokes9 phenomenon within the framework of Poincar^s definition of an asymptotic
expansion. This states that a^ are asymptotic coefficients forj/ if

w

(10) lim^k
m
{ M;1 exp(- k^) y - S <z, } = 0(1).

r==0

It is inadequate because it captures the asymptotics of y only to power-law accuracy
whereas understanding Stokes' multiplier requires exponential accuracy.

3. Derivation

The derivation of (9) is based on an interpretation of the divergent dominant

series (5). It is not necessary to include the subdominant exponential because it will

be born out of the resummed tail of (5). Ecalle [13] has coined the term <( resurgence 5?

to describe this phenomenon. Resurgence appears remarkable but is in fact inevitable
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because the existence of the small exponential is the cause of the divergence of the

dominant series—convergent series in powers of k~
1 would not be able to represent

an exponential. We employ Borel summation of (5), starting with the least term r*. This

method has been extensively developed by Dingle [8] and applied to the approximation

of jy on the Stokes line itself; here it is applied across the line.

Underlying the universality of the multiplier (8) is a universality in the form

of the late terms a^ (r > 1), that is in the asymptotics of the asymptotics:

(11) . ^_M_(r_^)!
K / ^ooZTrM^ F^P *

Dingle derives (11) (and corrections to it) for integrals of the form (1) (where + and —

correspond to stationary points, and where [B = 1), for integrals with finite contours

(where + comes from an end point and — from a stationary point, and where (3 == 1/2),

and for second-order linear differential equations with variable coefficients (where +

and — describe waves running in opposite directions, and where (B == 1). To show how

the universality emerges, I give in the appendix a derivation of the late terms for the

first of these cases.

From (11), the least term has

(12) r' w | F |.

(The precise value is immaterial because changing r* by one contributes a correction

of order ^-1/2 to S(<r), which is invisible in the limit (9).)

Borel summation gives an integral representation for the tail of the series, that

is for the sum of terms r > r*. A crucial simplification is that truncation near the least

term (i.e. r* given by (12)) gives a Borel integral with a stationary point coinciding

with a pole, whose approximation (that is, the asymptotics of the asymptotics of the

asymptotics) is quite easy and yields our results (8) and (9).

Numerical tests of (9) [1] show nicely how the error function (8) emerges, and

the robustness of the results under changes in the truncation r", even when the asymptotic

parameter as measured by | F ] is not particularly large (e.g. | F | =5).

4. Stokes and Airy

It is instructive to examine the numerical calculation performed by Stokes him-

self [5] to establish the reality of his phenomenon. He was studying the integral

(13) Az(0 = ̂  J^ ds exp { W + ^}

(z=X,+ iX,)

introduced by Airy [10] in 1838 to describe difraction near a caustic (e.g. the rainbow).

In optics one needs the values o!Ai{z) for z real, i.e. X^ == 0. For negative X^ the function

oscillates in characteristic interference fringes (describing, for example, supernumerary

rainbows inside the main arc). But Airy was unable to compute these fringes numerically
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because the only technique available to him (representing Ai by a convergent series)

was limited to too small values of | X^ |.

Stokes solved this problem [11] by inventing what we now call the WKB method,

applied to the differential equation satisfied by Ai, to calculate asymptotic (divergent)

series enabling Ai to be computed to high accuracy for large | X^ |. He also, almost

in passing, invented what we now call the method of stationary phase.

The integral (13) has two stationary points, at s = ± (— z)
112

. When z is real

and Xi > 0 only one of these contributes to the integral, which is exponentially small.

When z is real and X^ <^ 0 both stationary points contribute and Ai oscillates (figure 3).

This was the source of the difficulty which occupied Stokes for so long. How could one

function have two asymptotic expansions (for X^ > 0 and X^ < 0) ? The resolution

of course lay in studying Ai for complex z. Somewhere between the positive and negative

real axes, a second exponential must be born. This happens near the Stokes lines, which

for At lie at arg(^) == 120° and 240°.

FIG. 3. — Points 1 and 2, on opposite sides of a Stokes line
at which Stokes computed Airy's function Ai{z)

To test his theory, Stokes computed Ai at two points (labelled 1 and 2 on figure 3)

on opposite sides of the 120° line, with arg(^) = 90° and 150° and | z \ = (72)173 = 4.160...

For these points, the singulant modulus is | F [ = (128)172 = 11.31... He computed Ai

" exactly " (from the convergent series) and from the divergent series for the dominant

exponential, taken to its least term. The results [5] are reproduced in table I. At point 1

this series approximates Ai to one part in 107. At point 2 it is accurate to only one part

in 104—that is 103 times worse. But the accuracy is restored at point 2 by including just

the leading term of the subdominant exponential, thereby establishing the reality of
the Stokes phenomenon. Several authors (e.g. [12]) have rediscovered the dramatically

increased accuracy that results when exponentially small terms are correctly added to

optimally truncated dominant series.

28
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TABLE I. — Stokes3 computations of the Airy integral (13)

(multiplied by 2V7^31/6) for | z \ == (72)173 and arg(^) = 90<> (point 1) and 150o (point 2)

Value of integral Point 1 Point 2

Exact

Dominant series

Subdominant

Total

14.98520 +i 43.81047

14.98520 +i 43.81046

14.98520+^43.81046

- 45.44882 - i 8.92867

- 45.43360 - i 8.92767

- 0.01524-i 0.00100

- 45.44884 - i 8.92867

Stokes9 computations were consistent with his opinion that the multiplier changes

discontinuously. He missed the fact that S varies smoothly (cf. (8)) because his points 1

and 2 are too far from the Stokes line. At 1, the Stokes variable is or = — 2, and

S((r) == .005, so that the birth of the second exponential has hardly begun. At 2, a == +2,

and S(<r) = .995, so that the birth is virtually complete.

In a sense the result reported here completes a story begun by Airy and Stokes.

Airy realized that the singularity at a caustic is an artefact of ray theory which would

be smoothed away by properly taking diffraction into account. His function Ai{z)

accomplishes this smoothing in the generic case, which we now know as the fold diffraction

catastrophe [2]. For integrals, the discontinuity thus smoothed is the one illustrated

in figure 1. Stokes discovered that in the complex z plane Ai(z) itself has discontinuities

in its asymptotic representation, of the other kind as illustrated in figure 2. He did not

however find the appropriate smoothing. That is accomplished by our result (8) and (9),

which shows <( the error function in the Airy function ". (The same smoothing occurs

across the Stokes line for the error function, which is therefore contained in its own

asymptotic approximation—" the error function in the error function ".)

5. Discussion

I envisage several applications of this work, beyond the purely numerical. In wave

optics the Stokes set may be observable if there are at least two real variables X. This

is not the case for the fold caustic because the Stokes lines in z == X^ + ^Xg are complex

and in diffraction we usually have z real. But for the higher catastrophes the Stokes

set can be real. Wright [3] has calculated it for the cusp diffraction catastrophes, and

work is in progress on the higher singularities. Observation of the Stokes phenomenon

would be difficult (if possible at all) because it involves exponentially weak complex

rays masked by intense real rays. (The situation with caustics—singularities of the other

sort—is quite different: these are sets of high intensity, dominating wave fields.) Other

applications are to the birth of weak reflected waves in smooth refractive index gradients,

and the generation of weak nonadiabatic jumps in slowly-varied parametric oscillators.
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There must be limits to the universality of our smoothing (8) and (9), reflecting

limits in the universality of the asymptotics of the asymptotics (11). Presumably the

breakdown of universality occurs when Stokes lines coalesce or cross as more variables X

are altered. There ought to be a classification of the ways in which this can happen

stably, and of the associated smoothings, analogous to the classification of catastrophes
and their associated diffraction patterns.
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Appendix

This is the derivation (following [8]) of the <c asymptotics of the asymptotics "

giving the late terms (11) of the integral (1). First the prefactors M^ must be found.

The lowest-order approximation to (1) from a dominant saddle SQ is

r 27c I
172

(A1) -^ kr^n ^exp(^>o+^o)L" I -o 1 J

where dashes denote ^-derivatives, the subscripts quantities evaluated at jg, and 60 is

the direction in which the deformed contour of steepest descent departs from SQ. Referring

to figure 2b, let SQ now be the dominant saddle s^. and (without loss of generality) choose

the sense of G towards the principal subdominant saddle s_. Then we can take

[
9 -]1/2

(A2) M^= ——— ^exp(^)
K I ^± 1J

where (for real singulant F (i.e. on the Stokes line) 6_ is the direction in which the level

curve Im F == 0 through s^. emerges from s_ (where it is a path of steepest ascent)).

Now change variables in (1) from s to w, defined near s , by

(A3) k^){s) == A-9+ - z^/2.

Thus w is real and increases from zero along the steepest path from s^. to s_, Expansion
in powers of w gives the formally exact expression

oo y+1/2 p/ _i i /9\ oo

(A4) y = exp(^) S -———^^ ̂  = S ̂
r=0 \2,r) \ r=0

in which

^ ^{^"T}
_ (2r)! r dw ds_

"'^J^+^Ay

where the contour is a small loop around w = 0.
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The late terms r > 1 are found by expanding the contour until it meets the nearest
singularity. This is the w corresponding to s_, namely

(A6) w = [2^(<p+ - (p_)]1/2 = (2F)1/2.

To find the form of the singularity, expand (A3) about s_ to get

(A7) (s - s_)
2
 W^ = F - a^/2.

Inversion and differentiation now give

(A8) ds
. ^ exp(ie.) (2F)^

dw *-**- { 2€^[(2F)1/2 — w]}
112

(the phase is determined by the direction of the level line from ,s_—cf. figure 2b).

The leading term of the integral (A5) is given by the integral along the sides of
the cut emerging along the positive w axis from w = (2F)1/2. Noting that the phase
of the radical in (A8) on the upper lip of this cut is — 7t/2, we obtain

(A9) A ^Wg-^P^W'r dx
^OIT)1'2 Jo [{2^ + x^ x1'2

where x == w - (2F)1/2. For large r the integrand decays exponentially away from
x == 0, giving

(A10) A, ~ (2r)!g_exp(tQ_)
2r ^00 TC^F)"- [(2r + 1) 2^]l/2'

Substitution into (A4) and use of F(r + l/2)/(r + 1/2)"2 ~ (r — 1)! gives

(All) ^ ̂  ,_ exp(.6_) (^pxp^,) ̂ 11

=M-exp(^)(r^!

which is the same as (11) with (B = 1.
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