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An important class of canonical problems which is employed in quantifying the slip-
periness of microstructured superhydrophobic surfaces is concerned with the calculation
of the hydrodynamic loads on adjacent solid bodies whose size is large relative to the
microstructure period. The effect of superhydophobicity is most pronounced when the
latter period is comparable with the separation between the solid probe and the su-
perhydrophobic surface. We address the above distinguished limit, considering a simple
configuration where the superhydrophobic surface is formed by a periodically grooved
array, in which air bubbles are trapped in a Cassie state, and the solid body is an in-
finite cylinder. In the present Part, we consider the case where the grooves are aligned
perpendicular to the cylinder and allow for three modes of rigid-body motion: rectilinear
motion perpendicular to the surface; rectilinear motion parallel to the surface, in the
grooves direction; and angular rotation about the cylinder axis. In this scenario, the flow
is periodic in the direction parallel to the axis. Averaging over the small-scale periodicity
yields a modified lubrication description where the small-scale details are encapsulated
in two auxiliary two-dimensional cell problems which respectively describe pressure- and
boundary-driven longitudinal flow through an asymmetric rectangular domain, bounded
by a compound surface from the bottom and a no-slip surface from the top. Once the
integral flux and averaged shear stress associated with each of these cell problems are
calculated as a function of the slowly varying cell geometry, the hydrodynamic loads
experienced by the cylinder are provided as quadratures of nonlinear functions of the
latter distributions over a continuous sequence of cells.

1. Introduction

Superhydrophobic surfaces are realised by immersing a textured hydrophobic surface
in liquid, forming a so-called Cassie state in which gas is trapped in the vacancies of the
microstructure (Quéré 2008). When the liquid is made to flow relative to the surface, it
encounters a compound interface: part solid, on which the usual no-slip condition applies,
and part gaseous, on which a no-shear condition approximately applies. Given the fun-
damental role played by the no-slip condition in numerous practical scenarios, together
with recent advances in fabricating textured surfaces, there is currently tremendous in-
terest in the hydrodynamic ramifications of superhydrophobicity (Rothstein 2010; Lee
et al. 2016; Seo & Mani 2016).

In particular, it has been widely demonstrated that superhydrophobic surfaces could
be used to reduce hydrodynamic resistance on small scales (Lauga & Stone 2003; Ou
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et al. 2004; Ou & Rothstein 2005). The prototypical problem which corresponds most
to experimental protocols involves pressure-driven flows which are bounded between two
surfaces, with either one or both of these being superhydrophobic; the distance between
them (the channel depth) provides the ‘macroscopic’ scale. When the characteristic pitch
of the surface texture is small compared with that scale, the surface may be represented
via an equivalent Navier-slip boundary condition, where the velocity evaluated at that
fictitious boundary is taken to be locally proportional to the normal shear rate. The
“slip length” appearing in that condition is obtained from the solution of a canonical
flow problem where the surface is subjected to a simple shear flow (Cottin-Bizonne et al.
2004; Ybert et al. 2007); it is accordingly calculated as an intrinsic property of the
surface. With elementary dimensional arguments showing that this property scales as the
periodicity (Ybert et al. 2007), the volume flux in the above deep-channel limit deviates
only slightly from the classical Hagen–Poiseuille prediction. The more important case is
accordingly that of comparable pitch and depth. In that case, it is generally necessary to
calculate the volume flux directly using the exact microscale formulation. For given solid
fraction and menisci protrusion angle, this task has been accomplished using a variety of
semi-analytical and numerical methods (Philip 1972a; Lauga & Stone 2003; Teo & Khoo
2009; Marshall 2017); in some cases the flux and flow profile turn out to be qualitatively
different from those predicted by extrapolating the deep-channel limit (Schnitzer & Yariv
2017; Yariv 2017; Yariv & Schnitzer 2018).

All of the above-mentioned solutions for pressure-driven channel flows assume straight
boundaries formed of periodically textured hydrophobic surfaces (in a superhydrophobic
Cassie state), as well as creeping flow conditions and negligible flow-induced deformation
of the menisci. Under these conditions the flow domain is readily reduced to a single
unit-cell of the geometry, which greatly facilitates the obtaining of analytical and nu-
merical solutions for arbitrary channel depths. Unfortunately, many other hydrodynamic
scenarios involving superhydrophobic surfaces cannot be similarly reduced; even for peri-
odically textured hydrophobic surfaces, the flow could be aperiodic owing to the presence
of curved or finite boundaries, menisci deformation or lack of symmetry of the external
forcing. In these situations, the flow must be resolved over multiple, often numerous,
periods of the microstructure.

An important class of problems exemplifying the above modelling challenge is the
calculation of hydrodynamic forces on solid bodies that are forced to move relative to
textured hydrophobic substrates. These problems are employed in quantifying the slip-
periness of superhydrophobic substrates based on force measurements, given the rational
that it is far simpler to measure these forces than the small-scale features of the flow field.
Thus, Maali et al. (2012), Mongruel et al. (2013) and Nizkaya et al. (2016) measured the
drag force on spherical particles and AFM tips moving towards grooved hydrophobic sub-
strates, while Choi & Kim (2006) and Lee, Choi & Kim (2008) measured the torque on a
cone spinning above grooved and pillared hydrophobic substrates of small solid fraction.
These configurations allow accessing the near-contact limit, where the minimum clear-
ance between the substrate and the solid probe is small compared with the dimensions of
the probe. For non-textured substrates, this is the familiar setting of lubrication theory,
where a slowly varying geometry results in enhanced hydrodynamic interactions (Davis
2017).

Naturally, the near-contact limit for textured surfaces is significantly more complicated.
Here, the representation of the surface via an intrinsic slip length (Davis et al. 1994; Choi
& Kim 2006; Kaynan & Yariv 2017) tacitly entails the assumption that the clearance is,
on the one hand, small compared to the dimensions of the moving body (as in classical
lubrication theory), while, on the other hand, large compared to the microstructure scale
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and the associated slip length. As in the analogous description of deep-channel flows,
the latter constraint implies lubrication forces that are only slightly perturbed by slip.
At smaller separations, where the clearance is commensurate with the texture scale (or
intrinsic slip length, whichever is larger), the small-scale flow associated with the solid-gas
patterns is no longer localised near the superhydrophobic surface. In that distinguished
near-contact limit, in which the notion of intrinsic slip is inapplicable, the flow field and
lubrication forces are essentially modified by the texture.

An approximate description in the above limit, extensively employed by Vinogradova
and coworkers to study the drag force on discs (Belyaev & Vinogradova 2010b) and
spheres (Asmolov et al. 2011; Nizkaya et al. 2016) moving towards grooved surfaces,
is based on the notion of effective (non-intrinsic) slip length (Belyaev & Vinogradova
2010a; Schmieschek et al. 2012). In this approach, the superhydrophobic surface is still
represented as a Navier-slip condition, only that now the slip length is assumed to depend
on the local separation between the solid body and the superhydrophobic surface. At
each point along the surface, the latter slip length is obtained by comparison with an
auxiliary cell problem, of pressure-driven flow through a flat textured channel whose
depth equals the local separation. Starting from this description, these authors derive a
Darcy-like equation governing the slowly varying lubrication pressure in the gap, wherein
the permeability, derived in terms of the effective slip length, is spatially varying and
anisotropic. In general, both the slowly varying effective slip length and the Darcy-like
equation need to be solved numerically, though closed-form expressions for the drag forces
have been obtained for separations much larger or much smaller than the texture pitch.
In the former limit, the effective slip length reduces to the intrinsic slip length of the
grooved surface.

The concept of effective slip length has originated in the analyses of pressure-driven
flows through uniform-depth superhydrophobic channels (Lauga & Stone 2003; Belyaev
& Vinogradova 2010a); in these type of flows the effective slip length simply constitutes
a recasting of the volumetric flux. In the above-mentioned analyses of Vinogradova and
coworkers the effective slip model is tacitly assumed to apply locally to slowly varying
geometries. It is not a priori clear in which scenarios can that assumption be justified,
and whether it can be applied to general lubrication flows about textured surfaces. In
particular, we note that effective-slip models have only been applied to lubrication in-
teractions involving squeeze flows generated by the motion of particles perpendicular to
textured boundaries.

In this paper, we demonstrate a ‘first-principles’ approach to studying lubrication inter-
actions between solid particles and textured surfaces, where the appropriate macroscale
description is systematically deduced from an underlying ‘exact’ microscale formulation.
‘Systematic’ here means that the small-scale details of the textured surface are averaged
out using asymptotic tools, by considering the distinguished near-contact limit where the
clearance is comparable to the periodicity. One of the advantages of adopting a system-
atic approach is that it allows treating lubrication flows animated by general rigid-body
motion. Since consideration of that general motion is significantly more complex than
the specific case of perpendicular motion, we elect to devise our asymptotic paradigm
in the context of the simplest possible particle–wall configuration. Towards this end, we
consider a solid cylinder translating and rotating near a periodically grooved surface (in a
superhydrophobic Cassie state). This choice is inspired by the classical analysis of Jeffrey
& Onishi (1981) who considered the two-dimensional problem of a cylinder which moves
in the vicinity of a no-slip boundary, and by its recent generalisation to a homogeneous
slippery boundary on which a Navier-slip condition applies (Kaynan & Yariv 2017). In
this Part, we consider the case where the cylinder is perpendicular to the grooves and is
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Figure 1: Schematic of the dimensional geometry

allowed to translate normal and parallel to the surface, as well as rotate about its own
axis. The underlying symmetry in these problems implies periodicity along the cylinder
axis.

2. Problem formulation

We employ a simple model of a superhydrophobic surface formed by a periodically
grooved hydrophobic solid substrate. Thus, we assume that when the surface is brought
in contact with a liquid (viscosity µ), cylindrical air bubbles occupy the grooves. A
compound interface is accordingly formed, composed of the liquid–air interfaces and
the (presumably flat) top edges of the ridges that separate the grooves. Assuming zero-
protrusion-angle menisci, this compound interface is flat too. Its geometry is completely
prescribed by the grooved-array period and solid fraction φ. We shall refer to this com-
pound interface as the superhydrophobic plane.

Consider now an infinite solid circular cylinder (radius a) which is immersed in the
liquid with its axis being parallel to the superhydrophobic plane, perpendicular to the
grooves; the instantaneous separation between the cylinder and the compound surface is
denoted by ha: see figure 1. We employ Cartesian coordinates (ax, ay, az) defined such
that the x-axis runs along the superhydrophobic plane in the grooves direction, with
the centres of the solid ridges at z = 2nlh (n ∈ Z), and the y-axis passes through the
instantaneous location of the cylinder axis.

The flow problem we address herein is animated by the composition of three inde-
pendent modes of rigid-body motion, consisting of (i) pure translation of the cylinder in
the y-direction, perpendicular to the surface, with speed s⊥; (ii) pure translation of the
cylinder parallel to the surface, in the x-direction, at speed s‖; and (iii) pure rotation of
the cylinder about its axis, in the z-direction, at angular velocity ω. Assuming from the
outset that inertial forces are negligible, the flow equations are quasi-steady. Assuming
further that the capillary number is small, the menisci deformation and dilation owing to
the flow are negligible, and the postulation of a flat interface remains intact. The liquid
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domain is therefore bounded by the cylinder and the superhydrophobic plane, on which
a no-slip condition applies at the solid strips and a shear-free condition at the gaseous
strips.

Our interest is in the hydrodynamic forces and torques acting on a unit length of the
cylinder, averaged over a single period of the superhydrophobic surface. The symme-
try properties of Stokes flow imply (see Appendix A) that the force in the y-direction
possesses the form

−µf⊥s⊥ (2.1)

while the force in the x-direction and torque in the z-direction possess the respectively
forms

−µ(f‖s‖ + acω), −µa(cs‖ + atω). (2.2a, b)

Following the introduction of a into relations (2.1)–(2.2), the resistance coefficients f⊥,
f‖, c and t appearing therein are all rendered dimensionless. Note that the same coupling
coefficient c appears in both the expression for the force due to rotation and that for
torque due to translation; in Appendix A we show that this reciprocity, which is known
to hold for a solid particle which moves through an unbounded fluid domain, also applies
in the present configuration which involves an adjacent planar boundary on which mixed
boundary conditions are prescribed.

We hereafter normalise length variables by a. In this notation, the (instantaneous)
cylinder–surface clearance is h and the grooved-array period is 2hl. The problem period-
icity allows to consider the flow in a single ‘cell’ of lateral extent 2lh, say that bounded
between z = ±lh. Figure 2 depicts the ‘top’ and ‘side’ views of the dimensionless geom-
etry. To determine the resistance coefficients, it is convenient to exploit the Stokes-flow
linearity and decompose the flow problem intro three sub-problems which respectively
correspond to perpendicular translation, parallel translation, and rotation. Furthermore,
we adopt a unified dimensionless notation which applies to all three problems, where
velocity variables are normalised by s, the latter being chosen as

s =

 s⊥h−1/2 in the perpendicular-translation problem,
s‖ in the parallel-translation problem,
ωa in the rotation problem.

(2.3)

(Note that all these choices represent a characteristic velocity in the x-direction.) Stress
variables are normalised by µs/a.

In our unified description, the governing differential equations and the majority of
the supplementary conditions are identical in all three problems. Thus, the differential
equations governing the velocity u = êxu(x, y, z)+êyv(x, y, z)+êzw(x, y, z) and pressure
p(x, y, z) consist of the continuity equation,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.4)

and the Stokes equations,

∂p

∂x
= ∇2u,

∂p

∂y
= ∇2v,

∂p

∂z
= ∇2w. (2.5a, b, c)

The boundary conditions at the patterned surface y = 0 consist of impermeability,

v = 0, (2.6)

a no-slip condition at the solid patches,

u = w = 0 for |z| ≤ φlh, (2.7)
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Figure 2: Dimensionless geometry: (a) Top view, showing a single period of the superhy-
drophobic surface. (b) Side view, with the inset zooming on the gap region.

and a shear-free condition at the menisci,

∂u

∂y
=
∂w

∂y
= 0 for φlh < |z| < lh. (2.8)

In addition, the flow must be 2hl-periodic in the z-direction and satisfy the requirement
that u attenuates at large distances from the cylinder. Because of symmetry about z = 0,
the periodicity conditions may be written

w =
∂u

∂z
=
∂v

∂z
= 0 at z = ±lh. (2.9)

The no-slip conditions on the cylinder boundary depend on the specific problem con-
sidered. Thus, in the separate sub-problems of perpendicular translation, parallel trans-
lation, and rotation we respectively have

u = 0, v = h1/2, w = 0; (2.10a)

u = 1, v = 0, w = 0; (2.10b)

u = 1− y + h, v = x, w = 0. (2.10c)
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Note that the boundary conditions governing w are all homogeneous, suggesting that
w trivially vanishes. The instantaneous velocity field is therefore assumed to be of the
quasi-longitudinal form u = êxu(x, y, z) + êyv(x, y, z). It then follows from (2.5b) that
the pressure p is independent of z, say p(x, y). Because of symmetry about z = 0 we can
further reduce the pertinent domain to the half-period 0 < z < lh with (2.9) applying at
z = 0 and z = lh. The other obvious symmetry about x = 0 implies that in the case of
perpendicular translation p and v are even functions of x while u is an odd function of
it. In the cases of parallel translation and rotation, the opposite holds.

3. Near-contact limit

3.1. Gap coordinates and scalings

Our interest is in the limit h → 0 with l = O(1), namely where the cylinder–surface
clearance is comparable with the microstructure periodicity, and both are small compared
with the cylinder radius. The limit h→ 0 is naturally accommodated by zooming in the
gap using the stretched coordinates

X = x/h1/2, Y = y/h, Z = z/h. (3.1a, b, c)

In terms of these gap-scale coordinates the cylinder surface becomes Y = H(X) +O(h)
where H = 1 + X2/2. The unit vector normal to the cylinder (pointing into the liquid
domain) is

n̂ ∼ −(êy − h1/2Xêx)[1 +O(h)]. (3.2)

With the choice (2.3) of the velocity scale s in the three sub-problems, the near-contact
scalings of the pressure and two velocity components are identical in all three problems,

p = O(h−3/2), u = O(1), v = O(h1/2), (3.3a, b, c)

thus allowing for a truly unified analysis (as in Kaynan & Yariv 2017). We therefore
employ the following asymptotic expansions of the flow variables,

p = h−3/2P (X,Y ) + · · · , u = U(X,Y, Z) + · · · , v = h1/2V (X,Y, Z) + · · · ,
(3.4a, b, c)

where P , U and V are O(1).

3.2. Leading-order problem

The leading-order inner variables satisfy: (i) the continuity equation,

∂U

∂X
+
∂V

∂Y
= 0; (3.5)

(ii) the momentum balances,

∂P

∂X
=
∂2U

∂Y 2
+
∂2U

∂Z2
,

∂P

∂Y
= 0; (3.6a, b)

(iii) conditions at the compound surface Y = 0, consisting of impermeability,

V = 0, (3.7)

no-slip at the solid strip,

U = 0 for 0 < Z < φl, (3.8)
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and no-shear at the free surface,

∂U

∂Y
= 0 for φl < Z < l; (3.9)

(vi) the symmetry and periodicity conditions,

∂U

∂Z
=
∂V

∂Z
= 0 at Z = 0, l; (3.10)

and (v) the no-slip conditions at Y = H(X) (cf. (2.10)),

U = 0, V = 1 in the perpendicular-translation problem, (3.11a)

U = 1, V = 0 in the parallel-translation problem, (3.11b)

U = 1, V = X in the rotation problem. (3.11c)

The far-field velocity decay does not apply in the gap region; it is replaced by the re-
quirement of asymptotic matching with the ‘outer’ solution outside the gap. In particular,
given the O(1) pressure scaling there,

lim
X→±∞

P = 0. (3.12)

Finally, we note that the pressure scaling (3.3a) in conjunction with the O(h1/2) extent
of the gap in the x-direction implies an O(h−3/2) gap-scale contribution to f⊥. Similarly,
the velocity scaling (3.3b) in conjunction with the O(h) extent of the gap in the y-
direction implies that, within the gap, the shear stresses in the xy-plane are O(h−1);
their contributions to f‖, c and t is accordingly O(h−1/2). Since the outer contributions
to the hydrodynamic loads from the region outside the gap are clearly O(1), and hence
subdominant, we conclude that

f⊥ = h−3/2F⊥ + · · · (3.13)

and

f‖ = h−1/2F ‖ + · · · , c = h−1/2C + · · · , t = h−1/2T + · · · , (3.14a, b, c)

where the O(1) coefficients F⊥, F ‖, C and T are unaffected by the outer region. As these
coefficients are independent of h, they only depend upon the geometric parameters l and
φ.

An ad hoc procedure which allows for the preceding coefficient to be readily calculated
involves replacing of the mixed conditions at the compound surface by a presumably
equivalent Navier-slip condition. This procedure, which provides useful approximations
for small l, is described in Appendix B. In what follows, we proceed with a systematic
analysis of the longitudinal flow in the inner region.

4. Two cell problems

4.1. Decomposition of the longitudinal flow

From (3.6b) we find that P is also independent of Y , say P (X). The problem governing U
is therefore uncoupled to that governing V . It consists of the Poisson equation (cf. (3.6a))

∂2U

∂Y 2
+
∂2U

∂Z2
=

dP

dX
, (4.1)

together with the conditions governing U , consisting of (3.8)–(3.10) and either one of
(3.11) on the cylinder boundary.
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Consider first the case of perpendicular translation, where the boundary condition
governing U on the cylinder is homogeneous, see (3.11a). It then follows that all the
pertinent boundary conditions are homogenous, implying that the problem governing U
is forced solely by the pressure gradient dP/dX. From (4.1) we then find that U must be
linear in dP/dX. Moreover, after factoring out dP/dX, the dependence upon X enters
only through the application of boundary conditions at Y = H(X). It therefore follows
that U may be represented in terms of an X-independent ‘pressure-driven’ cell function
UP (Y,Z;H) via the relation

U(X,Y, Z) = − dP

dX
UP (Y,Z;H(X)). (4.2)

In the cases of parallel translation and rotation, the problem governing U is further forced
by an (identical) inhomogeneous boundary condition satisfied by U at Y = H(X). For
these problems,

U(X,Y, Z) = − dP

dX
UP (Y, Z;H(X)) + UB(Y, Z;H(X)), (4.3)

where we introduce a ‘boundary-driven’ cell function UB(Y,Z;H). (The distributions of
P (X) in these two cases are obviously different.) We next discuss the pressure-driven
and boundary-driven cell problems governing UP and UB , respectively.

4.2. Pressure-driven cell problem

The cell problem governing UP (Y,Z;H) consists of: (i) Poisson’s equation,

∂2UP
∂Y 2

+
∂2UP
∂Z2

= −1 for 0 < Z < l, 0 < Y < H; (4.4)

(ii) no-slip at the top boundary

UP = 0 at Y = H; (4.5)

(iii) the mixed conditions at Y = 0,

UP = 0 for 0 < Z < φl,
∂UP
∂Y

= 0 for φl < Z < l; (4.6a, b)

and (iv) the symmetry conditions,

∂UP
∂Z

= 0 at Z = 0, l. (4.7)

In addition to H, UP also depends upon the texture parameters l and φ. As a con-
sequence, all integral properties of the cell problem are functions of H, l, and φ. Two
of these properties play a key role in the following analysis. The first is the averaged
cross-sectional volumetric flux,

QP (H, l, φ) = l−1
∫ l

0

dZ

∫ H
0

dY UP (Y, Z;H). (4.8)

The second is the averaged shear stress at the top boundary (in the negative x-direction)

SP (H, l, φ) = l−1
∫ l

0

dZ

[
∂

∂Y
UP (Y,Z;H)

]
Y=H

. (4.9)

Consider now l and φ as fixed, whereby UP depends upon the single parameter H
and is written as UP (Y,Z;H). It is easy to verify by a rescaling of the cell problem that
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UP (Y,Z;H) is a homogeneous function of degree two in its three arguments, namely

UP (Y,Z;H) = H2 UP (Y/H, Z/H; 1). (4.10)

The integral volume flux and average shear stress thus transform as

QP (H, l, φ) = H3QP (1, l/H, φ), SP (H, l, φ) = HSP (1, l/H, φ). (4.11a, b)

These transformations accordingly allow to relate the integral properties of the original
cell to those corresponding to a unit-depth cell (denoted hereafter the ‘standard-cell’).
These relations, in turn, reduce the number of geometric parameters by one when seeking
to determine the complete dependence of QP and SP upon the cell geometry.

It is accordingly beneficial to define the standard-cell velocity field

ŨP (Y,Z)
def
= UP (Y,Z; 1) (4.12)

and the associated integral quantities

Q̃P (l, φ)
def
= QP (1, l, φ), S̃P (l, φ)

def
= SP (1, l, φ). (4.13a, b)

The latter are related to the standard-cell velocity field via the relations (cf. (4.8)–(4.9))

Q̃P = l−1
∫ l

0

dZ

∫ 1

0

dY ŨP (Y, Z), S̃P = l−1
∫ l

0

dZ
∂ŨP
∂Y

∣∣∣∣∣
Y=1

. (4.14a, b)

Transformations (4.11) thus read

QP (H, l, φ) = H3Q̃P (l/H, φ), SP (H, l, φ) = HS̃P (l/H, φ). (4.15a, b)

4.3. Boundary-driven cell problem

Consider now the cell problem governing UB(Y, Z;H). It consists of Laplace’s equation,

∂2UB
∂Y 2

+
∂2UB
∂Z2

= 0 for 0 < Z < l, 0 < Y < H, (4.16)

and is forced by an inhomogeneous condition at the top boundary,

UB = 1 at Y = H. (4.17)

Otherwise, it satisfies the same mixed conditions at Y = 0 and symmetry conditions
that appear in the pressure-driven cell problem. The integral quantities QB(H, l, φ) and
SB(H, l, φ) are defined in a manner similar to (4.8)–(4.9), with UB used instead of UP .

Consider now l and φ as fixed, whereby UB depends upon the single parameter H and
is written as UB(Y,Z;H). It is easy to verify that UB(Y,Z;H) is a homogeneous function
of zeroth degree in its three arguments:

UB(Y,Z;H) = UB(Y/H, Z/H; 1). (4.18)

The integral volume flux and average shear stress thus transform as

QB(H, l, φ) = HQB(1, l/H, φ), SB(H, l, φ) = H−1SB(1, l/H, φ). (4.19a, b)

As in the pressure-driven cell problem, we define the standard-cell velocity field

ŨB(Y,Z)
def
= UB , (Y, Z; 1) (4.20)

and the associated cell flux and mean shear,

Q̃B(l, φ)
def
= QB(1, l, φ), S̃B(l, φ)

def
= SB(1, l, φ). (4.21a, b)
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These integral quantities are provided by

Q̃B = l−1
∫ l

0

dZ

∫ 1

0

dY ŨB(Y, Z), S̃B = l−1
∫ l

0

dZ
∂ŨB
∂Y

∣∣∣∣∣
Y=1

. (4.22a, b)

Transformations (4.19) thus read

QB(H, l, φ) = HQ̃B(l/H, φ), SB(H, l, φ) = H−1S̃B(l/H, φ). (4.23a, b)

4.4. Properties of Q̃P and S̃P
The function Q̃P (l, φ) was provided by Philip (1972b) as the solution of a transcendental
equation, itself obtained from the conformal-map calculation of the velocity field (Philip
1972a). Given the complexity of that equation, which involves elliptic integrals, contem-
porary analyses of the standard-cell geometry (Sbragaglia & Prosperetti 2007; Teo &
Khoo 2009) typically represent the solution via an appropriate Fourier series and evalu-
ate its coefficients (of which only one affects the value of Q̃P ) by solving the dual series
equations which follows from the mixed boundary conditions at the compound surface
(cf. Lauga & Stone 2003). In what follows, we also need S̃P , which to the best of our
knowledge has never been calculated.

We accordingly choose here to evaluate the quantities Q̃P (l, φ) and S̃P (l, φ) using a
Fourier-series representation of the standard-cell field ŨP . The details of the calculation
methodology are provided in appendix C. The calculation itself has been performed for
several values of φ (0.3, 0.5 and 0.7); for each of these values, Q̃P and S̃P have been
determined for a large number of l-values (ranging from 10−6 to 106).

In what follows we provide several asymptotic properties of Q̃P (l, φ) and S̃P (l, φ) which
may be deduced without referring to the above-mentioned semi-numerical solutions.

4.4.1. Homogenous solid surface

When φ = 1, ŨP is independent of Z: it is then the familiar Poiseuille flow between
two solid walls,

ŨP =
Y − Y 2

2
. (4.24)

The corresponding volumetric flux and average shear stress are

lim
φ→1
Q̃P =

1

12
, lim

φ→1
S̃P = −1

2
. (4.25a, b)

4.4.2. Homogenous free surface

When φ = 0, ŨP is again independent of Z: it is now given by the Poiseuille flow
between a solid wall and a free surface,

ŨP =
1− Y 2

2
. (4.26)

The corresponding volumetric flux is four times as much as before,

lim
φ→0
Q̃P =

1

3
. (4.27)

The average shear stress is

lim
φ→0
S̃P = −1. (4.28)
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4.4.3. Deep cell

When l � 1 the unit-cell appears deep. It follows that the Poiseuille profile (4.24)
approximately applies, except in a narrow region several multiples of l away from the
compound surface. At leading order, this accordingly results in the same flux as in the
case of a homogenous solid wall:

lim
l→0
Q̃P =

1

12
, lim

l→0
S̃P = −1

2
. (4.29a, b)

Making use of (4.15), the limit (4.29) readily provides a large-X approximation for both
QP (H(X), l, φ) and SP (H(X), l, φ). Thus, since H(X) ∼ X2/2 as X → ∞, it follows
that

QP (H(X), l, φ) ∼ X6

96
as X →∞. (4.30)

and

SP (H(X), l, φ) ∼ −X
2

4
as X →∞. (4.31)

4.4.4. Shallow cell

For l � 1, where the cell appears shallow, a Hele-Shaw approximation is readily
applied, where the velocity profiles (4.24) and (4.26) respectively hold in the intervals
0 < Z < φl and φ < Z < l, with the extent of the transition region connecting these
intervals being small compared with l. (A related approximation was used by Feuillebois,
Bazant & Vinogradova 2009). The corresponding volumetric fluxes (per unit length in
the z-direction) are accordingly 1/12 and 1/3, see (4.25a) and (4.27). The corresponding
mean flux Q̃P is then provided by (4.14a) as the weighted average of these two values:

lim
l→∞

Q̃P =
4− 3φ

12
. (4.32)

This weighted average is analogous to the current through resistors connected in parallel,
with the pressure gradient and volumetric fluxes being respectively analogous to the
voltage and currents. The mean shear S̃P is also provided by a weighted average, namely

lim
l→∞

S̃P = −
(

1− φ

2

)
. (4.33)

4.4.5. Lack of commutativity

Comparing (4.27)–(4.28) with (4.29) we note that the respective limits of small solid
fraction and deep cell do not commute. This has to do with the singularity of the small
solid-fraction limit (Ybert et al. 2007). To appreciate this singularity in the present
context, it is expedient to review the form of the slip coefficient (B 4) appearing in the
Navier-slip condition (B 3). This form implies that B = O(l) for small l, thus justifying
the above heuristic linkage between the small-l limit and the solid-surface limit φ→ 1. At
small φ, however, it actually follows from (B 4) that B scales as l ln(1/φ). The asymptotic
limits (4.29) accordingly break down when φ is so small that l ln(1/φ) becomes O(1).

4.5. Properties of Q̃B and S̃B
As with the pressure-driven cell problem, we evaluate the standard-cell quantities Q̃B(l, φ)
and S̃B(l, φ) using a Fourier-series representation of the standard-cell velocity ŨB . The
details of the calculation methodology are provided in appendix C.

In what follows we provide several asymptotic properties of Q̃B(l, φ) and S̃B(l, φ),
which may be deduced without referring to the Fourier-series solution.
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4.5.1. Homogenous solid surface

When φ = 1, ŨB is independent of Z: it is then the familiar Couette flow between two
solid walls,

ŨB = Y. (4.34)

The corresponding volumetric flux and average shear stress are

lim
φ→1
Q̃B =

1

2
, lim

φ→1
S̃B = 1. (4.35a, b)

4.5.2. Homogeneous free surface

When φ = 0, ŨB is again independent of Z: it is now given by the plug flow

ŨB ≡ 1. (4.36)

The corresponding volumetric flux is twice as much as before, while the average shear
stress vanishes:

lim
φ→0
Q̃B = 1, lim

φ→0
S̃B = 0. (4.37a, b)

4.5.3. Deep cell

In the deep-cell limit l � 1, the Couette profile (4.34) applies throughout the cell,
except in a narrow region of O(l) depth about the compound surface. This accordingly
results in the same flux as in the case of a homogenous solid wall:

lim
l→0
Q̃B =

1

2
, lim

l→0
S̃B = 1. (4.38a, b)

Again, the limits attained as φ→ 0 and as l→ 0 do not commute.
Making use of (4.23), the limits (4.38) readily provide large-|X| approximations for

QB(H(X), l, φ) and SB(H(X), l, φ). Thus, since H(X) ∼ X2/2 as X → ∞, it follows
that

QB(H(X), l, φ) ∼ X2

4
as X →∞ (4.39)

and

SB(H(X), l, φ) ∼ 2

X2
as X →∞. (4.40)

4.5.4. Shallow cell

For l � 1, where the cell appears shallow, a Hele-Shaw approximation is readily
applied, where the velocity profiles (4.34) and (4.36) respectively hold in the intervals
0 < Z < φl and φ < Z < l, with the extent of the transition region connecting these
intervals being small compared with l. The corresponding volumetric fluxes (per unit
length in the z-direction) are accordingly 1/2 and 1, see (4.35a) and (4.37a). The mean
flux Q̃B is therefore provided by (4.22a) as the weighted average of these two values:

lim
l→∞

Q̃B = 1− φ

2
. (4.41)

The mean shear S̃B is also given as a weighted average. Making use of (4.35b) and (4.37b)
we obtain from (4.22b)

lim
l→∞

S̃B = φ. (4.42)
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5. Perpendicular translation

With the form of the longitudinal flow provided in terms of well-defined cell problems,
we now proceed to the analysis of the three flow subproblems corresponding to perpen-
dicular translation, parallel translation, and rotation, as specified in condition (3.11).
We start in this section with the problem of perpendicular translation, with the goal of
calculating F⊥.

5.1. Integral mass balance

We start with the evaluation of P . While this may be accomplished using the continuity
equation (3.5), it is more convenient to employ instead the integral mass balance at
O(h5/2). Consider the volume of fluid within the unit cell which is bounded between the
plane X = 0 and an arbitrary plane parallel to it, say X = X ′. Using boundary condition
(3.11a) and recalling that U is an even function of X we find∫ l

0

dZ

∫ H(X′)

0

dY U(X ′, Y, Z) = −lX ′, (5.1)

where the right-hand side accounts for the perpendicular motion of the cylinder, see (3.11a).
Substituting (4.2) and making use of definitions (4.2) and (4.8) we obtain, upon making
use of the arbitrariness of X ′

dP

dX
=

X

QP (H(X), l, φ)
. (5.2)

Since H(X) is an even function, we find that dP/dX is an odd function of X — as
expected. In what follows, no further integration of dP/dX is required.

5.2. Resistance

The leading-order resistance is due to the large pressure distribution in the gap. The
associated coefficient (see (2.1) and (3.13)) is accordingly given by

F⊥ = −
∫ ∞
−∞

P dX. (5.3)

Integration by parts gives

F⊥ = −[XP ]∞−∞ +

∫ ∞
−∞

X
dP

dX
dX. (5.4)

Note that substitution of the asymptotic form (4.30) into (5.2) implies that dP/dX
decays as X−5 for X → ±∞; conditions (3.12) thus necessitate that P decays there as
X−4, implying in turn that the boundary terms in (5.4) trivially vanish. Making use of
(5.2) and noting that H(X) is an even function we then obtain

F⊥ = 2

∫ ∞
0

X2

QP (H(X), l, φ)
dX, (5.5)

or, upon changing to the integration variable H = H(X),

F⊥ = 23/2
∫ ∞
1

√
H− 1

QP (H, l, φ)
dH. (5.6)

Last, substituting transformation (4.15a) yields F⊥ as a nonlinear functional of the
standard-cell flux,

F⊥ = 23/2
∫ ∞
1

√
H− 1

H3Q̃P (l/H, φ)
dH. (5.7)
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5.3. Limiting values

Several approximations readily follow. For φ→ 1 substitution of (4.25a) gives the familiar
scaled drag on a cylinder which approaches a homogeneous solid wall (Jeffrey & Onishi
1981)

lim
φ→1

F⊥ = 3π
√

2. (5.8)

For φ→ 0 substitution of (4.27) gives

lim
φ→0

F⊥ =
3π
√

2

4
, (5.9)

namely the scaled drag on a cylinder which approaches a free surface (Kaynan & Yariv
2017). For small l we may employ approximation (4.29a) throughout the entire integra-
tion range in (5.7), obtaining

lim
l→0

F⊥ = π
√

2. (5.10)

As with their underlying limits (4.27) and (4.29a), the limits (5.9) and (5.10) do not
commute. Following the discussion in §4, the limit (5.10) holds for l� 1/ ln(1/φ), while
(5.9) holds for φ � exp(−1/l). An improved small-l approximation may be obtained if
the compound surface is represented via an effective Navier-slip condition. This procedure
is described in Appendix B.

For large l we may again use (4.32) throughout the entire integration range: while it
breaks down when H becomes comparable to l, the integrand in (5.7) is then already
small because of the remaining H−5/2 factor. We accordingly obtain

lim
l→∞

F⊥ =
3π
√

2

4− 3φ
. (5.11)

5.4. Arbitrary values of l and φ

To evaluate F⊥ for arbitrary values of l and φ we need to plug into (5.7) the entire
l-variation of the standard-cell flux Q̃P (for the same φ value). This variation is provided
numerically by our Fourier-series solution of the standard-cell problem, which is described
in Appendix C. The resulting variation of F⊥ with l are shown in figure 3 where the
approach of F⊥ to the diametric limits (5.10)–(5.11) is evident. Also shown are the
respective coefficients obtained using expressions (B 4)–(B 5) of the Navier-slip approach,
detailed in Appendix B. While these coefficients provide improved approximations at
small l, they fail at large l where they approach the small-φ limit (5.9) rather than the
Hele-shaw limit (5.11).

6. Parallel translation

6.1. Integral mass balance

For parallel translation it follows from (3.11b) that the z-averaged flux through the gap
is constant (i.e. independent of x) in a co-moving reference frame. Denoting this flux by
F , the integral mass balance in the gap reads

l−1
∫ l

0

dZ

∫ H(X)

0

dY (U(X,Y, Z)− 1) = F . (6.1)

Substituting the template (4.3) thus gives

dP

dX
=
QB(H(X), l, φ)−H(X)−F

QP (H(X), l, φ)
; (6.2)
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Figure 3: Variation with l of the scaled drag F⊥ for the indicated values of φ. The solid
curves depict the exact variation, as obtained from (5.7). The dashed line displays the
corresponding drag value (5.9) which corresponds to translation perpendicular to a free
surface, while the dotted lines portray the respective small- and large-l approximations
(5.10)–(5.11). Also shown (thin solid curves) are the Navier-slip approximations, obtained
using (B 4)–(B 5).

as expected, this expression is even in X. To obtain the flux F we write the matching
conditions (3.12) in the form ∫ ∞

0

dP

dX
dX = 0, (6.3)

where we have accounted for the fact that dP/dX is an even function of X. Changing to
the integration variable H = H(X) and making use of transformations (4.15) and (4.23)
thus gives

F =

(∫ ∞
1

dH
H3
√
H− 1Q̃P (l/H, φ)

)−1 ∫ ∞
1

Q̃B(l/H, φ)− 1

H2
√
H− 1Q̃P (l/H, φ)

dH. (6.4)

With F determined, the derivative dP/dX is now considered as known.

6.2. Resistance

The averaged coupling coefficient associated with parallel translation (see (2.2b) and
(3.14b)) is given by

C = l−1
∫ l

0

dZ

∫ ∞
−∞

dX
∂U

∂Y

∣∣∣∣
Y=H(X)

. (6.5)

Substituting (4.3) and making use of the symmetry of dP/dX gives

C = −2

∫ ∞
0

dX
dP

dX
SP (H(X), l, φ) + 2

∫ ∞
0

dXSB(H(X), l, φ). (6.6)
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Figure 4: Variation with l of the scaled coupling coefficient C for the indicated values
of φ. The solid curves depict the exact variation, as obtained from (6.7). The dotted
line portrays the large-l approximation (6.16a). Also shown (thin solid curves) are the
Navier-slip approximations, obtained using (B 4) and (B 7).
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Figure 5: Variation with l of the scaled drag F ‖ for the indicated values of φ. The solid
curves depict the exact variation, as obtained from (6.12). The dotted lines portray the
small- and large-l approximations (6.14b) and (6.16b). Also shown (thin solid curves) are
the Navier-slip approximations, obtained using (B 4) and (B 6).

Substituting (6.2) and changing to the integration variable H = H(X) yields, upon
making use of transformations (4.15) and (4.23),

C = −21/2
∫ ∞
1

S̃P (l/H, φ)
(
HQ̃B(l/H, φ)−H−F

)
H2
√
H− 1Q̃P (l/H, φ)

dH+ 21/2
∫ ∞
1

S̃B(l/H, φ)

H
√
H− 1

dH.
(6.7)
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Consider now the resistance coefficient F ‖ (see (2.2a) and (3.14a)). In view of (3.2),
it is given by

F ‖ = l−1
∫ l

0

dZ

∫ ∞
−∞

dX

{
PX +

∂U

∂Y

∣∣∣∣
Y=H(X)

}
. (6.8)

Since P is independent of Z this coefficient is related to C through

F ‖ =

∫ ∞
−∞

PX dX + C, (6.9)

or, using integration by parts,

F ‖ =
1

2

[
X2P

]∞
−∞ −

1

2

∫ ∞
−∞

dP

dX
X2dX + C. (6.10)

Making use of (4.30) and (4.39) we find from (6.2) that dP/dX decays as X−4 at large
|X|, whereby P decays there as X−3. The boundary terms in (6.10) accordingly vanish.
With dP/dX being an even function of X we thus obtain

F ‖ = −
∫ ∞
0

dP

dX
X2dX + C. (6.11)

Substituting (6.2) and changing to the integration variable H = H(X) yields, upon
making use of transformations (4.15) and (4.23),

F ‖ = −21/2
∫ ∞
1

√
H− 1

(
HQ̃B(l/H, φ)−H−F

)
H3Q̃P (l/H, φ)

dH+ C. (6.12)

With C already determined in (6.5), this completes the solution.

6.3. Limiting values

In the case of motion parallel to a no-slip wall, where φ → 1, substitution into (6.4) of
(4.25a) and (4.35) gives F = 0. We then find from (6.7) and (6.12) that

lim
φ→1

C = 0, lim
φ→1

F ‖ = 2
√

2π, (6.13a, b)

in agreement with the classical results of Jeffrey & Onishi (1981). For motion parallel to
a free surface, where φ→ 0, substitution into (6.4) of (4.27) and (4.37a) gives F = −2/3.
We then find from (6.7) and (6.12) that both C and F ‖ vanish, in agreement with Kaynan
& Yariv (2017).

As already explained, the limit of small l coincides at leading order with that of a
no-slip wall, whereby

lim
l→0

C = 0, lim
l→0

F ‖ = 2
√

2π. (6.14a, b)

For large l, substituting into (6.4) of (4.32)–(4.33) and (4.41)–(4.42) yields

lim
l→∞

F = −2φ

3
. (6.15)

From (6.7) and (6.12) we then obtain

lim
l→∞

C =
2π
√

2φ(1− φ)

4− 3φ
, lim

l→∞
F ‖ =

2π
√

2φ(2− φ)

4− 3φ
. (6.16a, b)
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6.4. Arbitrary values of l and φ

To evaluate C and F ‖ for arbitrary values of l and φ we plug the entire l-variation
of the standard-cell quantities (Q̃P , S̃P , Q̃B and S̃B), as obtained using Fourier-series
expansions, into (6.4), (6.7) and (6.12). The results are shown in figures 4–5.

7. Rotation

7.1. Integral mass balance

In the case of rotation about the cylinder axis it is evident that the z-averaged flux
through the gap is constant in the xyz reference frame. Denoting this flux by F , integral
mass conservation now reads (cf. (6.1))

l−1
∫ l

0

dZ

∫ H(X)

0

dY U(X,Y, Z) = F . (7.1)

Substituting (4.3) yields

dP

dX
=
QB(H(X), l, φ)−F
QP (H(X), l, φ)

, (7.2)

which, as expected, is even in X.
As in the case of parallel translation, the flux F is determined using (6.3). Changing

to the integration variable H = H(X) and making use of the transformations (4.15) and
(4.23) gives here (cf. (6.4))

F =

(∫ ∞
1

dH
H3
√
H− 1Q̃P (l/H, φ)

)−1 ∫ ∞
1

Q̃B(l/H, φ) dH
H2
√
H− 1Q̃P (l/H, φ)

. (7.3)

7.2. Resistance

The averaged resistance coefficient T (see (2.2b) and (3.14c)) is

T = l−1
∫ l

0

dZ

∫ ∞
−∞

dX
∂U

∂Y

∣∣∣∣
Y=H(X)

. (7.4)

(This expression is the same as (6.5), but now with the velocity component U appropriate
to the rotation problem.) Substituting (4.3) and making use of the symmetry of dP/dX
yields

T = −2

∫ ∞
0

dX
dP

dX
SP (H(X), l, φ) + 2

∫ ∞
0

dXSB(H(X), l, φ), (7.5)

namely the same expression as (6.6), but now with dP/dX given by (7.2). Substituting
(7.2) and changing to the integration variable H = H(X) yields, upon making use of
transformations (4.15) and (4.23),

T = −21/2
∫ ∞
1

(
HQ̃B(l/H, φ)−F

)
S̃P (l/H, φ)

Q̃P (l/H, φ)H2
√
H− 1

dH+ 21/2
∫ ∞
1

S̃B(l/H, φ)

H
√
H− 1

dH. (7.6)

7.3. Limiting values

In the case of rotation about a solid boundary, where φ = 1, substitution into (7.3) of
(4.25a) and (4.35a) gives F = 2/3. We then find from (7.6) that

lim
φ→1

T = 2
√

2π, (7.7)
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Figure 6: Variation with l of the scaled torque T for the indicated values of φ. The solid
curves depict the exact variation, as obtained from (7.6). The dashed line displays the
drag value (7.8) which corresponds to rotation about a free surface, while the dotted
lines portray the small- and large-l approximations (7.9) and (7.10). Also shown (thin
solid curves) are the Navier-slip approximations, obtained using (B 4) and (B 8).

in agreement with the classical results of Jeffrey & Onishi (1981). In the case of rotation
about a free surface, where φ = 0, substitution into (7.3) of (4.27) and (4.37a) gives
F = 4/3. We then find from (7.6) that

lim
φ→0

T = π
√

2, (7.8)

in agreement with Kaynan & Yariv (2017).
The small-l limit coincides with that of a no-slip wall, namely

lim
l→0

T = 2
√

2π. (7.9)

This limit does not commute with (7.8). For large l, substituting into (7.3) of (4.32)–
(4.33) and (4.41)–(4.42) yields liml→∞ F = 2(2− φ)/3. We then find from (7.6)

lim
l→∞

T =
2π
√

2(2− φ2)

4− 3φ
. (7.10)

7.4. Arbitrary values of l and φ

To evaluate T for arbitrary values of l and φ we plug the entire l-variation of the standard-
cell quantities (Q̃P , S̃P , Q̃B and S̃B) into (7.3) and (7.6). The results are shown in
figure 6.

8. Concluding remarks

We have studied the lubrication interaction between a solid cylinder, moving and rotat-
ing arbitrarily in the plane normal to its axis, and a nearby textured (superhydrophobic)
surface. Starting form a first-principles microscale formulation, we have systematically
developed an asymptotically equivalent macroscale model which, in turn, has allowed
us to calculate the hydrodynamic loads exerted on the cylinder. The (slowly varying)
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lumped parameters appearing in the macroscale description are obtained by solving two
auxiliary cell problems, both involving a straight channel where the upper boundary is
solid and the lower one is textured. In the first cell problem, the flow is driven by a unit
pressure gradient, with the boundaries of the channel fixed. In the second cell problem,
there is no pressure gradient; rather, the flow is generated by parallel motion of the upper
boundary with unit speed.

It turns out that the case of squeeze flow due to perpendicular particle motion is special
in that it is affected only by the first, pressure-driven, cell problem. In particular, the
drag on the cylinder in that case is given by a quadrature of a nonlinear function of a
single lumped parameter: the averaged cross-sectional volumetric flux in the pressure-
driven cell problem. We note that it is possible to mathematically recast the latter flux as
the effective slip length used in the lubrication models discussed in the introduction. In
contrast, the case of general rigid-body motion is affected by both the pressure-driven and
boundary-driven cell problems. In fact, we have seen that calculating the hydrodynamic
loads in the cases of parallel translation and rotation requires knowledge of two lumped
parameters for each of the cell problems: in addition to the averaged flux, one requires an
averaged shear stress. Thus, the heuristic effective-slip models used to study squeeze-flow
interactions cannot be applied to lubrication interactions involving parallel motion.

It is useful to recapitulate the different approaches used to model lubrication interac-
tions between solid bodies moving relative to nearby textured surfaces. The Navier-slip
models, where the slip length is an intrinsic surface property, apply for all modes of
relative motions, but are restricted to gaps which are large compared with the texture
period. The effective-slip model, where the slip length is related to the mean flux in a
pressure-driven cell problem, applies in principle to both large and small gaps, but is lim-
ited to perpendicular motion between the two surfaces. The present approach has none
of the above limitations and demonstrates a systematic framework where the appropriate
macroscale model is developed from first principles using asymptotic tools.

Our analysis shows that, when the clearance between the cylinder and the textured
surface is comparable with the period of the textured surface, the dependences of the
hydrodynamic loads on the clearance exhibit none of the classical power laws familiar
from classical lubrication theory. We illustrate this feature in Appendix D by considering
the unsteady mobility problem of a cylinder sedimenting towards a textured surface
under the action of a uniform force field. In light of the above, we find a non-power-law
dependence of the clearance on time, qualitatively similar to the observations of Chastel
& Mongruel (2016) in the case of a solid sphere sedimenting towards a wetted textured
substrate.

In the configuration studied in this Part, where the cylinder axis is perpendicular
to the grooves, the geometry is periodic along the direction of that axis, on which the
microstructure varies rapidly. The three modes of rigid-body motion considered herein
are consistent with that orthogonality. The inherent periodicity has allowed for a natu-
ral separation of the fast variation associated with the patterned surface from the slow
variation of the lubricating flow field associated with the cylinder curvature. In the com-
plementary configuration, where the cylinder axis is parallel to the grooves, the geometry
is no longer periodic. As a consequence, the fast and slow variations take place along the
same direction, hence the above-mentioned separation no longer applies. Nonetheless, it
is evident that an analogous separation can be achieved using a systematic combination
of multiple-scale theory with a lubrication approximation. This will be the subject of the
second Part in this sequence.
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Appendix A. Stokes-flow reciprocity

Consider a rigid particle of arbitrary shape which undergoes a rigid-body motion within
a viscous liquid (viscosity µ). The particle motion is completely described by the rec-
tilinear velocity s of an arbitrary material point O, fixed in the body, and the angular
velocity ω. The linearity of the Stokes equations implies that the hydrodynamic force
and torque (about O) are of the respective forms

−µ(F · s+ D · ω), −µ(C · s+ T · ω), (A 1a, b)

where the resistance dyadics appearing therein are intrinsic geometric properties of the
particle, dependent only on its size and shape. Happel & Brenner (1965) proved that the
coupling tensors C and D are related as

D = C †. (A 2)

The proof given by Happel & Brenner (1965) makes use of the assumption that the
particle moves in an unbounded fluid domain. We here extend their proof to the case
where the particle moves in the vicinity of a compound planar surface consisting of both
no-slip and shear-free patches.

The velocity field v is governed by the continuity and Stokes equations, the no-slip
condition on the particle,

v = s+ ω × x, (A 3)

and the condition of far-field decay. In addition, v satisfies homogeneous conditions on
the adjacent surface, which take the form of either the no-slip condition,

v = 0, (A 4)

or the impermeability and shear-free conditions,

n̂ · v = 0, n̂ · σ · t̂ = 0. (A 5a, b)

Here n̂ is a unit vector normal to the surface (say pointing into the liquid), t̂ may be any
unit vector which is parallel to the surface at the point considered, and σ is the stress
field.

In what follows we exploit linearity and decompose v as v′ + v′′, with the stress
field respectively decomposed as σ = σ′ + σ′′. Both (v′,σ′) and (v′′,σ′′) satisfy the
homogeneous conditions and differential equations which govern the original flow (v,σ).
They differ in the conditions satisfied at the particle surface, where (A 3) is decomposed
as

v′ = s, v′′ = ω × x. (A 6)

The starting point is Lorentz’s reciprocal theorem (Happel & Brenner 1965), applied
to the subfields (v′,σ′) and (v′′,σ′′),∫

dA n̂ · σ′′ · v′ =

∫
dA n̂ · σ′ · v′′. (A 7)

Here, the integration domain consists of both the particle boundary and the compound
surface, on which the unit normal n̂ is also pointing into the liquid. (Assuming sufficient
decay rate, the contribution from the fluid boundary at ‘infinity’ trivially vanishes.)

Since both v′ and v′′ vanish at the no-slip patches, these regions do not contribute to
the integrals appearing in (A 7). Consider now the shear-free patches. Since v′ satisfies
there the impermeability condition (A 5a), it may be written as t̂|v′|. Making use of
the shear-free condition (A 5b), we then find that these patches do not contribute to
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the integral appearing on the left-hand side of (A 7). Similar arguments apply to the
integral appearing on the right-hand side of (A 7). We conclude that (A 7) applies with
the integration domain being the particle boundary. At this stage we can simply follow
the proof as outlined by Happel & Brenner (1965).

Consider now the problem formulated in §2, involving an infinite circular cylinder of
radius a near a periodic array of alternating no-slip and shear-free strips. When the cylin-
der axis is perpendicular to these stripes the geometry is periodic, and this periodicity
is consistent with the rigid-body motion

s = êxs
‖ + êys

⊥, ω = êzω, (A 8a, b)

considered in §2. The linearity of the Stokes equations implies that expressions (A 1) still
hold, provided they are now understood to respectively represent the force and torque
(about the cylinder axis) per unit length of the cylinder axis, averaged over a single
period of the superhydrophobic surface. The extension of the preceding proof to this
geometry is straightforward and need not be repeated; we therefore conclude that (A 2)
applies here as well.

Making use of the Cartesian coordinates of §2, the only fixed vectors provided by the
geometry considered in that section is êy, the unit vector perpendicular to the superhy-
drophobic surface, and êz, the unit vector in the periodicity direction. Since the averaged
force and torque are necessarily independent of the latter, the true tensors F and T must
therefore adopt the respective forms

F = êyêyf
⊥ + (I − êyêy)f‖, T = a2[êyêyt

⊥ + (I − êyêy)t‖], (A 9a, b)

while the pseudo-tensor C is of the form

C = ε · êyac, (A 10)

in which ε is the isotropic triadic. (The introduction of a into expressions (A 9)–(A 10))
renders the pertinent resistance coefficients dimensionless.) Substitution of (A 8) and
(A 9)–(A 10) into (A 1) and making use of (A 2) readily yields (2.1)–(2.2), where we
simply write t instead of t‖.

Appendix B. Navier-slip approach

A common methodology for handling microstructured surfaces involves replacing the
exact dynamic conditions (2.7)–(2.8) at y = 0 by the coarse-grained Navier conditions,

u = b‖
∂u

∂z
, w = b⊥

∂w

∂z
, (B 1a, b)

wherein b‖ and b⊥ are the respective slip lengths (normalised by a) appropriate for an
imposed shear flow parallel and perpendicular to the grooves. In the present configuration
of flat menisci the parallel and perpendicular slip coefficients have been respectively
obtained by Philip (1972a) as b and b/2, wherein

b =
2lh

π
ln sec

π(1− φ)

2
. (B 2)

Since w trivially vanishes here, conditions (B 1) are equivalent to those pertinent for an
isotropic surface of slip length b.

In the inner region, where the z-coordinate is rescaled by h (see (3.1c)), the exact
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conditions (3.8)–(3.9) are accordingly replaced by the Robin condition

U = B
∂U

∂Z
at Z = 0, (B 3)

where

B =
2l

π
ln sec

π(1− φ)

2
. (B 4)

The resulting near-contact problem of a cylinder which moves in the vicinity of an
isotropic slippery surface, described by conditions (3.7) and (B 3), has been solved by
Kaynan & Yariv (2017) who provide the following expressions for the leading-order drag
coefficients (defined in (3.13)–(3.14)):

F⊥ =
3π

4
√

2B2
(3 + 6B + 2B2 − 3

√
1 + 4B), (B 5)

F ‖ = 4
√

2π
(1 + 2B + 2B2)

√
1 + 4B − 1− 4B√

1 + 4B − 1− 2B + 10B2 + 8B3
, (B 6)

C = −2
√

2π
1 + 6B + 8B2 − (1 + 4B + 2B2)

√
1 + 4B

1 + 2B − 10B2 − 8B3 −
√

1 + 4B
, (B 7)

T = 2
√

2π(2 +B)
4B2 − 3B − 1 + (B + 1)

√
1 + 4B

8B3 + 10B2 − 2B − 1 +
√

1 + 4B
. (B 8)

With B being proportional to l, formulae (B 5)–(B 8) represent, upon an appropriate
contraction, the variation of the drag coefficients with l for any value of φ. Now, according
to the Navier model (B 3), the large-B limit represents an approach to a free surface. It
is clear, however, that the very concept of a slip length breaks down in the large-l limit.
It follows that the above heuristic approach fails to predict the correct hydrodynamic
resistance in that limit. On the other hand, that approach appears plausible in the small-l
limit, where the flow in the vicinity of the compound surface Y = 0 corresponds to that
of a semi-bounded homogeneous shear about that surface (Kirk, Hodes & Papageorgiou
2017) — the very situation for which an intrinsic Navier condition is approximately
applicable.

Appendix C. Semi-analytic solution of the standard-cell problems

C.1. Pressure-driven cell problem

The standard-cell flow ŨP (Y,Z) is governed by (4.4)–(4.7), with H set to unity. The
quantities of interest are the corresponding average flux Q̃P (see (4.8)) and shear S̃P
(see (4.9)). It is convenient to solve the ‘flipped’ problem, where the no-slip boundary is
at Y ′ = 0 and the compound boundary is at Y ′ = 1, in which Y ′ = 1− Y .

Defining

ŨP = −Y
′2

2
+ Λ, (C 1)

we find that Λ is governed by: (i) Laplace’s equation,

∂2Λ

∂Y ′2
+
∂2Λ

∂Z2
= 0 for 0 < Z < l, 0 < Y ′ < 1; (C 2)

(ii) The Dirichlet condition,

Λ = 0 at Y ′ = 0; (C 3)
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(iii) the mixed conditions at Y ′ = 1,

Λ =
1

2
for 0 < Z < φl,

∂Λ

∂Y ′
= 1 for φl < Z < l; (C 4a, b)

and (iv) the symmetry conditions,

∂Λ

∂Z
= 0 at Z = 0, l. (C 5)

Once Λ is determined, the flux and mean shear are given by (cf. (4.14))

Q̃P = l−1
∫ l

0

dZ

∫ 1

0

dY ′ Λ(Y ′, Z)− 1

6
, S̃P = −l−1

∫ l

0

dZ
∂Λ

∂Y ′

∣∣∣∣
Y ′=0

. (C 6a, b)

The most general solution of (C 2) which satisfies the homogeneous conditions (C 3)
and (C 5) is given by the Fourier series

Λ = A0Y
′ +

∞∑
n=1

An sinh knY
′ cos knZ, (C 7)

wherein kn = nπ/l. Substitution into (C 6) gives Q̃P = A0/2 − 1/6 and S̃P = −A0, re-
spectively. To determine Q̃P and S̃P we need to calculate the Fourier coefficients {An}∞n=0

using the inhomogeneous conditions (C 4). Substitution of (C 7) yields, upon affecting
the change-of-variables Z = lζ, the dual series equations

A0 +

∞∑
n=1

An sinh kn cosnπζ =
1

2
for 0 < ζ < φ, (C 8a)

A0 +

∞∑
n=1

knAn cosh kn cosnπζ = 1 for φ < ζ < 1. (C 8b)

By forming the inner product of these equations with cosmπζ (m = 0, 1, 2, . . .) on the
interval ζ ∈ [0, 1] we obtain an infinite linear system of equations governing the unknowns
{Am}∞m=0. Due to the presence of the hyperbolic functions, the coefficients multiplying
these unknowns diverge exponentially fast as m increases. It is therefore convenient to
employ the scaled coefficients Ãn = An cosh kn (see Lauga & Stone 2003). These are
readily obtained using controlled truncation.

C.2. Boundary-driven cell problem

Consider next the boundary-driven standard-cell flow ŨB(Y,Z), with the goal of calcu-
lating the average properties Q̃B and S̃B . Defining

ŨB(Y,Z) = 1− Y ′ + Λ(Y ′, Z), (C 9)

where Y ′ = 1− Y , we find that Λ is governed by: (i) Laplace’s equation,

∂2Λ

∂Y ′2
+
∂2Λ

∂Z2
= 0 for 0 < Z < l, 0 < Y ′ < 1; (C 10)

(ii) The Dirichlet condition,

Λ = 0 at Y ′ = 0; (C 11)

(iii) the mixed conditions at Y ′ = 1,

Λ = 0 for 0 < Z < φl,
∂Λ

∂Y ′
= 1 for φl < Z < l; (C 12a, b)
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and (iv) the symmetry conditions,

∂Λ

∂Z
= 0 at Z = 0, l. (C 13)

Once Λ is determined, the flux and mean shear are given by

Q̃B = l−1
∫ l

0

dZ

∫ 1

0

dY ′ Λ(Y ′, Z) +
1

2
, S̃B = 1− l−1

∫ l

0

dZ
∂Λ

∂Y ′

∣∣∣∣
Y ′=0

. (C 14a, b)

The solution for Λ is again of the form (C 7), where now the Fourier coefficients satisfy
the dual series equations

A0 +

∞∑
n=1

An sinh kn cosnπζ = 0 for 0 < ζ < φ, (C 15a)

A0 +

∞∑
n=1

knAn cosh kn cosnπζ = 1 for φ < ζ < 1. (C 15b)

Once solved, following the method described for the pressure-driven cell problem, the
average flux and shear are obtained as Q̃B = A0/2 + 1/2 and S̃B = 1−A0.

Appendix D. Sedimentation: Breakdown of h−3/2 drag scaling

In our dimensionless notation, where length variables are normalised by a, the period
of the microstructure has been denoted 2lh, where h is the instantaneous clearance.
Since the period is a fixed quantity, this notation necessitates that l varies with time
when considering an unsteady process for which h diminishes with time. In that case it
is convenient to define the period as 2λh0, where h0 is the value of h at zero time. The
scaled period λ is independent of time, while the instantaneous value of l is given by

l = λh0/h. (D 1)

Recall also that in our dimensionless notation, where forces per unit length are normalised
by µs⊥h−1/2, the hydrodynamic drag on the cylinder (per unit length in the z-direction)
is, at leading order, h−1F⊥(l, φ). Making use of (D 1), we find that the dimensional drag
(per unit length) is

µs⊥
F⊥(λh0/h, φ)

h3/2
. (D 2)

Due to the dependence of F⊥ upon h, the drag no longer possesses the classical h−3/2

power law.

We illustrate the ramifications of this unconventional feature by considering a sedi-
mentation process, assuming a constant (e.g. gravity) external force which pushes the
cylinder towards the surface. The dimensional magnitude of the external force (per unit

length) is denoted by µs0h
−3/2
0 . Comparing with (D 2) we note that s0 represents a char-

acteristic settling speed at time zero; a natural time scale is then provided by ah0/s0.
Using that scale to define the dimensionless time τ , the instantaneous dimensional speed
s⊥ may be related to the time variation of h:

s⊥ =
s0
h0

dh

dτ
. (D 3)
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Substituting into (D 2), the dimensional drag (per unit length) is then given by

µs0
F⊥(λh0/h, φ)

h0h3/2
dh

dτ
. (D 4)

A force balance between the above and the external force yields the following ordinary
differential equation governing h/h0:

F⊥(λh0/h, φ)

(h/h0)3/2
d(h/h0)

dτ
= −1. (D 5)

The time variation of h/h0 is independent of h0, depending only upon λ and φ. Integration
then gives ∫ 1

h/h0

F⊥(λ/η, φ)

η3/2
dη = τ. (D 6)

For an approach to an homogeneous solid or free surface we employ the respective
expressions (5.8)–(5.9). In these cases closed-form integration gives

h/h0 = (1 + τ/6π
√

2)−2 (D 7)

for an approach to a solid surface and

h/h0 = (1 + 2τ/3π
√

2)−2 (D 8)

for an approach to a free surface. In both cases h/h0 scales as τ−2 for large τ . This
scaling is also eventually attained in the general case, since as τ →∞ the left-hand side
of (D 6) must be dominated by the lower limit of the integration interval, implying that
h/h0 → 0. With η being small near that lower limit, the relevant drag is that pertaining
to large l. Making use of (5.11) we therefore obtain

h/h0 ∼
72π2

(4− 3φ)2
τ−2 for τ →∞. (D 9)

In figure 7 we show the time evolution of h/h0 for φ = 0.5 and λ = 1, obtained by
solving (D 6) using (5.7). At sufficiently large times the scaled period l becomes large
whereby F⊥ is approximately given by (5.11); the time variation of h/h0 thus approaches
the power-law (D 9). By that time, h/h0 is of order 10−3.

More enlightening is the comparable evolution for the smaller period λ = 0.1, described
in figure 8. With λ being small, F⊥ is approximately given by the small-l approximation
(5.11) for moderate h/h0; the time evolution is accordingly identical to that of a cylinder
approaching a homogenous solid surface, namely (D 7). Only when h/h0 becomes compa-
rable to λ does the h−3/2 drag scaling break down and the time evolution ‘detaches’ from
approximation (D 7). At sufficiently large times the scaled period l eventually becomes
large and the time variation of h/h0 approaches the power-law (D 9). Corresponding
to these trends we see that the curve representing the time variation of h/h0 with τ
is initially concave, but eventually becomes convex. This is in contrast to the limits of
solid and free surface, where the simple relations (D 7)–(D 8) necessitate that the curve
is concave throughout on a log-log sclae.

Figure 8 suggests that by the time asymptotic régime (D 9) is attained, h/h0 is of order
10−5. Practically speaking, this means that sedimentation over small-periodicity surface
(i.e. with the period being small compared with the initial clearance) will be affected
by short-rang (e.g. Van der Waals) interactions with the surface way before the power
law (D 9) is approached. Such sedimentation processes are hence crucially affected by the
breakdown of the h−3/2 scaling law for the drag.
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Figure 7: Variation with τ of h/h0 for λ = 1. The solid curve depicts the solution of (D 6)
for φ = 0.5. The two dashed curves represent the limits φ = 1 and φ = 0, respectively
given by (D 7) and (D 8)
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Figure 8: Same as figure 7, but for λ = 0.1
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