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Abstract. We present some new Stokes’ type theorems on complete non-compact
manifolds that extend, in different directions, previous works by Gaffney and Karp and also
the so called Kelvin-Nevanlinna-Royden criterion for p-parabolicity. Applications to compar-
ison and uniqueness results involving the p-Laplacian are deduced.

1. Introduction. In 1954, Gaffney [4], extended the famous Stokes’ theorem to com-
plete m-dimensional Riemannian manifolds M by proving that, given a C1 vector field X
on M , we have

∫
M

divX = 0 provided X ∈ L1(M) and divX ∈ L1(M) (but in fact
(divX)− = max{− divX, 0} ∈ L1(M) is enough). This result was later extended by Karp
[13], who showed that the assumption X ∈ L1(M) can be weakened to

lim inf
R→+∞

1

R

∫
B2R\BR

|X|dVM = 0 .

Here and on, having fixed a reference origin o ∈ M on a non-compact manifold M , we set
r (x) = distM(x, o) and we denote by Bt and ∂Bt the geodesic ball and sphere of radius t > 0
centered at o. Moreover dVM is the Riemannian volume measure on M .

It turns out that the completeness of a manifold is analogous to the p = ∞ case of
p-parabolicity, i.e., M is complete if and only if it is ∞-parabolic. We recall the concept
of p-parabolicity. The p-Laplacian of a real valued function u : M → R is defined by
�pu = div(|∇u|p−2 ∇u). A function u ∈ W 1,p

loc (M) is said to be a p-subsolution if �pu ≥ 0
weakly on M . When any bounded above p-subsolution is necessarily constant we say that
the manifold M is p-parabolic. A very useful characterization of (non-)p-parabolicity goes
under the name of the Kelvin-Nevanlinna-Royden criterion. In the linear setting p = 2 it
was proved in a paper by Lyons and Sullivan [16]. See also Pigola, Rigoli and Setti [18,
Theorem 7.27]. The non-linear extension, due to Gol’dshtein and Troyanov [7], states that
a manifold M is not p-parabolic if and only if there exists a vector field X on M such that
(a) |X| ∈ Lp/(p−1) (M), (b) divX ∈ L1

loc (M) and (divX)− ∈ L1 (M) (in the weak sense)
and (c) 0 <

∫
M divX ≤ +∞. In particular this result shows that if M is p-parabolic and X

is a vector field on M satisfying (a) and (b), then
∫
M divX = 0, thus giving a p-parabolic

analogue of the Gaffney result. Hence, it is natural to ask whether there exists a p-parabolic
analogue of the Karp theorem, i.e., if it is possible to weaken the assumptions on the vector
field X and still conclude that

∫
M divXdVM = 0.
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In this paper we will present two different ways to get this result. The first one, Theorem
2.2, is presented in Section 2 and relies on the existence of special exhaustion functions. It has
a more theoretical taste and gives the desired p-parabolic analogue of Karp’s theorem, at least
in case either p = 2 or p > 1 and M is a model manifold. The second one, Theorem 3.5, is
more suitable for explicit applications. It is presented in Section 3 and avoids the parabolicity
assumption on M by requiring some connections between the q-norm of X, q = p/(p − 1),
and the volume growth of geodesic balls in M . In some sense, specified in Remark 3.8, this
result is optimal. In Section 4 we use these techniques to generalize some results involving
the p-Laplacian comparison and uniqueness theorems on the p-harmonic representative in
a homotopy class. In particular, in Theorem 4.6, we extend a p-Laplacian comparison for
vector valued maps on p-parabolic manifolds recently obtained in [12]. We point out that the
new proof admits C0 ∩ W 1,p

loc maps, instead of the smooth maps of [12]. This is a relevant
improvement since, as opposed to the linear setting where 2-harmonic maps are necessarily
smooth, for p �= 2 one can at most ensure p-harmonic maps to be C1,α [24], [9], [27]. Hence,
C1,α seems to be the natural class of functions to consider when dealing with the p-Laplacian.

Acknowledgments. We specially thank professors Stefano Pigola, Alberto Setti and Ilkka Holo-
painen for the useful hints and conversations that helped shape this article. Moreover we would like to
thank professor Frank Morgan for suggesting some improvements to the first version of this paper.

2. Exhaustion functions and parabolicity. Given a continuous exhaustion function
f : M → R+ in W 1,p

loc (M), set

C(r) = f−1[0, 2r) \ f−1[0, r) .
DEFINITION 2.1. We say that a vector field X ∈ L

q
loc(M) (with 1/p + 1/q = 1)

satisfies the condition EM,p if:

lim inf
r→∞

1

r

∣∣∣∣
∫
C(r)

|∇f |p dVM
∣∣∣∣
1/p ∣∣∣∣

∫
C(r)

|X|p/(p−1) dVM

∣∣∣∣
(p−1)/p

= 0 .(1)

THEOREM 2.2. Let f : M → R+ be a continuous exhaustion function in W 1,p
loc (M).

If X is a Lqloc(M) vector field with (divX)− ∈ L1(M), div(X) ∈ L1
loc(M) in the weak sense

and X satisfies the condition EM,p, then
∫
M

div(X)dVM = 0.

PROOF. Note that (divX)− ∈ L1(M) and div(X) ∈ L1
loc(M) in the weak sense is

the most general hypothesis under which
∫
M

divXdV is well defined (possibly infinite). For
r > 0, consider the W 1,p functions defined by

fr(x) := max{min{2r − f (x), r}, 0} ,
i.e., fr is a function identically equal to r on D(r) := f−1[0, r), with the support in D(2r)
and such that ∇fr = −χC(r)∇f , where χC(r) is the characteristic function of C(r). By
dominated and monotone convergence we can write∫

M

divXdVM = lim
r→∞

1

r

∫
D(2r)

fr divXdVM.
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Since f is an exhaustion function, fr has a compact support, by definition of weak divergence
we get ∫

M

divXdVM = lim
r→∞

1

r

∫
D(2r)

〈∇fr ,X〉 dVM

≤ lim inf
r→∞

1

r

(∫
C(r)

|∇f |p dVM
)1/p (∫

C(r)

|X|q dVM
)1/q

= 0 .

This proves that (divX)+ := divX+ (divX)− ∈ L1(M) and, by exchangingX with −X, the
claim follows. �

Note that setting p = ∞ and f (x) = r(x), one gets exactly the statement of Karp [13].

REMARK 2.3. From the proof of Theorem 2.2, it is easy to see that condition EM,p
can be generalized a little. In fact, if there is a function (without regularity assumptions)
g : (0,∞) → (0,∞) such that g(t) > t and

lim inf
r→∞

1

g(r)− r

∣∣∣∣
∫
G(r)

|∇f |p dVM
∣∣∣∣
1/p ∣∣∣∣

∫
G(r)

|X|q dVM
∣∣∣∣
1/q

= 0 ,

where G(r) ≡ f−1[0, g(r)) \ f−1[0, r], the conclusion of Theorem 2.2 is still valid with the
same proof, only needlessly complicated by an awkward notation.

The smaller the value of
∫
C(r)

|∇f |p dVM is, the more powerful the conclusion of the
theorem is, and since p-harmonic functions are in some sense minimizers of the p-Dirichlet
integral, it is natural to look for such functions as candidates for the role of f . Of course, ifM
is p-parabolic it does not admit any positive nonconstant p-harmonic function defined on all
M . Anyway, since we are interested only in the behaviour at infinity of functions and vector
fields involved (i.e., the behaviour in C(r) for r large enough), it would be enough to have a
p-harmonic function f which is defined outside a compact set (inside it could be given any
value without changing the conclusions of the theorem).

For example, Sario and Nakai proved that for every 2-parabolic surface M , and every
relatively compact set Ω , there exists an Evans’ potential (see [21, Theorems 12F and 12G]),
i.e., a positive harmonic exhaustion function E : M \Ω → R+ with E|∂Ω = 0 and such that
for any c > 0 ∫

{E(x)≤c}
|∇E|2 dVM ≤ c .

If we let f = E in condition EM,p (with p = 2), the last inequality allow us to conclude that
on a 2-parabolic surface a vector field X ∈ L2

loc(M) with (divX)− ∈ L1(M) and div(X) ∈
L1

loc(M) has zero divergence over M provided

lim
r→∞

∫
{r≤E(x)≤2r} |X|2 dVM

r
= 0 .

This result is very similar (at least formally) to Karp’s, except for the different exponents and
for the presence of the Evans potential E(·) that plays the role of the geodesic distance r(·).
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It can be proved that an Evans potential exists not only on (2-)parabolic surfaces but
also on (2-)parabolic manifolds (see [26] for a complete proof). Unfortunately, no similar
existence results have been proved yet in the generic non-linear case (p �= 2). Moreover, even
for p = 2, in general there is no explicit characterization of the function E which can help to
estimate its level sets, and therefore the quantity

∫
{r≤E(x)≤2r} |X|q dVM . A very special case

is given by the model manifolds (in the sense of Greene and Wu [8]). In this setting the radial
function f : M \ B1 → R defined as

f (x) :=
∫ r(x)

1

1

A(∂Bs)1/(p−1)
ds(2)

is p-harmonic and it holds∫
Br2 \Br1

|∇f |p =
∫ r2

r1

1

A(∂Bs)1/(p−1)
ds = f (r2)− f (r1) for r2 > r1 > 1 .(3)

Here and in what follows A (∂Bt) stands for the (m− 1)-dimensional Hausdorff measure of
∂Bt and is a.e. continuous as a function of t . Moreover, the model manifold M is p-parabolic
if and only if f (∞) = ∞ (see [5] and [25]) and hence in this case f is the Evans’ potential
we looked for.

3. Stokes’ theorem under volume growth assumptions. We now return to consider
manifolds M which are not necessarily spherically symmetric. In this general situation, the
function f (r) defined in (2) is not p-harmonic. Moreover, since f (+∞) = +∞ is not in
general a necessary condition for p-parabolicity though it is sufficient (see [25], [20], [11],
and Remark 3.2 below), we are not ensured that f is an exhaustion function even for p-
parabolic M . However f is still well defined and relation (3) still holds. Hence, we are led to
generalize Theorem 2.2 to generic manifolds, i.e., without parabolicity assumptions, and the
generalization we obtain is optimal in some sense (see Theorem 3.5 and Remark 3.8 below).
Obviously, in this new result the conclusion will depend on the volume growth of geodesics
ball of M . Key tools are the estimates from above of the capacity of the condenser (B̄r1, Br2)
with surface and volume comparisons, as shown in the next proposition. Before that, we
briefly recall the definition of p-capacity.

Given a Riemannian manifold M , let Ω be a connected domain in M and D ⊂ Ω a
compact set. For p ≥ 1, the p-capacity of D in Ω is defined by

Capp(D,Ω) := inf

{∫
Ω

|du|p ; u ∈ W 1,p
0 (Ω) ∩ C0

0 (Ω), u ≥ 1 on D

}
.

It is well known that a manifold M is p-parabolic if and only if Capp(D,M) = 0 for every
compact setD ⊂ M (or equivalently for a compact setD with nonvoid interior part) [10]. For
p > 1, we define the functions ap(t), b

(r1)
p : (0,+∞) → (0,+∞) as

ap(t) := A(∂Bt)
−1/(p−1), b(r1)p (t) :=

(
s − r1

V (t)− V (r1)

)1/(p−1)

.
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Since the volume V (Bt ) of a geodesic ball seen as a function of t is continuous and differ-
entiable almost everywhere with V ′(Bt ) = A(∂Bt) (see for example [3, Proposition III.3.2]),
both functions are a.e. continuous in (0,+∞), and bp is also differentiable almost every-
where.

In [6, p.3], A. Grigor’yan proves the following inequalities for the p-capacity of a spher-
ical condenser, inequalities that link the p-parabolicity of a manifold to the area and volume
growth of its geodesic balls.

PROPOSITION 3.1. Given a complete Riemannian manifold M , the capacity of the
condenser (Br1 , Br2) is bounded from above by

Capp(B̄r1, Br2) ≤
(∫ r2

r1

ap(t)dt

)1−p
,(4)

Capp(B̄r1 , Br2) ≤ 2p
(∫ r2

r1

b(r1)p (t)dt

)1−p
.(5)

REMARK 3.2. We observed before that ap /∈ L1(0,+∞) implies M is p-parabolic.
This is easily obtained by letting r2 go to infinity in (4).

REMARK 3.3. In [5], the author proves similar inequalities in the case p = 2, but with
a different proof. This proof can be easily adapted to obtain a better constant in inequality (5),
in fact 2p can be replaced by p.

The functions ap and bp can be used to construct special cut-off functions with controlled
p-Dirichlet integral. Using these cut-offs, with an argument similar to the one we used in the
proof of Theorem 2.2, we get a more suitable and manageable condition on a vector field X
in order to guarantee that

∫
M

div(X)dVM = 0.

DEFINITION 3.4. We say that a real function f : M → R satisfies the condition AM,p

on M for some p > 1 if there exists a function g : (0,+∞) → (0,+∞) such that

lim inf
R→∞

( ∫
B(R+g(R))\BR

f dVM

)( ∫ R+g(G)

R

ap(s)ds

)−1

= 0 .(6)

The next result gives the announced generalization under volume growth assumption of
the Kelvin-Nevanlinna-Royden criterion.

THEOREM 3.5. Let (M, 〈, 〉) be a non-compact Riemannian manifold. Let X be a
vector field on M such that

divX ∈ L1
loc (M) and max(− divX, 0) = (divX)− ∈ L1(M) .(7)

If |X|p/(p−1) satisfies the condition AM,p on M , then∫
M

divXdVM = 0 .
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Accordingly, ifX is a vector field onM such that |X|p/(p−1) satisfies the condition AM,p,
divX ∈ L1

loc (M), and divX ≥ 0 on M , then we must necessarily conclude that divX = 0
on M . As a matter of fact, even if divX /∈ L1

loc (M), we can obtain a similar conclusion as
shown in the next proposition, inspired by [12, Proposition 9].

PROPOSITION 3.6. Let (M, 〈, 〉) be a non-compact Riemannian manifold. Let X be a
vector field on M such that

divX ≥ f(8)

in the sense of distributions for some f ∈ L1
loc(M) with f− ∈ L1(M). If |X|p/(p−1) satisfies

condition AM,p on M for some p > 1, then∫
M

f ≤ 0 .(9)

REMARK 3.7. Combining the following proof with the proof of [12, Proposition 9 and
Remark 10], one obtains the validity of (9) when M is p-parabolic and |X|p/(p−1) ∈ L1(M)

instead of satisfying AM,p.

PROOF. Fix r2 > r1 > 0 to be chosen later. Define the functions ϕ̂ = ϕ̂r1,r2 : Br2 \Br1
→ R as

ϕ̂(x) :=
(∫ r2

r1

ap(s)ds

)−1 ∫ r2

r(x)

ap(s)ds(10)

and let ϕ = ϕr1,r2 : M → R be defined as

ϕ(x) :=




1 r(x) < r1 ,

ϕ̂(x) r1 ≤ r(x) ≤ r2 ,

0 r2 < r(x) .

(11)

A straightforward calculation yields∫
M

|∇ϕ|pdVM =
∫
Br2\Br1

|∇ϕ̂|pdVM =
(∫ r2

r1

ap(s)ds

)1−p
.

By standard density results we can use ϕ ∈ W
1,p
0 (M) as a test function in the weak relation

(8). Thus we obtain∫
M

ϕf dVM ≤ (divX,ϕ)(12)

= −
∫
M

〈X,∇ϕ〉

≤
(∫

supp(∇ϕ)
|X|p/(p−1)

)(p−1)/p (∫
M

|∇ϕ|p
)1/p

≤
{( ∫

Br2\Br1
|X|p/(p−1)

)( ∫ r2

r1

ap(s)ds

)−1}(p−1)/p

,
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where we have applied Hölder in the next-to-last inequality. Now, let {Rk}∞k=1 be a sequence
such thatRk → ∞, which realizes the lim inf in condition (6). Up to passing to a subsequence,
we can suppose Rk+1 ≥ Rk + g(Rk). Hence, the sequence of cut-offs ϕk := ϕRk,Rk+g(Rk)

converges monotonically to 1 and applying monotone and dominated convergence, we have

lim
k→∞

∫
M

ϕkf = lim
k→∞

∫
M

ϕkf+ − lim
k→∞

∫
M

ϕkf− =
∫
M

f+ −
∫
M

f− =
∫
M

f .

Taking limits as k → ∞ in inequality (12), assumption AM,p finally gives∫
M

f ≤ 0 . �

PROOF OF THEOREM 3.5. Choosing f = divX in Proposition 3.6 we get
∫
M

divX ≤
0 and (divX)+ ∈ L1(M). Hence, we can repeat the proof replacing X with −X. �

REMARK 3.8. We point out that one could easily obtain results similar to Theorem 3.5
and Proposition 3.6 replacing ϕr1,r2 in the proofs with standard cut-off functions 0 ≤ ξr1,r2 ≤
1 defined for any ε > 0 in such a way that

ξr1,r2 ≡ 1 on Br1 , ξr1,r2 ≡ 0 on M \ Br2 , |∇ξr1,r2| ≤ 1 + ε

r2 − r1
.

Nevertheless ϕr1,r2 gives better results than the standard cut-offs. For example, consider a
2-dimensional model manifold with the Riemannian metric

ds2 = dt2 + g2(t)dθ2 ,

where g(t) = e−t outside a neighborhood of 0. Then the p-energy of ϕr1,r2 and ξr1,r2 are
respectively∫

M

∣∣∇ϕr1,r2∣∣p dvM =
(∫ r2

r1

ap(s)ds

)1−p
= 2π(p − 1)1−p(er2/(p−1) − er1/(p−1))1−p

,

∫
M

∣∣∇ξr1,r2∣∣p dvM ≤
(

1 + ε

r2 − r1

)p ∫ r2

r1

A(∂Bs)ds = 2π

(
1 + ε

r2 − r1

)p (
e−r1 − e−r2

)
.

If we choose r2 = 2r1 ≡ 2r and let r → ∞, we get∫
M

∣∣∇ϕr,2r ∣∣p dvM ∼ ce−r
(
er/(p−1) − 1

)1−p ∼ ce−2r ,

∫
M

∣∣∇ξr,2r ∣∣p dvM ∼ c′

rp
e−r

(
1 − e−r

) ∼ c′

rp
e−r

for some positive constants c, c′. Using ϕr,2r in the proof of Proposition 3.6 (in particular in
inequality (12)), we can conclude that f = 0 provided

lim
r→∞

(∫
B2r\Br

|X|p/(p−1)
)(p−1)/p

e−2r = 0 ,
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while using ξr,2r we get a weaker result, i.e., f = 0 provided

lim
r→∞

(∫
B2r\Br

|X|p/(p−1)
)(p−1)/p 1

rp
e−r = 0 .

One could ask if there exist even better cut-offs than the ones we chose. First, note that
restricting to model manifolds, the cut-offs ϕr1,r2 are p-harmonic on Br2 \ Br1 , and so their
p-energy is minimal. In general this is not true. Anyway, it turns out that the functions ϕr1,r2
are optimal at least in the class of radial functions, in fact they minimize the p-energy in this
class, and this makes the condition AM,p sharp. To prove this fact, consider any radial cut-off
ψ := ψr1,r2 satisfying ψ ≡ 1 on Br1, ψ ≡ 0 on M \ Br2 . By Jensen’s inequality we have∫ ∣∣∇ϕr1,r2∣∣p dvM =

( ∫ r2

r1

ap(s)ds

)1−p
= c

1−p
ψ

( ∫ r2

r1

ap(s)

|ψ ′(s)|
∣∣ψ ′(s)

∣∣ ds
cψ

)1−p

≤ c
−p
ψ

∫ r2

r1

∣∣ψ ′(s)
∣∣p A(∂Bs)ds ≤

∫
|∇ψ|p dvM ,

where ψ ′ is the radial derivative of ψ and cψ = ∫ r2
r1

∣∣ψ ′(s)
∣∣ ds ≥ 1.

4. Applications. Theorem 3.5, and Proposition 3.6, can be naturally applied to those
situations where the standard Kelvin-Nevanlinna-Royden criterion is used to deduce infor-
mation on p-parabolic manifolds. First, we present a global comparison result for the p-
Laplacian of real valued functions. The original result assuming p-parabolicity appears in
[12, Theorem 1].

THEOREM 4.1. Let (M, 〈, 〉) be a connected, non-compact Riemannian manifold. As-
sume that u, v ∈ W 1,p

loc (M) ∩ C0(M), p > 1, satisfy

�pu ≥ �pv weakly on M ,

and that |∇u|p and |∇v|p satisfy the condition AM,p onM . Then, u = v+A onM , for some
constant A ∈ R.

Choosing a constant function v, we immediately deduce the following result, which
generalize [17, Corollary 3].

COROLLARY 4.2. Let (M, 〈, 〉) be a connected, non-compact Riemannian manifold.
Assume that u ∈ W

1,p
loc (M) ∩ C0(M), p > 1, is a weak p-subharmonic function on M such

that |∇u|p satisfies the condition AM,p on M . Then u is constant.

In [22], Schoen and Yau considered the problem of uniqueness of the 2-harmonic repre-
sentative with finite energy in a (free) homotopy class of maps from a complete manifold M
of finite volume to a complete manifold N of non-positive sectional curvature. In particular,
they obtained that if the sectional curvature of N is negative then a given harmonic map u
is unique in its homotopy class, unless u(M) is contained in a geodesic of N . Moreover, if
SectN ≤ 0 and two homotopic harmonic maps u and v with finite energy are given, then u
and v are homotopic through harmonic maps. In [17], Pigola, Setti and Rigoli noticed that the
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assumption V (M) < ∞ can be replaced by askingM to be 2-parabolic. In Schoen and Yau’s
result, the finite energy of the maps is used in two fundamental steps of the proof:

(1) to prove that a particular subharmonic map of finite energy is constant;
(2) to construct the homotopy via harmonic maps.

Using the p = 2 case of Corollary 4.2, we can deal with step (1) and thus obtain the following
theorem. If SectN ≤ 0, weakening finite energy assumption in step (2) does not seem trivial
to us, but we can still get a result for maps with fast p-energy decay without parabolicity
assumption.

THEOREM 4.3. Suppose M and N are complete manifolds.
1) Suppose SectN < 0. Let u : M → N be a harmonic map such that |∇u|2 satisfies

the condition AM,2 onM . Then there is no other harmonic map homotopic to u satisfying the
condition AM,2 unless u(M) is contained in a geodesic of N .

2) Suppose SectN ≤ 0. Let u, v : M → N be homotopic harmonic maps such that
|∇u|2, |∇v|2 ∈ L1(M) satisfy the condition AM,2 on M . Then there is a smooth one pa-
rameter family ut : M → N for t ∈ [0, 1] of harmonic maps with u0 = u and u1 = v.
Moreover, for each x ∈ M , the curve {ut (x); t ∈ [0, 1]} is a constant (independent of x)
speed parametrization of a geodesic.

REMARK 4.4. While the existence in a homotopy class of a harmonic representative
with finite energy is ensured by a further result by Schoen and Yau [23], in the setting of
Theorem 4.3 we are not able to guarantee that there exists at least one harmonic map whose
energy satisfies AM,2.

An interesting task is to extend Schoen and Yau’s uniqueness results to the nonlinear
(p �= 2) setting. In [17], the authors take a first step in this direction by proving that a map
u : M → N with finite p-energy and homotopic to a constant is constant provided M is
p-parabolic and SectN ≤ 0. Using Theorem 3.5 in the proof of their result, we easily obtain
the following

THEOREM 4.5. Let (M, 〈, 〉M) and (N, 〈, 〉N) be complete Riemannian manifolds. As-
sume thatM is non-compact and thatN has non-positive sectional curvatures. If u : M → N

is a p-harmonic map homotopic to a constant and with energy density |du|p satisfying the
condition AM,p, then u is a constant map.

In [12], the authors apply the Kelvin-Nevanlinna-Royden criterion to obtain a vector
valued version of their comparison theorem. In some sense this result is a further step in
treating the problem of the uniqueness of p-harmonic representative. In particular, if M is
p-parabolic and u, v : M → Rn are C∞ maps satisfying �pu = �pv and |du|, |dv| ∈ Lp,
then u = v +A for some constant vector A ∈ Rn. To prove it, they construct a vector field X
depending on du and dv, whose divergence is such that

0 �= (divX)− ≤ C(|du|p + |dv|p) ∈ L1 .(13)
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As a matter of fact, in their proof, X is defined in such a way that the smoothness of u and
v seems to be strictly necessary to do computations. In order to generalize their result, in the
direction of Proposition 3.6, apparently assumption (13) can not be dropped. Nevertheless,
in case |du|, |dv| ∈ Lp and their Lp-norms decay fast with respect to the volume in the
AM,p sense, we obtain a similar result for not p-parabolic manifolds and for maps with low
regularity.

THEOREM 4.6. Suppose that (M, 〈, 〉) is a complete non-compact Riemannian mani-
fold. For p > 1, let u, v : M → Rn be C0 ∩W 1,p

loc (M) maps satisfying

�pu = �pv on M(14)

in the sense of distributions on M and

|du| , |dv| ∈ Lp(M) .
Suppose either M is p-parabolic or |du|p and |dv|p satisfy the condition AM,p on M . Then
u = v + C, for some constant C ∈ Rn.

REMARK 4.7. In Proposition 3.1, we saw that the capacity of a condenser
(Br1 , Br2) can be estimated from above using either the behaviour of V (Bs) or the behaviour
of A(∂Bs). This suggests that the condition AM,p should have an analogue in which A(∂Bs)
is replaced by V (Bs). This fact is useful since it is usually easier to verify and to handle
volume growth assumptions than area growth conditions.

DEFINITION 4.8. We say that a real function f : M → R satisfies the condition VM,p
on M for some p > 1 if there exists a function g : (0,+∞) → (0,+∞) such that

lim inf
R→∞

( ∫
B(R+g(R))\BR

f dVM

)( ∫ R+g(R)

R

(
t

V (t)

)1/(p−1)

ds

)−1

= 0 .(15)

Indeed, it turns out that in every proposition stated in Section 4, the condition AM,p can
be replaced by the condition VM,p, and the proofs remain almost the same.

5. Proof of Theorem 4.6. We can now proceed to prove Theorem 4.6. Recall that,
by definition, (14) holds in the sense of distributions on M if∫

M

〈η, |dv|p−2dv − |du|p−2du〉HS = 0

for every compactly supported η ∈ T ∗M ⊗ Rn. Here 〈, 〉HS stands for the Hilbert-Schmidt
scalar product on T ∗M⊗Rn. Moreover, we mention the following lemma, derived by a basic
inequality by Lindqvist [15], which will be useful later.

LEMMA 5.1 ([12, Corollary 5]). Let (V , 〈, 〉) be a finite dimensional real vector space
endowed with a positive definite scalar product and let p > 1. Then, for every x, y ∈ V , it
holds

〈|x|p−2x − |y|p−2y, x − y〉 ≥ 2C(p)Ψ (x, y) ,(16)
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where

Ψ (x, y) :=
{|x − y|p p ≥ 2 ,
|x − y|2/(|x| + |y|)2−p 1 < p < 2 ,

and C(p) is a positive constant depending only on p.

PROOF OF THEOREM 4.6. First, we assume that M is p-parabolic. We suppose that at
least one of u or v is non-constant, for otherwise there is nothing to prove. Fix q0 ∈ M and
set C := u(q0) − v(q0) ∈ Rn. Replacing v with ṽ := v + C if necessary, we can suppose
C = 0. Introduce the radial function r : Rn → R defined as r(x) = |x|. For A > 1, consider
the weakly differentiable vector field XA defined as

XA(x) := [
dhA|(u−v)(x) ◦

(|du(x)|p−2du(x)− |dv(x)|p−2dv(x)
)]�
, x ∈ M ,

where hA ∈ C∞(Rn,R) is the function

hA(y) :=√
A+ r2(y)

and � denotes the usual musical isomorphism defined by 〈ω�, V 〉 = ω(V ) for all differential 1-
forms ω and vector fields V . We observe thatXA is well defined since there exists a canonical
identification

T(u−v)(q)Rn ∼= Tu(q)R
n ∼= Tv(q)R

n ∼= Rn .

Compute

dhA = dr2

2
√
A+ r2

and observe that, because of the special structure of Rn, for each vector field Y on Rn it holds

(dr2)|(u−v)(x)(Y ) = 2〈(u− v)(x), Y 〉Rn .

By definition of weak divergence, for each test function 0 ≤ φ ∈ C∞
c (M), we have

−(divXA, φ) =
∫
M

〈
XA,∇φ

〉
M

=
∫
M

〈[
dhA

∣∣
(u−v)(x) ◦

(|du(x)|p−2du(x)− |dv(x)|p−2dv(x)
)]�
,∇φ〉

M

=
∫
M

dr2

2
√
A+ r2

∣∣
(u−v)(x) ◦

(|du(x)|p−2du|x − |dv(x)|p−2dv|x
)
(∇φ)

=
∫
M

1√
A+ r2(u− v)(x)

〈
(u− v)(x),

(|du(x)|p−2du|x − |dv(x)|p−2dv|x
)
(∇φ(x))〉

Rn
.

Since u, v ∈ W 1,p
loc (M), assumption (14) implies that

0 =
∫
M

〈
d

(
(u− v)φ√
A+ r2(u− v)

)
, |du|p−2du− |dv|p−2dv

〉
HS

(17)

=
∫
M

1√
A+ r2(u− v)

〈
dφ ⊗ (u− v), |du|p−2du− |dv|p−2dv

〉
HS



408 D. VALTORTA AND G. VERONELLI

+
∫
M

φ√
A+ r2(u− v)

〈
du− dv, |du|p−2du− |dv|p−2dv

〉
HS

−
∫
M

φ

2
(
A+ r2(u− v)

)3/2

× 〈
dr2|(u−v) ◦ (du− dv)⊗ (u− v), |du|p−2du− |dv|p−2dv

〉
HS

≥ −(divXA, φ)

+
∫
M

2C(p)φ√
A+ r2(u− v)

Ψ (du, dv)

−
∫
M

φr2(u− v)

(A+ r2(u− v))3/2
(|du| + |dv|)(|du|p−1 + |dv|p−1),

where we have used Lemma 5.1 for the second term and Cauchy-Schwarz inequality for the
third one. Setting

fA := 2C(p)√
A+ r2(u− v)

Ψ − 2r2(u− v)

(A+ r2(u− v))3/2
(|du|p + |dv|p) ,

by Young’s inequality, (17) gives

divXA ≥ fA(18)

in the sense of distributions.
Let us now compute the Lp/(p−1)-norm of XA. Since∣∣|du|p−2du− |dv|p−2dv

∣∣p/(p−1) ≤ (|du|p−1 + |dv|p−1)p/(p−1)

≤ 21/(p−1)(|du|p + |dv|p) ,
we have

|XA|p/(p−1) =
∣∣∣∣∣∣
√

r2(u− v)

A+ r2(u− v)

∣∣∣∣∣∣
p/(p−1) ∣∣|du|p−2du− |dv|p−2dv

∣∣p/(p−1)

≤ 21/(p−1)(|du|p + |dv|p) ∈ L1(M) .

Hence XA is a weakly differentiable vector field with |XA| ∈ Lp/(p−1)(M).
To apply Proposition 3.6 (in the p-parabolic version pointed out in Remark 3.7), it re-

mains to show that (fA)− ∈ L1(M). To this purpose, we note that

(fA)− ≤ 2r2(u− v)

(A+ r2(u− v))3/2
(|du|p + |dv|p)(19)

≤ r2(u− v)

A+ r2(u− v)

2√
A+ r2(u− v)

(|du|p + |dv|p)

≤ 2√
A
(|du|p + |dv|p) ∈ L1(M) .
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Then, the assumptions of Proposition 3.6 are satisfied and we get, for every A > 1,

0 ≥
∫
M

fA(20)

=
∫
M

[
2C(p)√

A+ r2(u− v)
Ψ − 2r2(u− v)

(A+ r2(u− v))3/2
(|du|p + |dv|p)

]
.

Fix T > 0 and define

MT := {x ∈ M ; r(u− v)(x) ≤ T } and MT := M \MT .

Then, we can write (20) as

0 ≥
∫
MT

fA +
∫
MT

2C(p)√
A+ r2(u− v)

Ψ −
∫
MT

2r2(u− v)

(A+ r2(u− v))3/2
(|du|p + |dv|p) .(21)

Note that∫
MT

fA ≥ −
∫
MT

2√
A+ T 2

(|du|p + |dv|p) = − 2√
A+ T 2

∫
MT

(|du|p + |dv|p) .(22)

On the other hand, to deal with
∫
MT
fA, observe that∫

MT

2C(p)√
A+ r2(u− v)

Ψ ≥ 2C(p)√
A+ T 2

∫
MT

Ψ .(23)

Furthermore, the real function t �→ 2t/(A + t)3/2 has a global maximum at t = 2A and is
increasing in (0, 2A). Hence, up to choosing A > T 2/2, we have also∫

MT

2r2(u− v)

(A+ r2(u− v))3/2
(|du|p + |dv|p) ≤ 2T 2

(A+ T 2)3/2

∫
MT

(|du|p + |dv|p).(24)

Inserting (22), (23) and (24) in (21), we get

2C(p)√
A+ T 2

∫
MT

Ψ ≤ 2T 2

(A+ T 2)3/2

∫
MT

(|du|p + |dv|p)

+ 2√
A+ T 2

∫
MT

(|du|p + |dv|p) ,
which gives

C(p)

∫
MT

Ψ ≤
∫
MT

(|du|p + |dv|p)+ T 2

√
A+ T 2

∫
MT

(|du|p + |dv|p) ,

for all A > max{1, T 2/2}. Letting A → +∞, this latter yields

C(p)

∫
MT

Ψ ≤
∫
MT

(|du|p + |dv|p) .(25)

Since (|du|p + |dv|p) ∈ L1(M), for T → ∞ we can apply respectively dominated
convergence on the right-hand side and monotone convergence on the left-hand side of (25),
and we get

C(p)

∫
M

Ψ = 0 ,
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which in turn gives |d(u − v)| ≡ 0 on M , that is, u − v ≡ u(q0) − v(q0) = C on M . This
conclude the first part of the proof.

If M is not p-parabolic, proceeding as above, the condition AM,p and Proposition 3.6
give (20). From there on, we can repeat the proof of the p-parabolic case. �

6. Final remarks. So far, we applied Theorem 3.5 and Proposition 3.6 to generalize
the results for which originally a p-parabolicity assumption on the domain manifold was
used to apply the Kelvin-Nevanlinna-Royden criterion and deduce a Stokes’ type conclusion.
In particular we showed that the p-parabolicity can be replaced by suitable volume growth
estimates. As a matter of fact, the functions ϕr1,r2 defined in the proof of Proposition 3.1
seem to naturally appear each time when a control on the Lp-norm of the gradient of a cut-
off function is required. For instance, consider a m-dimensional manifold M supporting an
Euclidean type Sobolev inequality, i.e.,

‖η‖qp ≤ S
q
M‖∇η‖qq for all η ∈ C∞

c (M)(26)

holds for some positve constant SM and for some 1 < q < m and p = mq/(m− q). For such
manifolds, Carron [2], proved that there is an almost Euclidean lower bound for the volume
growth of the geodesic ball. Namely, there exists an explicit positive γ > 0 depending on m
and q such that

V (Br ) ≥ γ rm(27)

for all r > 0 (but to the best of our knowledge no lower control on A(∂Br) is given). More-
over, Cao, Shen and Zhu [1] and Li and Wang [14] observed that the validity of (26) for q = 2
impliesM is 2-hyperbolic (see also [19] for the q �= 2 case). Observe that, by a standard den-
sity argument, inequality (26) holds for all η ∈ W

1,q
0 (M). Hence we can choose η = ϕr1,r2

for some 0 < r1 < r2 obtaining

V (Br1)
q/p ≤ S

q

M( ∫ r2
r1
aq(s)ds

)q−1 .(28)

In particular, letting r2 → ∞ gives aq ∈ L1(0,+∞), since otherwise V (Br1) ≡ 0 for all
r1 > 0. Even if this conclusion is immediately implied by the q-hyperbolicity of M , we can
combine inequality (28) with Carron’s estimate (27) to obtain a slightly improved result.

PROPOSITION 6.1. Let M be an m-dimensional complete non-compact manifold sup-
porting the euclidean Sobolev inequality (26) for some q < p and p = mq/(m − q). Then
there exists a positive constant 0 < CS = γ−(m−q)/(m(q−1))S

q/(q−1)
M such that

r(m−q)/(q−1)
∫ ∞

r

aq(s)ds ≤ CS for all r > 0 .(29)

REMARK 6.2. We underline that Proposition 6.1 is non-trivial, in the sense that, in the
absence of the validity of (26), there exist manifolds satisfying (27) and aq ∈ L1(0,+∞),
for which (29) does not hold. For instance, for fixed 1 < q < (m + 1)/2, an example is
given by the m-dimensional model manifold (t, θ) ∈ M = (0,+∞) × Sm−1 endowed with
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the Riemannian metric 〈, 〉M = dt2 + h2(t)dθ2, with warping function h ∈ C∞((0,+∞))

chosen such that 


h(0) = 0 , h′(0+) = 1 ,

h(t) ≥ tβ ,

h(t)|[4k+3,4k+4] ≡ tβ for k = 0, 1, 2, . . . ,

h(t)|[4k+1,4k+2] ≡ Ht for k = 0, 1, 2, . . .

for some constants

q − 1

m− 1
< β <

m− q

m− 1
< 1 and H >

1

4

(
m10mγ

A(∂BRm

1 )

)1/(m−1)

.
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