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Abstract The swimming of bacteria provides insight into propulsion and steering under the conditions
of low-Reynolds number hydrodynamics. Here we address the magnetically steered swimming of mag-
netotactic bacteria. We use Stokesian dynamics simulations to study the swimming of single-flagellated
magnetotactic bacteria (MTB) in an external magnetic field. Our model MTB consists of a spherical cell
body equipped with a magnetic dipole moment and a helical flagellum rotated by a rotary motor. The
elasticity of the flagellum as well as magnetic and hydrodynamic interactions is taken into account in
this model. We characterized how the swimming velocity is dependent on parameters of the model. We
then studied the U-turn motion after a field reversal and found two regimes for weak and strong fields
and, correspondingly, two characteristic time scales. In the two regimes, the U-turn time is dominated
by the turning of the cell body and its magnetic moment or the turning of the flagellum, respectively.
In the regime for weak fields, where turning is dominated by the magnetic relaxation, the U-turn time is
approximately in agreement with a theoretical model based on torque balance. In the strong-field regime,
strong deformations of the flagellum are observed. We further simulated the swimming of a bacterium with
a magnetic moment that is inclined relative to the flagellar axis. This scenario leads to intriguing double
helical trajectories that we characterize as functions of the magnetic moment inclination and the mag-
netic field. For small inclination angles (� 20◦) and typical field strengths, the inclination of the magnetic
moment has only a minor effect on the swimming of MTB in an external magnetic field. Large inclination
angles result in a strong reduction in the velocity in direction of the magnetic field, consistent with recent
observations that bacteria with large inclination angles use a different propulsion mechanism.

1 Introduction

The swimming of motile microorganisms is of great
scientific interest, for understanding motility in natu-
ral systems, as instances of active matter with all its
intriguing physical properties and as inspiration for the
development of synthetic microswimmers and micro-
robots [1–3]. Microorganisms use diverse propulsion
mechanisms and behavioral strategies in their swim-
ming. While some of them such as the run-and-tumble
motion of Escherichia coli [4,5] or the swimming sperm
[6] (and in both cases, their use in chemosensing)
are well studied and understood in great detail, other
mechanisms of swimming and the corresponding strate-
gies for sensing and steering have only been described
recently [7–9]. Among microorganisms, magnetotactic
bacteria (MTB) are of particular interest because they

a e-mail: sarah.mohammadinejad@phys.uni-goettingen.de
(corresponding author)

can be steered by a magnetic field [10,11], which pro-
vides a promising biocompatible option for the remote
control of swimming. MTB are a diverse group of
microorganisms with the ability to orient and migrate
along (geo-)magnetic field lines [10,12,13]. This ability
is based on the presence of an intracellular structure
called magnetosome chain, which acts as a magnetic
compass for their navigation. The chain is composed of
iron oxide or iron sulfide nanoparticles enclosed in mem-
branous vesicles, called magnetosomes, which imparts
a magnetic moment to MTB [14]. Following the Earth’s
magnetic field lines is hypothesized to help them find
their preferred habitat near the oxic-anoxic transition
zone in stratified aquatic environment and sediments
[10]. This type of aerotaxis, which is assisted by mag-
netic field is called magnetoaerotaxis . From a physical
point of view, magnetotaxis can either provide a direc-
tion or only an axis, but in either case reduces a three-
dimensional search process to a one-dimensional search
along the direction defined by the field [15,16].
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In recent years, MTB have attracted the attention of
researchers from many different disciplines [11], includ-
ing from an application point of view. MTB have been
functionalized for their use as a magnetically targeted
drug delivery system [17]. They also provide inspira-
tion for synthetic and biohybrid magnetic transport:
for example, magnetic guidance has been demonstrated
after incorporation or attachment of magnetic particles
to naturally non-magnetic organisms [18,19] and syn-
thetic magnetically steered swimmers were constructed
with the purpose of finding the best structure for rapid
swimming while being steering by magnetic field [20–
22].

Despite the promising proof-of-concept applications
of MTB, many aspects of the dynamics of MTB are
only beginning to be known such as details of their
swimming mechanisms, their strategies for responding
to environmental stimuli and changing the direction of
motion. Since MTB are rather diverse with respect to
cell shapes, magnetic dipole orientation and number
and organization of their flagella, a variety of mecha-
nisms and strategies are expected to be observed [15].

Few experimental studies have addressed the detailed
mechanisms of propulsion of MTB by their flagella.
Notable exceptions are studies on the coordination of
two flagella at opposite poles in Magnetospirillum mag-
neticum (AMB-1) [23], of two velocity modes in Mag-
netospirillum gryphiswaldense (MSR-1) [24] and of the
cooperation of two flagellar bundles almost perpendicu-
lar to the magnetic moment in Magnetococcus marinus
(MC-1) [9]. These studies are complemented by theoret-
ical approaches. Here simple models describe the bac-
teria either as self-propelled dipolar particles [25–27] or
as a cell body with a rigid rotating helix [28–30] and
did not include the hydrodynamics and/or mechanics of
the flagellum. In this paper, we use Stokesian dynam-
ics, which provides an efficient framework to carry out
numerical simulations for particles suspended in a fluid
that interact through hydrodynamic and other forces
[31]. Stokesian dynamics has been used extensively for
the study of the swimming of non-magnetotactic bac-
teria, in particular for the swimming of Escherichia
coli including different dynamical states of its flag-
ellum and the hydrodnyamic interaction between its
multiple flagella [32–34]. The same model was used
to investigate the origin of screw formation in the
flagellum in single-flagellated Shewanella putrefaciens
attempting to escape from the traps [8]. Likewise, in our
recent work on the Magnetococcus marinus, we used the
same approach as a complement to experimental three-
dimensional tracking of swimming bacteria to distin-
guish different swimming modes and to propose that
the two flagella of this bacterium rotate in opposite
direction [9].

Here, we report on simulations of the swimming
behavior of a model MTB with spherical cell body and
a single flagellum. We characterized the influence of
various parameters such as the flagellum length, the
orientation of the magnetosome chain relative to the
flagellar axis and the strength of the magnetic field.
Specifically, we present two scenarios that are relevant

from an experimental point of view: we investigated the
U-turns that are observed when the magnetic field is
reversed and asked whether an inclination of the mag-
netic moment relative to the flagellar propulsion axis is
detrimental to the swimming motion.

2 Method

In this paper, we used Stokesian dynamics simulations
to study the swimming behavior of a single-flagellated
magnetotactic bacterium. We present a semi-realistic
model for MTB taking into account its magnetic ori-
entation and its propulsion by the flagellar rotation.
In the model, the cell body is spherical and has a sin-
gle flagellum discretized as a chain of beads (shown in
Fig. 1a, with yellow and blue colors, respectively). The
flagellum, in turn, consists in a helical filament, a rotary
motor embedded in the cell membrane, which rotates
the filament, and a short hinge for transmitting the
motor torque to the filament [33]. The description of
the flagellum includes its elasticity, as well as hydrody-
namic and excluded volume interactions. The hydrody-
namic interactions are taken into account by calculat-
ing the mutual mobility coefficients between particles
representing segments of the flagellum and then solv-
ing the equations of motion for all particles using these
mobility coefficients [35].

2.1 Model of the flagellum

The model we used for the flagellum of our MTB is the
model that has been used for the E. coli flagellum by
Vogel et al. [20,32]. In this model, the helical filament
of the flagellum is described as a discretized space curve
composed of N particles of diameter a = 0.02µm and
equilibrium separation distance Le = 0.2µm (Fig. 1a).
In order to explore the bacterial behavior as a function
of the flagellum length, N was varied between 20 and
150. As shown in Fig. 1b, the position of each flagel-
lum particle is represented by ri (i = 1, .., N). A set of
three orthogonal unit vectors e

α
i = {e1

i , e
2
i , e

3
i } (called

the i-th triad with α = 1, 2, 3 representing the three
orthogonal unit vectors) is assigned to each particle i
to describe the orientation and elastic deformation of
the bond between two successive particles i and i − 1
(Fig. 1b). The first triad e

α
1 is associated with the bond

between the cell body and the first flagellar particle.
A regular helical filament like the one we have for the

flagellum can be characterized completely by its con-
stant curvature (κe) and torsion (τe) which are related
to the helix radius (R) and pitch (P ) via R = κe

κ2
e+τ2

e

and P = 2πτe

κ2
e+τ2

e
[36].

Since the flagellum is an elastic filament, any devi-
ation from its equilibrium configuration costs energy.
The elastic energy for the bending and twisting of the
flagellum (HK) can be calculated by regarding the con-
formational deviation from the helical equilibrium con-
figuration using a discretized version of Kirchhoff’s the-
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(a)

(b)

(c)

Fig. 1 a Model of a magnetotactic bacterium with one
flagellum. The flagellum and the cell body are shown in
blue and yellow, respectively. The magnetic moment and the
motor rotation axis are shown with purple and black arrows
on the cell body. The flagellum is modeled as a discretized
space curve composed of N particles. A part of the flagel-
lum is magnified in b to indicate the triad vectors defined
between two successive particles of the flagellum. c Repre-
sentation of the bending and twist angles (θi and φi) and
the corresponding deformation of the triads along the flag-
ellum length. The primed triad represents the intermediate
state after the twist is applied, but before bending

ory for elastic rods [37],

HK = Le

N−1
∑

i=1

{A[(Ω1
i − Ω1

e )2 + (Ω2
i − Ω2

e )2]

+C(Ω3
i − Ω3

e )2}, (1)

in which Ωα
i = {Ω1

i , Ω2
i , Ω3

i } is the instantaneous local
angular strain vector. Its components are related to the
local curvature and torsion angles and the local triads
via Ω1

i = − θi

sin θi
e
2
i .e

3
i+1, Ω2

i = θi

sin θi
e
1
i .e

3
i+1, Ω3

i = φi,

where θi and φi (as shown in Fig. 1c) are the bending
and twist angles between successive triads, respectively.
A and C are the bending and torsional rigidities, for
which the values of A = C = 3.5 pN µm2 are used.

Ωα
e = {Ω1

e , Ω2
e , Ω3

e} = {κe cos(Leτe), κe sin(Leτe), τe}
is the equilibrium angular vector for the flagellum.
Throughout this paper, we use κe = 1.3µm−1, τe =

−2.1µm−1, except in the section where we study the
effect of the flagellum helical geometry on the swimming
velocity (Fig. 3b) where we run simulation for different
Ωα

e .
The corresponding elastic forces on i-th particle (FK

i )
and torques about i-th triad (TK

i ) can be obtained
by calculating the numerical derivatives of HK with
respect to the position of the particle (ri) and the twist
angle of the triads (φi) as follows,

F
K
i = −∂HK

∂ri

, (2)

TK
i = −∂HK

∂φi

. (3)

The stretching elasticity of the flagellum is taken into
account using a Hookian free energy (HS) of the form

HS =
Ks

2Le

N
∑

i=2

(Li − Le)
2, Li = |ri − ri−1| (4)

with stretching rigidity of Ks = 1000pN [33]. The
stretching force (FS

i ) can be obtained by analytical dif-
ferentiation of HS with respect to ri. The resulting F

S
i

is

F
S
i = −Ks

Le

{(Li − Le)e
3
i − (Li+1 − Le)e

3
i+1}. (5)

The repulsive part of a Lennard-Jones force (a WCA
force) is used to model excluded volume interactions
between all particles including the cell body (i = 0),

F
LJ
i =

⎧

⎨

⎩

F0

σ

[

2
(

σ
rij

)14

−
(

σ
rij

)8
]

rij if rij < 6
√

2σ,

0 if rij ≥ 6
√

2σ,

(6)

with F0 = 1pN. We set σ = 2a for the interaction
between two (non-bonded) beads of the flagellum, so
that the distance between two beads on which the
steric interactions become relevant is 2a. For the inter-
action between flagellum beads and the cell body, we
use σ = a + Rb. rij is the distance vector between i-th
and j-th particles (including the cell body (i = 0)) and
rij its absolute value. The steric force on the i-th parti-
cle (FLJ

i ) is calculated by summation of the steric forces
from all other particles (j) on the i-th particle. We note
that despite the relatively large gaps between subse-
quent flagellar beads (Le = 10a), we do not observe
beads passing through the flagellum due to its rather
high bending and twist rigidities.

The filament is attached to the surface of the bacte-
rial cell body via its first particle (i = 1). We defined
the first triad (eα

1 ) in such a way that its third compo-
nent (e3

1) is along the vector drawn from body center

123



40 Page 4 of 12 Eur. Phys. J. E (2021) 44 :40

to the first flagellar particle attached to body (i = 1-
th particle). The effect of the rotary motor was mod-
eled by the motor torque Tme

3
1, for which the value

Tm = 3.4 pN µm was assumed, acting on the first
(i = 1) bead of the flagellum. This torque is trans-
mitted to the main part of the filament via the hinge,
represented by the connection to the second bead. For
the latter we used the rigidities A′ = A and C ′ = 3C.
The high torsional rigidity provides the coupling of the
filament to the motor rotation.

2.2 Dynamics of the flagellum

At low Reynolds numbers, because of the linearity of
Stokes’ equation, the translational and angular velocity
vectors (v and ωωω, respectively) of the particles have
a linear relation with the forces (F) and torques (T)
acting on those particles as follows

[

v

ωωω

]

=

[

µµµtt µµµtr

µµµrt µµµrr

] [

F

T

]

. (7)

Here v and ωωω are 3N -component linear and angu-
lar velocity vectors. The matrix is called the mobility
matrix and µµµtt, µµµrr, µµµrt and µµµtr are each 3N × 3N
mobility sub-matrices representing the translational–
translational, rotational-rotational and rotational–
translational coupling between velocities and forces of
all particles. In the following we refer to the mobility
terms between force and velocity of the same particle as
self-mobilities and those between forces and velocities
of different particles as cross-mobilities.

In this study, the rotational–translational mobility
sub-matrices (µµµtr and µµµrt) and rotational-rotational
cross-mobility terms (µµµrr

i�=j) were neglected. This is
mostly done for technical reasons, since these cou-
plings may result in the rotation of the triads and
cause inconsistencies with the definition of the bond
direction e

3
i = ri − ri−1. Artifacts were reported in

earlier work, specially for elastic structure [38]. From
the physical point of view, these contributions can
be neglected because the µµµrr

ij and µµµtr
i�=j terms in the

Rotne–Prager expansion are of higher order in a
rij

compared to µµµrr
ii . The remaining mobility terms for

flagellar particles are the translational–translational
cross-mobility (µµµtt

i�=j), the translational–translational

self-mobility (µµµtt
ii) and the rotational-rotational self-

mobility (µµµrr
ii ). The translational–translational cross-

mobilities (µµµtt
i�=j) between flagellar particles were cal-

culated using the Rotne–Prager approximation [35,39],

µµµ
tt
i�=j = µ

t
[

3

4

a
rij

(1 + r̂ij ⊗ r̂ij) + 1

2
( a

rij
)3(1 − 3r̂ij ⊗ r̂ij)

]

.

(8)

Here rij represents again the distance between the i-th
and j-th particles. For the translational–translational
self-mobility (µµµtt

ii , a 3×3-submatrix of µµµtt) of the flagel-
lar particles we used the mobility relation for a straight

rod that is

µµµtt
ii = e

3
i ⊗ e

3
i /γ‖ + (1 − e

3
i ⊗ e

3
i )/γ⊥, (9)

in which γ‖ = 3.2 × 10−4 pNs/µm and γ⊥ = 5.6 ×
10−4 pNs/µm were used as the anisotropic friction coef-
ficients of the flagellum following the values used for
the E. coli flagellum [33]. The rotational-rotational self-
mobility of flagellar particles (µrr

ii ) is the inverse of
the rotational friction µrr

ii = 1/γr with γr = 2.52 ×
10−7 pNsµm.

Taking into account the forces and torques discussed
above and including them in Eq. (7), the dynamics of
the flagellar particles’ positions (ri) and triads (eα

i with
α = 1, 2, 3 can be obtained by solving the following
equations of motion for their position and orientation,

∂ri

∂t
= µtt

ij(F
K
j + F

S
j + F

LJ
j ), i = 2, .., N

(10)

∂e
α
i

∂t
= µrr

ii (TK
i e

3
i × e

α
i ), i = 2, .., N

(11)

∂ef
α
1

∂t
= µrr

11(T
K
1 + Tm)(e3

1 × e
α
1 ), (12)

in which
∂ef

α
1

∂t
is the contribution of the flagellum

torques in the dynamics of the first triad. Another con-

tribution
∂eb

α
1

∂t
comes from the torques on the cell body

(Sect. 2.3 Eq. (15)). These two terms add up to the
total change of e

α
1 as follows

∂e
α
1

∂t
=

∂ef
α
1

∂t
+

∂eb
α
1

∂t
. (13)

2.3 Dynamics of the cell body

To obtain the dynamics of the whole bacterium, the
equations of motion for the cell body are also needed
and have to be solved simultaneously. For simplicity,
we modeled the cell body with a sphere of radius
Rb = 1µm. Since MTB contain a magnetic chain,
which acts as a compass needle, we defined a magnetic
moment vector (m) for the cell body (shown in Fig. 1a)
with a magnitude of m = 6.2 × 10−16Am2 [40]. In each
simulation the direction of m with respect to the body
axis is fixed and its inclination is represented by an
angle θm. We should note that m is oriented along the
body axis (θm = 0◦) except for the section where we
study the effect of the inclination of m with respect to
body axis (θm �= 0◦) explicitly. In an external magnetic
field B, the equations of motion for the cell body are

∂rb

∂t
= µtt

b

[

F
K
1 + F

S
1 + F

LJ
0

]

, (14)

∂eb
α
1

∂t
= µrr

b [m × B + (r1 − rb)

× (FK
1 + F

S
1 )

]

× e
α
1 , (15)
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∂m

∂t
= µrr

b [m × B + (r1 − rb)

× (FK
1 + F

S
1 ) − Tme

3
1

]

× m. (16)

Here µtt
b = 1

6πηRb
and µrr

b = 1

8πηR3

b

are the translational–

translational and rotational-rotational mobility coeffi-
cients of the cell body in which η is the viscosity of
water. Cross-mobility terms between the cell body and
the flagellar particles were neglected.

Equation (14) describes the translational motion of
the cell body. The force on the first flagellar particle
(FK

1 + F
S
1 ) is transmitted directly to the cell body,

together with the Lennard-Jones force (FLJ
0 ). Eq. (15)

describes the contribution of the cell body rotation on
the evolution of e

α
1 , the triad associated with the bond

between the cell body and the first flagellar particle. Its
terms are the magnetic torque and the torque resulting
from the forces acting on the first bead, respectively.
As mentioned earlier, Eq. (12) and (15) add up to the
total change of the first triad as given by Eq. (13).
The magnetosome chain has a fixed orientation in the
cell body, so the magnetic moment m rotates rigidly
with the cell body. To determine the orientation of the
cell body, we need to include one additional equation
of motion in the model that describes the dynamics of
an arbitrary vector fixed on the cell body. We used the
equation for the magnetic moment as the equation for
finding the orientation of the cell body at each time-
step. Eq. (16) represents the time evolution of m and
the torque terms in its right-hand side are the mag-
netic toque, the torque arising from the force on the
first particle and the counter torque to motor rotation
(−Tme

3
1).

Since the first flagellum bead (i = 1) is rigidly attached
to the cell body, its position at each time-step is deter-
mined by r1 = rb + Rbe

3
1.

2.4 Implementation of the model

The model was implemented using a self-written C++
program. The equations of motion (Eqs. (10) to (16))
were solved numerically using second-order Runge–
Kutta algorithm [41,42], specifically Heun method [43],
to obtain the successive configurations of beads posi-
tion and triads at each time-step knowing their previ-
ous configuration. For simplicity, we chose the magnetic
field to be in z-direction and its magnitude in our simu-
lation was varied from zero to hundred times the Earth
magnetic field (BE = 50µT).

We used a time-step of ∆t = 4 × 10−9s for all sim-
ulations and an initial configuration (helical shape)
of the flagellum close to its equilibrium state. Never-
theless, equilibration takes of the order of ×107 time
steps. Therefore, the simulations were run for several
×107 steps, with the total duration adjusted to the
specific parameters. In particular, in the simulations
with an inclined magnetic moment (Sect. 3.4), at least
one full helical turn of the trajectories was simulated;
thus, longer simulations were needed for large inclina-
tion angles, where the helix radius is large. Likewise for

Fig. 2 Alignment of the model magnetotactic bacterium
in a magnetic field B = 50BE . The initial configuration of
the bacterium is perpendicular to the magnetic field

U-turn simulations (Sect. 3.3), longer runs were needed
for low magnetic fields. In the U-turn scenario, the sim-
ulation was run to equilibrate for 5 × 106 time steps
before the field was reversed.

3 Results and discussion

3.1 Swimming and alignment with magnetic field

The Stokesian Dynamics simulation framework allows
us to address the mechanisms of swimming while a
MTB interacts with a magnetic field. In particular,
the model incorporates the magnetic moment of the
cell body, which interacts with the field, the helical
structure of the flagellum as well as its elasticity and
the torque due to the flagellar motor. That the model
describes both propulsion and magnetic steering is
shown by the following simulation: Our bacterium is
put in a uniform magnetic field, aligned initially per-
pendicular to that field. Running the simulation shows
that the model bacterium aligns in the direction of the
field by turning while swimming and then continues to
swim along that direction. An exemplary reorientation
trajectory is depicted in Fig. 2 by illustrating succes-
sive snapshots. The corresponding movie is also avail-
able in supplementary information (Video 1). Align-
ment is observed for arbitrary initial orientation and
for different field strengths. The time needed for the
complete alignment depends on the field strengths. We
will discuss the dynamics of alignment in more detail
in Sect. 3.3 below.

3.2 Impact of flagellar geometry on swimming

To characterize our model, we first studied the depen-
dence of the swimming velocity of our model bacterium
on geometrical features of the flagellum in the absence
of a magnetic field. The geometry of the flagellar helix
(as shown in Fig. 1) is defined by its radius R, pitch P ,
pitch angle α (with tanα = 2πR

P
) and contour length

L. We simulated swimming for a wide range of L and
α
R

and determined the average swimming velocity. The
swimming velocity as a function of L and α

R
is plotted

in Fig. 3a, b, respectively.
In Fig. 3a, the equilibrium curvature and torsion (and

thus R and α) of the flagellum were kept constant and

123



40 Page 6 of 12 Eur. Phys. J. E (2021) 44 :40

(a) (b)

Fig. 3 The swimming velocity of the bacterium as a
function of geometrical features of flagellum. a Double-
logarithmic plot of the velocity as a function of the flagellum

contour length (L) and a linear fit to it, b Velocity as a func-
tion of the helix parameter α/R for different helix radii (R)
and pitch angles (α) with a constant contour length of 6 µm

the length of flagellum (L) was modulated by the num-
ber of beads N . The velocity is plotted as a function of
L on a double-logarithmic scale. Both the average swim-
ming velocity (Vz) and the tangential velocity (Vt) were
calculated in each simulation. Figure 3a shows that the
swimming velocity decreases with L which is in quali-
tative agreement with a theoretical prediction [1] for a
rigid flagellum,

V ≈ α
ξ⊥ − ξ‖

ξ‖

ξr

ξ⊥

R3
b

RL
Ωm. (17)

A linear fit to the log–log data (indicated by the dotted
lines; the data for short contour lengths were omitted in
the fit) shows a decrease as a power law for long flagella,
however not with an exponent (slope in the log–log-
plot) of −1 as predicted by the theoretical expression,
but with a slope of −0.9. The corresponding slope for
the tangential velocity is −0.6 (the precise value of the
slope depends on the time window of the fit).

This smaller exponent may be attributed to the
approximations used in the theory. This formula is
derived for the limit of a very long and rigid flagellum
and for very small pitch angles (α ≪ 1). We also observe
in our results that the slope in the log–log plot increases
for longer flagella, so it is possibly that it approaches −1
for even longer flagella (> 30µm), which are not very
realistic as well as computationally expensive. More-
over, for very long flagella, the assumption of a rigid
flagellum becomes more and more unrealistic, as the
flagellum length exceeds its persistence length. Indeed
some simulations for long flagella show very small peri-
odic modulations of the propulsion, likely due to the
elasticity of the flagellum. We also note that Eq. (17),
which is derived for the limit of long flagella, is not
applicable to realistic flagellar lengths (∼ 10µm).

The simulation results for different sets of the param-
eters {R,α} (Fig. 3a) do not show significant differ-
ences in this slope. The velocity as a function of α

R

is shown in Fig. 3b for different helix radii. Here the
contour length of the flagellum was kept constant at
6µm and its pitch angle (α) was varied. The simula-
tions were carried out for different helix radii in the
range of R = 0.02−0.12µm. The data show that the
velocity increases with increasing α

R
, as predicted by

Eq. (17). The increase is, however, not exactly linear
as in that expression. Our simulations indicate that the
dominant dependence on the parameters α and R is
through the ratio α/R. Therefore, we varied this param-
eter in the simulations shown in Fig. 3. However, not
all dependence on these two parameters is captured by
the α/R-dependence, as seen by comparing the data for
different R with the same ratio α/R.

3.3 U-turn in response to magnetic field reversal

If the direction of the magnetic field is rapidly reversed,
a swimming MTB performs a U-turn to realign with the
magnetic field and swim in the opposite direction. The
U-turn trajectory of MTB upon magnetic field reversal
is used as a method to measure the magnetic moment
of magnetotactic bacteria [44]. The magnetic moment
of the bacterium can be calculated from the diameter
of the U-turn or the time needed for it. Esquivel et.
al [45] have investigated the dynamics of a magneto-
tactic cell following a sudden reversal of the magnetic
field by solving its torque balance equation based on
Bean model [46]. Since cells swim at low Reynolds num-
ber, inertial terms can be neglected and on average,
random forces will create a zero net torque. Therefore,
the torque exerted on the dipole by the magnetic field
should be balanced by the viscous drag torque, i.e.

mB sin θ = Γ
dθ

dt
, (18)

where m is the dipole moment, B is the external mag-
netic filed, Γ is the rotational drag coefficient and θ is
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the angle between the direction of the magnetic field
and the magnetic dipole moment.

This differential equation can be solved for the time
it takes for the dipole direction to change from θi to θ as
ln(tan θ

2
) = mB

Γ
t + ln(tan θi

2
). Due to thermal fluctua-

tions the initial angle, θi, is considered to be very small
but not zero (for the onset of field reversal). Therefore,
by considering θf = π

2
(for the middle of U-turn), the

U-turn time can be obtained as

τu = −2
Γ

mB
ln

(

tan
θi

2

)

. (19)

Moreover, by integrating the component of veloc-
ity along U-turn opening (

∫ ∞

0
v sin θdt, where sin θ =

Γ
mB

dθ

dt
) over time, the U-turn diameter can also be cal-

culated as

Du =
πvΓ

mB
. (20)

For our model MTB, we simulated the U-turn exper-
iment for a wide range of magnetic field strength, start-
ing with a bacterium swimming along the direction of
the field and instantaneously reversing the field direc-
tion. Figure 4a and b shows trajectories and snapshots
for two different magnetic field strengths, of 10BE and
500BE , respectively. Here, the time of the magnetic
field reversal is defined as t = 0s.

With small fields (Fig. 4a), the bacterium aligns with
the magnetic field gradually, and thus, an obvious and
wide U-turn is observed in its trajectory. However, with
large fields (Fig. 4b), the U-turn is very sharp and tight.
Moreover, we observe that with large fields, the flagel-
lum undergoes a pronounced bend or kink during the U-
turn, as shown in Fig. 4b at t = 9ms and t = 30ms. This
kink formation can be attributed to the very fast reori-
entation of the magnetic moment for alignment with
the field. Since the flagellum is long and because of its
elasticity, its distant segments can not immediately fol-
low the very fast reorientation of the cell body while the
close segments reorient due to their direct attachment
to the cell body.

To make this reasoning more quantitative, we deter-
mined two characteristic time scales related to the U-
turn, the time τum after which the magnetic moment
is re-aligned with the magnetic field and the time τut

after which the swimming direction (and thus the tra-
jectory) is re-aligned with the field direction. The two
time scales as obtained from the simulations are plotted
as functions of the magnetic field in Fig. 5a.

Figure 5a shows that U-turn time decreases with
magnetic field. For fields up to 120BE , both character-
istic times have almost the same value, but for stronger
fields τut exceeds τum remarkably. This confirms our
previous interpretation that in these strong fields, the
magnetic moment aligns with the field very rapidly,
while the flagellum requires more time to align with the
cell body’s new direction. In this range of the magnetic
field (B > 120BE), τut plateaus, in agreement with
the expectation for a reorientation of the flagellum and

thus the trajectory driven by the flagellum’s mechanics
rather than by the magnetic torque. Correspondingly,
we see that this plateau depends on the length of the
flagellum as shown in Fig. 5b. The longer the flagel-
lum, the slower the reorientation (increasing τut). τum,
by contrast is not affected by flagellum length. Since
the slower of the two processes determines the overall
U-turn time, we can define a crossover field strength
(B∗) between the regimes where magnetic reorienta-
tion determines the U-turn time τ∗

u and a regime where
the flagellar reorientation is dominant. This crossover
field and the corresponding U-turn time are plotted as
functions of flagellum length in the inset of Fig. 5b.
Figure 5c shows the U-turn time for strong fields as a
function of the flagellum length in more detail. In addi-
tion to the overall increase in the τut with the length,
we observe an oscillatory pattern with a period that
approximately corresponds to the contour length of one
turn of the helix (2.54µm for the equilibrium curvature
and torsion of {κe, τe} = {1.3,−2.1}µm−1).

The analytical results for the U-turn time and U-
turn radius discussed above consider only the magnetic
reorientation and are thus expected to be applicable to
regime for weak fields. To apply the analytical expres-
sions to our simulation data, we use the rotational fric-
tion coefficient Γ of the bacterium as a fit parameter.
We know the friction coefficient of the cell body, but
this might be modulated by the presence of the flagel-
lum. Fitting the U-turn time with the expression from
eq.(19), we find good agreement with the theoretical
prediction for Γ/(8πηR3) = 1.12, i.e., for a friction
coefficient of the whole bacterium that is increased com-
pared to that of the cell body alone (8πηR3).

To test this result, we also determined the friction
coefficient directly but rotating the bacterium with an
external torque. For this simulations, we turned off the
motor torque and rotated the bacterium with an exter-
nal torque applied to the cell body in a direction per-
pendicular to the motor axis. We then measured the
angular velocity of the cell body to determine the fric-
tion coefficient. The inset in Fig. 5a shows the result-
ing estimate of the rotational friction coefficient of the
whole bacterium as a function of its flagellum length. As
expected, the drag coefficient is increased in the pres-
ence of a flagellum. The dependence on the flagellum
length is relatively weak. The minimum in the friction
coefficient coincides with the length where the flagellum
has just one full pitch. The numerical value for a length
of L = 12µm is 1.19, close to what we have obtained
from the fit to the U-turn time.

Figure 5d shows the diameter of the U-turn (scaled
by the velocity) as a function of magnetic field for flag-
ellum lengths of L = 4, 6, 8µm. The normalization by
velocity is important because in populations of MTBs,
the velocity can vary from cell to cell. Moreover, from
an experimental point of view, the U-turn diameter and
the velocity are more easily accessible than the U-turn
time. According to Fig. 5d, the U-turn diameter also
exhibits the two regimes discussed for the U-turn time.
Fitting the data with Eq.(20) results in a friction coef-
ficient of Γ/(8πηR3) = 1.23, slightly larger than the
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(a) (b)

Fig. 4 U-turn trajectory illustrated with successive snapshots in case of a a weak magnetic field (10BE) and b a strong
magnetic field (500BE) for a bacterium with a flagellum of length L = 12 µm

(a) (b)

(c) (d)

Fig. 5 a Characteristic time scales of U-turn after field
reversal as a function of the magnetic field strength. The
times τum (blue) and τut (red) measure the time it takes the
bacterium to turn its magnetic moments (and thus the cell
body) and the time is takes to reverse the swimming direc-
tion, respectively. The solid line is a fit to the theoretical
expression obtained from torque balance with Γ

8πηR3 = 1.12

and θi = 0.36. The flagellum length is L = 12 µm. Inset:
The friction coefficient of the whole bacterium as a func-
tion of flagellum length obtained from direct simulations in

which the bacterium was rotated with an external torque.
b τut and τum as a function of magnetic field for different
flagellum lengths of L = 4, 6, 8 µm. Inset: The cross-over
field strength (B∗) and U-turn time (τ∗

u) between the two
regimes dominated by different characteristic times. c τut

as a function of flagellum length for different strengths of
the magnetic field. d The U-turn diameter (scaled by swim-
ming velocity) as a function of the magnetic field strength
for flagellum lengths of L = 4, 6, 8 µm. The solid line is a fit
to the theoretical expression with Γ

8πηR3 = 1.23
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result from fitting the U-turn time, but in good agree-
ment with the direct measurement of the friction coeffi-
cient. The discrepancy appears to be related to the fact
that the theory assumes entirely planar motion, while
in the simulations, the bacterium makes small excur-
sions in the direction perpendicular to the main plane
of motion during the U-turn.

3.4 The effect of magnetic moment inclination on

3D motility pattern

In this section, we investigated how the swimming tra-
jectory of our model bacterium is modified by an incli-
nation of the magnetic moment with respect to the
propulsion axis. To that end, we modulated the angle
θm in our simulations (0◦ ≤ θm < 90◦). Small incli-
nation angles are expected even for bacteria where the
nominal direction of the magnetic moment is along the
propulsion axis, as the precision of control is necessarily
finite. However, some species including Magnetococcus
marinus (MC-1) and Magnetococcus massalia (MO-1)
do show rather large angles. These do, however, not
have single flagellum as our model bacterium here and
for MC-1, we proposed recently that it swims with a dif-
ferent body orientation that reduces this angle to some
extent [9]. Nevertheless, it is interesting to quantita-
tively analyze the effect of such inclination.

When the magnetic moment is parallel to the flagel-
lum axis (θm = 0◦), the case studied so far, the overall
motion is observed to be approximately on a straight
line. Closer inspection shows a wiggling of the cell body
due to a weak rotational motion around that line, so
that the trajectory is actually helical with a very small
helix radius, smaller than the size of the cell body, as
shown in Fig. 6a, where the radius is about 0.1µm.
The incidence of such wiggling has been noted in ear-
lier work and reflects the fact that the axis of propulsion
is not exactly parallel to the axis of the cell body or, in
our case, the magnetic moment [47–49]: Due to the non-
integer number of turns in the helix of the flagellum, the
thrust force always has a component normal to the axis
of the flagellum and leads to an off-axis torque. Propul-
sion together with this off-axis torque result in wiggling.
A comprehensive study that characterized the wiggling
in microorganism trajectories was presented by Hyon
et al. [49].

When the magnetic moment is not parallel to the
flagellum (θm �= 0◦), we observe double helical trajecto-
ries in the presence of a magnetic field. The small helix
due to the wiggling is now bent and follows the path
of a larger helix due to the precession of the magnetic
moment with a radius in the order of several times that
of the body size. An exemplary double helical trajectory
is depicted in Fig. 6a for θm = 45◦ and B = 500BE .
The radii of the small and large helices are represented
with rH and RH , respectively. The axis of the large
helix is parallel to the direction of the magnetic field.

We characterized the double helical trajectories by
the swimming velocity Vz along the direction of the
magnetic field (which we take to be in the z direction),

and by the radius, pitch, and period of the large helix
(RH , PH and TH , respectively). We extracted these
parameters from the trajectories obtained for different
inclination angles in the range of θm = 0 − 88◦ and dif-
ferent strengths of the magnetic field (B = 0−1000BE).
The results for the helix radius (RH) and the swimming
velocity (Vz) are plotted in Fig. 6b, c as functions of the
inclination angle θm for different strengths of the mag-
netic field. The corresponding plots for the pitch (PH)
and the period (TH) are shown as insets in Fig. 6b, c.

Our results show that the swimming velocity decreases
with increasing inclination angle θm (Fig. 6c), while the
radius of the helix increases (Fig. 6b). Two regimes for
low and high magnetic fields can be distinguished. At
low magnetic fields (< 50BE), the large helix is not
easily detectable since it is only very slightly greater
than the small helix (only if θm approach 90◦). In this
regime, the magnetic torque is not strong enough to
cause considerable precession of the bacterium. As a
consequence, the velocity is almost not affected by the
inclination angle. For small inclinations (θm < 20◦),
the swimming velocity is even slightly increased by the
presence of the magnetic field, likely because the wig-
gling motion is slightly suppressed. We expect that this
effect is more pronounced in the presence of thermal
fluctuations, which provide stronger perturbations of
the alignment with the field, which in turn restrains
the bacterium to swim only in one dimension [16].

The large helix is clearly detectable for B > 120BE

and θm > 45◦. In this case, the radius of large helix
is about several times the body size and the veloc-
ity decreases strongly with the inclination angle. The
strong magnetic torque forces the magnetic moment
into a strong rotation toward the magnetic field and
hence a greater deviation from the propulsion axis.

These observations indicate that small inclination
angles (< 30◦) due to imprecise orientation of the mag-
netic moments with respect to the propulsion axis do
not affect the swimming of MTB in naturally occurring
fields much. Even inclination angles of 45◦ would not
strongly hinder the motion. However, inclination angles
exceeding 45◦ as observed in strains MC-1 and MO-1
would put those cells at a disadvantage. This obser-
vation indicates that a different swimming mode with
different orientation of the magnetic moments as pro-
posed for MC-1 [9] is beneficial for these strains.

4 Conclusion

In this work, we developed a detailed model for the
propulsion and orientation of magnetotactic bacteria
(MTB) based on Stokesian dynamics and investigated
their swimming in the presence of an external mag-
netic field. There is a great variety of MTB in nature
that differ in the structure of their motility apparatus
(e.g., single- or multiflagellated with different localiza-
tions of the flagella on the cell surface) and the organi-
zation of their magnetosomes, the organelles providing
them with a magnetic moment (single chain, multiple
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Fig. 6 a Side view of the (double-)helical trajectories
observed for the swimming of a model bacterium without
and with inclined magnetic moment (at an angle θm = 45◦

relative to the flagellar axis and for B = 500BE). The direc-
tion of the magnetic field is upward. b Radius of the large

helix, and c net swimming velocity in the direction of the
magnetic field as functions of the angle between the mag-
netic moment and the flagellar propulsion axis (θm) for dif-
ferent field strengths. The insets in b and c show the corre-
sponding pitch and period of the large helix, respectively

chains, different chain orientation) [15]. Here, we stud-
ied a model MTB with the simplest motility apparatus,
a single flagellum, and varied its parameter as well as
the orientation of the magnetic moment and the field
strength (we note that a variation in the strength of
the magnetic moment has the same effect as the cor-
responding change in the magnetic field strength, as
only their product enters the orientational dynamics).
In the simulation, we have the possibility to investigate
a wide range of values for these parameters, some of
which are not biologically relevant but worth studying
as they might be applicable for predicting swimming
behavior in the case of artificial microsiwmmers.

After an initial characterization of our minimal model
bacterium, we considered two scenarios that are of
interest for the experimental study of magnetotactic
bacteria. On the one hand, we simulated U-turns upon
reversal of the magnetic field direction, a scenario often
used to measure the magnetic moment of the bacte-
ria [44]. On the other hand, we studied the three-
dimensional shape of swimming trajectories in a mag-
netic field, a quantity that has become accessible with
the introduction of 3d tracking methods [50] and that
provides information about swimming mechanisms as
shown recently for the Magnetococcus marinus MC-1
[9].

With respect to U-turns, our simulations qualita-
tively agree with a theoretical description based on a
moving point dipole (at least for the weak fields rele-
vant to experiments). However, they also point toward
a difficulty of using U-turns to determine the magnetic
moment of a bacterium, namely that the rotational fric-
tion coefficient must be known. Typically, a friction
coefficient is estimated for the geometry of the cell body,
but this may be a cause of inaccuracy as indicated by
our simulations. For strong fields, the U-turns in our
simulation do not follow the prediction of the point
dipole theory, because the relaxation of the flagellum
(which determined the direction of propulsion) is slower
than the relaxation of the magnetic moment. Thus, our
results suggest that using stronger fields than typically
used in experiments may result in novel behaviors such

as formation of kink in flagellum during a U-turn as
well as the observation of two different characteristic
U-turn times. These should provide insights into the
elastic response of the flagellum. However, we also note
that with these strong deformations of the flagellum,
other flagellar properties may come into play, in partic-
ular polymorphic transitions [20,34,51].

With respect to swimming trajectories, we observed
bacteria with a magnetic moment at a non-zero angle
relative to the flagellar axis to swim on double helical
trajectories, spiralling in the direction defined by the
magnetic field. Helical trajectories are seen in various
microorganisms and are of interest for different swim-
ming and sensing strategies [9,18,30,52–54]. When we
characterized the swimming velocity on these trajecto-
ries, we found that small inclination angles (θm < 20◦)
are not a significant disadvantage for swimming in real-
istic field strength. Large inclinations, as seen in some
MTB such as strain MC-1, would be a problem, as the
net velocity in the direction of the field is consider-
ably reduced by the helical motion. However, our recent
study [9] suggests that strain MC-1 avoids this prob-
lem by using a different swimming mechanism (cooper-
ative pushing and pulling flagella), which reduces the
inclination of the magnetic moment with respect to the
propulsion axis.

The simulation method presented here is quite gen-
eral and has indeed been used for different types of
swimmers, specifically Escherichia coli with multiple
flagella all over the cell body [33], Shewanella putre-
faciens with a single flagellum [8] and Magnetococcus
marinus with two flagella and a magnetic moment [9].
Since the model includes both the elasticity of the flag-
ellum and hydrodynamic interactions, it is particularly
suited to address questions of re-orientation as well as
flagellar synchronization in multi-flagellated microor-
ganisms [33,55,56].

Our model can also be used to characterize the swim-
ming of MTB for their potential applications in MTB-
inspired microrobots. For example, having a precise
control on the helical trajectory might be useful in
enhancing the bacterium sensing of external stimuli
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[49]. One can also extend the model to include a cargo
to be transported by the bacterium and study its effect
on the swimming bacterium. In general, our results here
and those in our previous work [9] show that Stoke-
sian dynamics provides a useful method to address the
diverse swimming mechanisms of magnetotactic bacte-
ria.
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tains supplementary material available at https://doi.org/
10.1140/epje/s10189-021-00038-5.
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