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Stokeslet and the Operator Extensions Theory

" LYU. POPOV

ABSTRACT. Operator version of the stokeslet method in the theory of
creeping flow is suggested. The approach is analogous to the zero-range po-
tential one in quantum mechanics and is based on the theory of self-adjoint
operator extensions in the space L; and in the Pontryagin’s space with an in-
definite metric. The problem of Stokes flow in two channels connected through
a small openings is considered in the framework of this approach. The case of
a periodic system of small openings is studied too. The picture of streamlines
for such flow is obtained.

1. INTRODUCTION

The use of singular solutions of Stokes equations is extremely use-
ful in the theory of creeping flow (low-Reynolds-number flow). Let us
consider the Stokes equations

V-7=90

(1)
—Vp + uAT = —A6(F ~ Tp).
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Here #(v;), p,u are a velocity, pressure and viscosity correspondingly.
The solution p,, #,:

Ps = (A. V)(Ps'r

1 . (2)
ud = EV(E Ap,) — Ap, — -2-(A - £0)Vips,

where

—(4r|Z — Tp|) ! in 3 — dimensional case,

Ps
—(2n) Un|¥ — &5 in 2 — dimensional case,

of the equations (1) is called a “stokeslet” [1]. One can use these so-
lutions for study of the Stokes flow near some bodies [2], for the inves-
tigation of the self-propulsion of microscopic organism through liquids
(1], for the research of interesting examples of creeping flows in a pipe
or between plates [3 - 5] and for many other purposes [6, 7]. The review
of applications of the stokeslet method is in the work of [8]. The situ-
ation in the investigation of this problem is similar to one in quantum
mechanics, where the singular solutions (zero-range potentials), which
have been put into operation by E. Fermi {9, 10|, became an instrument
for the research of many complicated atomic systems. Thirty years ago
F.A. Berezin and L.D. Faddeev [11] showed that from the mathematical
point of view, the specification of the zero-range potential defines a self-
adjoint extension of a symmetric operator. The basic advantage of the
indicated method is the fact that it allows one to construct explicitly
solvable models of complex objects. This operator approach gives one
the application of the zero-range potential method for solving of many
problems in absolutely different branches (from the theory of N-particles
quantum systems to the theory of elasticity and diffraction theory {12
- 20]. Thus, the field of applications of zero-range potential method is
expanded. It is possible because the operator approach reveals general
{mathematical) features of these physical problems. That is why it is in-
teresting to analyze the stokeslet from the point of view of the operator
theory.
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A plane flow in two channels connected through a small opening
is considered as an example of application of the suggested approach.
A stokeslet is a model if a small obstacle for a flow. But the opera-
tor approach allows us to understand that a model of a small opening
is essentially the same as a model of a small obstacle. Thus we have
now an opportunity to study a flow in domains connected through a
small opening. An example of such flow (two-dimensional flow between
straight lines) is considered in the paper. The picture of streamlines
in such two connected channels is obtained. It occurs that there is an
infinite sequence of eddies. The existence of eddies far from an obstacle
in creeping flow is known for many particular problems. Moffatt H.K.
[21] examined two-dimensional Stokes flow in a corner formed by two
intersecting rigid planes. In the same paper, Moffatt briefly considered
two-dimensional Stokes flow between parallel planes which may be re-
garded as the limiting case of flow in a corner formed by two intersecting
planes as the angle of the corner approaches zero. Moffatt showed that
the dimensionless stream function ¥ for the flow between parallel planes
at £ = +1 induced by an unspecified two-dimensional disturbance cen-
tered at y = 0 is

¥ =Re Z [An (s: sin (%z\nx) — tan (%An) €os (%,\nx))e_p"lyu

n=1

1 1 . (1 _1
B, (a: cos (E,un:c) - cot(é—yn) sin (Eunz))e éunlvl]

for y # 0, where A, and B,, are constants determined by the disturbance
driving the flow, and A, and u, satisfy the equations:

sinA, + Ap =0, siny, — pn =0, (3)

An =~ 27140 — D)7 4 i log ((4n — 1)7),
(4)
n 27 40 + D 4 i log ((4n + 1)7)



238 1.Yu. Popov

The expansion for ¥ is only implicit in [21], only the leading term is
actually considered. Moffatt was the first to discover that the leading
term in the expansion for ¥ is associated with an infinite sequence of
eddies on each side of the disturbance causing the flow. Later Hackborn
[3] gave a more detailed description of such flow. It is shown in my paper
that the analogous sequence of eddies is in the flow in two connected
channels. The eddies farthest from the opening in figure 1 are essentially
“Moffatt eddies” (or, more precisely, “Hackborn eddies”). The picture
of flow in a case of periodic system of point-like openings is considered.
It is interesting that there is an opportunity to change the character of
the flow by varying the distance between the openings.

2. STOKESLET

Let us consider first of all a 2-dimensional problem. In this case it
is convenient to introduce a stream function ¥ satisfying the relations

_ _ oY

- 517_23 U2 = —E"a

Then the Stokes equations lead to the following equation for the function
¥ A¥p = 0. Let us define a stokeslet as a zero-range interaction for the
biharmonic equation (the corresponding information concerning to the
biharmonic equation is in [22]).

™

Let us consider the operator A in the space L,(IR?) acted as the op-
erator A? and defined on the set of smooth finite functions from Ly(IR?)
vanishing near the point zero. The closure of this operator is a symmet-
ric operator with the domain

D(AY) = {u: u € L(R?), A%u € L(R?),

ou Pu .
u(0) = 55;(0) = 53?5—333_:'(0) =0, 1,5 =1,2}.

One can note that functions from D(A2) are continuous, and its
derivatives (of first and second order) are continuous too (u € C7 ) in
accordance with imbedding theorems, that is the boundary conditions
at the point z = 0 are correct.
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One can see that the operator A2 has deficiency indices (6,6). In-
deed, let us consider the fundamental solution g of the equation

Alg(z) + Kg(z) = §(z)
corresponding to the regular point k2(k > 0) of the operator A?,

(£,

g(g)zﬁlaj2 M@:

i : -
= g (Hs" (Vikr) + HP (V=ikn)),
and let us choose such derivatives g&{giﬂ, which belongs to the space
Ly(IR?). This fact takes place if j; + j2 < 2 (in this case the singularity
at the point £ = 0 is sufficiently weak). It means that the deficiency
indices are (6, 6).

To construct a self-adjoint extension it is necessary to describe the
domain of the adjoint operator. Taking into account the asymptotics of
the fundamental solution g one can obtain that any element  from the
domain of the operator A" takes a form:

2 2
u(w) = Z c;tjgriyxj(m) + E c?gz'i (2:) + ng(ﬂ'})-{-

f,7=1 i=1

(5)

2

2
+£&(z) (a0 - Za,-x,- + D aijgiiziz;) + uo(2).

i=1 1,57=1

Here ug € D(Ma), gij =1, i # 7, gii =271, 4,7 = 1,2,&(x) is a smooth
cutting function: £(z) = 1, |z| £ 1, é(z) = 0, |z] > 2. The function
(A%*u)(z) at the point z (z # 0) is computed as

(A5"u)(z) = 6*u(2).

The bilinear form
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I(u,v) = (AL, v) — (v, A}*)

on the elements from D(A2*) can be computed by taking into account
the representation (5):

I(u,v) =a§c] — cja§ + > _ (a¥el - cf — a)+
i=1,2

u o u
+ E - (alel; — cial))
i=1,2

It is necessary to select such linear subset of D(A2"), that the form
I annihilates on the elements of this subset to construct a domain of
self-adjoint extension of the operator AZ. It is an ordinary problem of
linear algebra in a space ©®. As a result we obtain

Theorem 1. The operator Al (eztension) is self-adjoint if and
only if A} C A% C A%*. Here D(A?) is such linear subset of D(AZ*)
having no eztensions that one of the following conditions is valid for the
boundary vectors of any function from the set D(A?)

1) U= (Uo,U]), Up= AUy, Uy = (Cgacilacgac;‘]:cﬁ:cgz);
Up = (ag,a},a¥,aly,aly,al,), A:C* - (% A= A",

2) U1 = AUQ, A: ([:6 —4(116, A= A*,

3) Up = a+y, Up =+ Ay, here a,3- are vectors from an arbitrary
orthogonal fized subspaces Nt and N-,Nt,N- ¢ €%, vy e N, N =
CSoN+tQN—, A: N - N, the operator A is self-adjoint and reversible.

It is more convenient very often to describe an extension using the
coefficients of the asymptotics of functions near the point zero and not
the coefficients of the expression (5). Using a well-known asymptotics
of the fundamental solution g one can show that an element u from the
set D(AZ2*) has the following asymptotics near the point zero:



Stokeslet and the Operator Extensions Theory 241

U] z| 0 =coriln r + 2¢17(In ) cos 8+
+ 2cor(In 7)sin 8 + ¢11(2in 7+ 1 4 2cos® 8)+
+ c128in20 + c32(2n r + 1 + 25in? §) + do— (6)
—ayrcos® — dyrsind + 2 G172 cos® 0+

+ 2781272 5in 20 + 27 Yas2r% sin? 0 + o(r?),

here rcos @ = 2y, rsinf = z,, the coefficients €p,¢i,¢ij coincides with
the corresponding coefficients from (5), the vector Uy, Uy = (do, a1, d2,
d11,812,822), satisfies the following correlation: [y = Up + BU;, here B
is a self-adjoint operator in €, which is determined by the asymptotics
of function g near the point zero. Using this notation we can reformulate
our statement:

Theorem 1°. The operator A® is self-adjoint if and only if Ak C
A? C A%*, here D(A?) is such linear subset of D(AZ"), having no ez-
tensions, that one of the following conditions is valid for the boundary
vector U of any function from the set D(AZ?)

1)U = (U,Un), Up = AUy, A: €8 -C5, A = A",
2) Uy = AU, A: €® Q% A=A~

3) Up=a+7, U =8+ Ay, here a, are such as has been described
above.

Various hydrodynamics applications of stokeslets are described in
the review of Hasimoto H., Sano O. [8). Let us discuss a relation be-
tween the solution of the model problem constructed in the framework of
self-adjoint operator extension theory and the solution of corresponding
“realistic” problem. We shall make a comparison using an example of
such problem- a problem of description of Stokes flow past a cylinder (a
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curve in R?). This (“realistic”, not “model™) problem was considered in
[2]. The flow is determined by the following correlation far from a body:

u(w — wo) = puwg + A+ xe+ 0(z™1), (7)
here

pw, = In (22) — czz7t,

Z=I'1+‘i.‘]:2, w::Ul—i‘Uz,

w = wp is a boundary condition on the cylinder, constant values A and
x are determined by a shape and a size of the cylinder. The value ¢
is computed by the matching of this solution with an external flow (23]
having the following internal asymptotics:

PW = Py + AooC + Xool-

Hence

B0 = 20 — (Reo = D))
[ Ao = A2 = Ixae=xt— "
The parameters A and x have been computed for some bodies [2]. For
example, A = —2 in a, x = o? for an elliptic cylinder with halfaxes
a {1+ 0%)and a (1 — ¢?). The value X is called usually the parame-
ter of equivalent circular cylinder and x is called the parameter of the
equivalent elliptic cylinder.

One can consider a model problem to describe a flow past a stokes-
let. It should be mentioned that this problem has a solution in an
explicit form (as has been described above) and the form is the same
as (7). It is easy to show that there exist such values of the extension
parameters that the model solution coincides with the asymptotics (far
from a body) of the solution of the “realistic” problem. The problem
of the parameters A and x determination is in such a way the problem
of choosing of the extension parameters from the point of view of the
operator theory. '
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3. DISTOKESLET

The described operator scheme does not include “higher stokeslets”
because the corresponding solutions have a strong singularity at the
point zero and don’t belong to the space L; But one can realize the
operator approach in this situation too. It is necessary to expand the
initial space by adding the corresponding singular solutions. Unfortu-
nately, this way leads to an indefinite metric space, but this fact does
not destroy the construction. Let us describe how to take into account
a distokeslet. We shall use an approach analogous to one in [24, 20].

Let A; be the following set of functions:

Ar ={f(z): f e L(R?), A% € Ly(R?),

/f(z)|z — zo|"*dz — converges}.
R2

hoi() =g7(z), hy = (A = do) ko,
where Ao is some negative value (a regular point of the operator A?),
g\7192)(z) is the corresponding derivative of the fundamental solution g.
Let U, be a set of elements which can be represented in a form
f=h+ahi+ec by,

where f € A;. We define a scalar product in /; by the following expres-
sion:

(fy0dhn = (frap1)a, +C{/h1§0_1d$+c_‘15/f1?f1_d$+
R2 R?

+ (T + D) / hiFidz

R2
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The topology in the set i) is defined by a standard manner [25]. The
form (f,¢)u, should be transformed to a diagonal form. The obtained
expression contains one “negative square”. One obtains a positive form
by replacing the corresponding sign “minus” by “plus”. This form gives
an expression for a positively definite scalar product, which is closely
linked with a topology. The closure of the set Z{; in a space with such
topology is a Pontryagin’s space H;. ’

Let us consider the operator A? with the domain

D(A?) = {f € A1, fr € WIS, f = fo + chi,h_y ¢ D(AD)},
where f; is such function from A,, that

(A% = o) f2 € Uh.

The operator A? acts as a square of the Laplace operator on the set A4;,
and the image of the element hy is such that
(A2 — Xo)hy = h_y.

The operator A? is a symmetric one. More over it is a self-adjoint one

because the following relation takes place:

(A? — M)D(AY) = U;.

Remark. One can note that not only Ag, but also the whole of
a negative half-axis belongs to the set of regular points of the operator
A?. The construction only depends on the choice of the parameter Xy,
but the space U; does not depend on it.

Let A} be a restriction of the operator A? onto the set

D(AYe)={f: feD(AY), ((A"-X)f;hor) =0}  (8)

The obtained operator Aj 4 is a symmetric one and has deficiency
indices (1,1). Indeed, the condition (8) means that the element h_, is
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orthogonal to the set of images of the operator A? — )g. There are no
other deficiency elements because the set U; is a dense subset of the
space II; in respect to the described topology.

It is necessary to study a “boundary form” J for the adjoint oper-
ator

J(f,0) = (AT~ 2o)f,9) — (fs (A% — o)), fre € D(ATY

to construct a self-adjoint extension. Let us obtain the following expres-
sion for the form J:

J(fyp) = efc®y - cd e,

here
¢f = (A - Xo)f1,h1). (9)

Indeed, an element f from the set D(A}%) can be represented in

aform f = f+ c_1h_y, here f € D(A?). The definition of a scalar
product in ; causes the following relationship

((A% = Xo)h1,h_1) = 0.

The operator A% acts as A? on the set D(A?). We obtain now the
expression for the boundary form J by taking into account a self-adjoint-
ness of the operator AZ,

Remark. The coefficient c{ is related with the asymptotics of
function f near the point zo. One can get this relationship by a trans-
formation of the expression (9) in accordance with the Green's formula:

ef =((=A% - 2)f1,ho1) = / ("’—:j‘fAf _ -g{—Ah_ﬁ-

.

AR _, LAY af o (Bh_l)
+ on /- on h"1—6$18z1 on +
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Bh_y 0 [Of & [(Bh_y
+ 8z, Jz, (B‘;) t fc'?_:z:%(_ﬁ)*

9% (of
15%(-6_”))‘13’ Ye={z: |zq - z| = ¢}.

It is necessary to find a linear subset of the set D(A%%) such that the
form J annihilate on this subset to construct a domain of the operator
A} . It is a simple problem of linear algebra similar to one in the second
paragraph. This investigation results in the following description of the
domain in question:

Theorem 2. The domain of self-adjoint extension of the opera-
tor Af,o consists of all elements from the set D(AY), satisfying the
condition ¢, = ac_y, where a is a real number.

This result is the description of distokeslet or more precisely of one
element of the distokeslet family (with fixed orientation). One can use
this operator approach for the description of other distokeslets and also
for stokeslets of higher orders.

Let us remark, how to change this scheme if we deal with a 3-
dimensional problem. In this case the Stokes equations can be repre-
sented in the following matrix form:

+(5) - (8)

— Kl
A= ( _OV f%) y 7= Vo
Let us consider the operator A?,
a2 - (B pAV+A
“\0 A ’

on the set of elements satisfying the condition V-% = 0. On this set the
equation reduces to the system of four Laplace equations {for every com-
ponent). That is we can construct the model for the diagonal operator

here
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diag {A,A,A,A} in a space of vector-functions (p,vy,ve,v3). Hence,
the construction of the model reduces to the standard zero-range po-
tential model (for the vector-functions). This model can be constructed
not only in the space L, (see, for example, [13, 14]), but also in an
extended space [20]. It should be noted that the model is constructed
here for the operator A? and not for the operator A, that is why it is
necessary to examine if our singular model function is a solution of the
initial equations or not. It is easy to show that the singular solution (2)
(see Introduction) is a model solution in the case when a dipole is taken
into account in the model Laplace operator.

4. CREEPING FLOW IN TWO CONNECTING CHANNELS

In this section we shall describe one example of application of sug-
gested approach. Let us consider two-dimensional flow in a channel
with straight boundaries (z = 2, £ = 0) which is connected with the
identical channel 27 (z = —2,z = 0) through the opening at the point
(0,0). Here z,y are Cartesian coordinates of a point. We suppose that
the following boundary condition is valid: ¥ = 3% = 0, z = 2, 0. The
described operator version of stokeslet approach can be modified for the
case when a singularity is at the boundary. Let us describe the modifica-
tion of the model for this situation. We shall consider the square of the
Laplace operator with the boundary condition mentioned above. Let
(A{)? be the restriction of the initial operator onto the set of smooth
functions, which satisfy the following condition near the point (0,0) = 7o
of the boundary:

DAY ={u: u € Ly(Q%), A%u e L(QT),

u(ro) = ul,(r0) = 2,5, (r0) = 0}.

The deficiency elements may be obtained by the following procedure.
Let ) be an internal point of @*. One can find the solution of the
problem:

Alg(r) + k*g(r) = 86(r — 1), 9(r)len = gplen = 0.

Here k* > 0. The asymptotics of the solution near the point rg is the
same as one of the fundamental solution. It is necessary to look for the
solution ¢ and its derivatives when 7y — 7o. It occurs that the function
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2
;—nf— only gives a non-zero limit (non-zero derivatives of higher orders
'.l

o
don’t belong to the space L;). This function is the deficiency element
of the operator (Al )?. That is, the deficiency indices of the operator
(A{)? are (1,1). One can show that the main term of the asymptotics of
the deficiency element near the point rg is ccos? @, where @ is the angle
between the vector r — rp and the normal at the point rp.

The analogous construction (the operator (Ag )?) is for the second
channel. Let the operator A2 be the orthogonal sum of these operators.
It is the symmetric one with the deficiency indices (2,2). The domain
of the adjoint operator consists of the following elements:

v = (u¥, u¥), vt = oFwt + gt + uf,
where
w® = 271 (k¥ + hT), vt =27 (A - by,

A = k% is a complex regular point for the operators AT, AT is the corre-
sponding deficiency element, uf € D(AZ). One can obtain the bound-
ary form [ for the adjoint operator:

I(f,8) = o} B} - Bfal + a7 B; - fra;

The domain of self-adjoint extension is a linear subset of the domain
of the adjoint operator, on the elements of which the boundary form
annihilates. It is easy to prove

Theorem 3. The domain of self-adjoint extension consists of all

elements from the domain of the adjoint operator, which satisfy the con-
dition:

(50) =4 (50) o (50) = (2:3).

Here A and B are Hermitian maltrices.

Remark. The richness of the extensions’ family (e.g., the fact that
the number of the deficiency elements for the case of singularity inside



Stokeslet and the Operator Extensions Theory 248

the domain is sufficiently large, see Section 2) allows us to simulate
different physical situation. If we choose, for instance, the extension for
which the main singularity of the element from it’s domain is a In r,
we obtain “a source of eddy” (a more common name for this singularity
is “line vortex” or “line rotlet”), and one can use it to describe, for
example, a flow due to a small rotating body. A conventional stokeslet
is represented by the singularity r {n r cos 8. In the case of the singularity
of the boundary we have the following main term of the asymptotics:
c+ cos® @, we obtain (when cye_ < 0) “a source of mass” for one channel
and “a point sink” for the second one, hence, one can use this type of
singularity to simulate the flow through a small aperture. In this section
we deal with the extension of this type.

There is not necessity to describe thoroughly all extensions of the
same type (and we shall not do it) to obtain a result (mentioned above)
that there exist a series of eddies. Only the intensity of eddies depends on
the choice of the extension, but its sizes and the geometry of the flow does
not depend on it. Let us fix an extension. One can get the corresponding
stream function (singular solution of the biharmonic equation) using a
Fourier transform:

=21 Re Z(An(x + 1)6—%% kly B.(z & 1)6'7?#,.|yl) (10)

n=1

Here the sign “” corresponds to the first channel, the sign “+" corre-
sponds to the second one.

zsin(271 A pz) cos(271A,) — sin(271 Ay ) cos(27 X 2)

PN A W T |
COS\ 7RI °

An(z) =

z cos(2™ ) sin(2  py) — cos(27 a ) sin(27 paz)
1

Bale) = cos(pn) — 1

An and u, are the roots of the equations:

sin{A,)+ Ap =0, singn — pu, =0.
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One can obtain now a picture of streamlines for the flow as a simple
consequence of this consideration (see figure 1). We suppose that the
unperturbed solution is following: a flow with a stream function

o = y(4" 12 — 87 1z%), 0<z <2

in the right channel caused by moving of the channel boundary (z = 2)
with constant velocity (i.e. 1y satisfies the boundary conditions 3y =
8—;.'!;;“ =0,z=0,v% =0, % = const., z = 2) and the absence of flow
in the left one. While computing streamlines we suppose that v = 1,
An, in for n > 5 are given by the asymptotic formulae (4) and first five
numbers A,, u, are computed approximately by solving the equations
(3) (these values are, for example, in [26], see table 1). The approximate
solutions of the equations (3) is obtained by the complex form of New-
ton’s method. Namely, let H(z) = sinz+ z and z; be an approximation
of the root of the equation H(z) = 0. The next approximation is

zjp1 = z; — H(z;)(H'(z;))7".

An Hn —l
4.21239+42.25073i | 7.49768+2.76858i
10.71254-3.10315i | 13.9000+4-3.35221i
17.07344-3.55109i | 20.2385+3.71677i
23.3984+3.85880i | 26.5545+3.98314i
29.70814+4.09370: | 32.8597+4.19325i

| o o 0o =] 3

Table 1. First roots of the equations
sin(An) + An =0, sinpn — pn = 0.

Starting with the asymtotic form for A,, it was found that only two
or three iterations were necessary to obtain eight-figure accuracy. The
analogous consideration is for the second equation.

The streamlines of the flow depicted in figure 1 are computed us-
ing a simple superposition of the unperturbed flow 9y and the stream
function 4 in equation (10). One can see that the far-field flow in the
first channel is similar to the unperturbed flow (without opening), and



Stokeslet and the Operator Extensions Theory 251

the far-field flow in the second channel (where a flow is absent with-
out opening) consists of an infinite set of eddies which are separated by
zero streamlines. Each eddy of the far-field flow has a length (in the y-
direction) of about 2% (ImA;)~! ~ 2.8: moreover, owing to the presence
of the exponential factor in the expression (10), the flow at correspond-
ing points in adjacent eddies (i.e. at points with the same z-coordinate
but differing by approximately 2x(ImX;)~! in the y-coordinate) differs
in speed by a factor approximately of exp(rReA; (ImA;)~1) 2 360 and
is in opposite directions.

Remark. Of course, one can consider another profile ¢ of the
unperturbed flow. Then due to the linearity of the problem the general
solution will be 1y + 2.

Let us consider now the situation when there are periodic set of
point-like apertures at the points (0,% a), n is an integer. The solution
of model] problem can be constructed in an explicit form in this case too.
The stream function on one period (0 < y < @) is

P =21 Re Z(An(x + ){exp(—-2" Ay}t

n=1
+ 2exp(—271Ana)(1 — exp(=2"1Ana)) " Lch(27 A y))+
+ Bn(z £ 1)(exp(~27" pay)+

+ 2exp(—27" pna)(1 — exp(~=27"pna)) " ch(27 1ay))).

The computation of streamlines is analogous to the previous one. The
character of the flow depends on the ratio of the period a to the asymp-
totic period of eddies (which is related with the width of the channel).
For the big period (a = 10) the flow in the left channel consists of series
of eddies (figure 2), which are separated by zero streamlines as for the
case of one opening. But for smaller values of the period the separating
zero sireamlines are less numerous (figures 3), and further decreasing of
the period causes the appearance of a flow without eddies near the wall
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opposite to the openings (figure 4, ¢ = 2). We do not draw the picture of
streamlines in the right channel because there is a simple superposition
of flow similar to one in the left channel and the main unperturbed flow.
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Fig. 1. The picture of the streamlines for the case of one aperture . The
values of 7 is indicated.
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Fig. 2. The picture of the streamlines for the case of periodic system of
apertures. @ = 10.
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Fig. 3. The picture of the streamlines for the case of periodic system of
apertures. ¢ = 4.25.
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Fig. 4. The picture of the streamlines for the case of periodic system of
apertures. a = 2.
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