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Stokesíet and the Opera tor Extensions Theory

I.YU. POPOV

ABSTRACT. Operator version of the stokeslet method in tbe theory of
creeping flow is suggested. TIle approach is analogous to the zero-range po-
tential one in quantum mechanics and ja basal on the thecry of self-adjoint
operator extensions in the apace L2 and in the Pontryagin’s apace with an in-
definite metric. The problem of Stokes llow in two channeis connected through
a amail openinga ja considered in the framework of thia approach. The case of
a periodic system of amail openinga ja studied too. The picture of streamlines
for such flow ja obtained.

1. INTRODUCTION

Ihe use of singular solutiona of Stokea equationa is extremely use-
ful in the theory of creeping fiow (low-Reynolda-number flow). Let us
consider the Stokea equationa

V•6=O

(1)
—Vp+gA6= —Á6(M-- lo).
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Here 6(v1), p , ji are a velocity, presaure and viscosity correapondingly.
TIle solution p3, y3:

=

(2)
—(Á.p6 = ~V(S. Le.> — Lp, — 1
2

where

f —(4ir¡±— S0¡)—
1 in 3— dimensional case,

S0s =

1 —(2r)’ln¡~— £o¡ in 2— dimensional case,

of the equationa (1) ia called a “atokeslet” [1]. One can use these so-
lutjona for atudy of the Stokea fiow near sorne bodies [2],for tite invea-
tigation of the aelf-propulaion of microscopic organism tIlrough liquida
[1], for the research of intereating examplea of creeping flowa in a pipe
or between platea [3 - 5] asid for many otIler purposes [6, 7]. TIle review
of applications of tite stokealet method is in the work of [8]. TIle aitu-
atjon in the investigation of tIlia problem is similar to one in quantum
mechanica, where tIle singular solutiona (zero-range potentiala), which
have been put into operation by E. Fermi [9, 10], becante an inatn¡ment
for tIle research of many complicated atomic systems. Thirty yeara ago
F.A. Berezin aud L.D. Faddeev [11]showed that from tIle mathematical
point of view, the apecification of tite zero-range potential defines a aelf-
adjojnt extension of a symmetric operator. Tite basic advantage of the
indicated method is tite fact that it allowa one to conatruct explicitly
solvable modela of comjilex objects. TIlia operator approach gives one
tite appljcation of tIle zero-range potential method for solving of many
problema in absolutely djfferent brancIlea (from tIle theory of N-particles
quantum ayatems to tite theory of elasticity and diffraction tIleory [12
- 20]. Titus, tite fleid of applications of zero-range potential metIlod ja
expanded. It ja posaible because tite operator approach reveala general
(matitematical) features of these phyaical problema. That ja wIly it is in-
teresting tQ analyze the stokeslet from tite point of view of tite operator
theQry.



Stokeslet and the Operator Extensions Theory 237

A plane fiow in two citanneis connected through a amail opening
ja conaidered as an example of application of tite suggeated approach.
A stokeslet ia a model if a amail obatade for a flow. But tite opera-
tor approacit allowa ua to understand that a model of a amaH opening
la essentjally tite aame as a model of a amail obstacle. Titus we itave
now arz opportunlty to atudy a fiow in domaina connected titrougit a
amail opening. An example of such flow (two-djmenaional flow between
straigIlt lines) la conaidered in tite paper. Tite picture of atreaznlines
in aucIl two connected channela is obtained. It occura that titere ia arz
infinite sequence of eddiea. Tite existence of eddies far from arz obstacle
in creeping flow is known for many particular problems. Moffatt H.K.
[21] examined two-dimenaional Stokea fiow in a comer formed by two
interaecting rigid planes. In tIle sanie paper, Moffatt briefly conaidered
two-dimenaional Stokea flow between parailel planes whicIl may be re-
garded as tite limiting case of fiow in a comer formed by two intersecting
planes as tite angle of tite comer approacites zero. Moffatt sitowed titat
tIle dimensionlesa atream function tu for tite fiow between parallel planes
at a: = ±1induced by aix unspecified two-dimenaional diaturba>nce cen-
tered at y = O is

~P=ReZ [Ajx sin (~Anx) —tan QA~~) cos QAnX))eixnh¡¡+

Bn(a:cos ~ — cotQ jin) sin

for y # 0, witere A,, and B,, are conatanta determined by tite diaturbance
driving tite fiow, and A,, and jin satiafy tite equationa:

amA,, + A,, = 0, sin ji,, — ji~ = 0, (3)

A,, SM 21(4n — 1)r + i log ((4n —

(4)
ji,, SM 2’(4n + 1)r + 1 log ((4n + 1»r)
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Tite expanaiQn for IP is only impllcit in [21], only tite leading term is
actuaily conaidered. Moffatt was tIle first to discover titat tite Ieading
term in tite expansion for IP ja associated witit an infinite aequence of
eddies on eacit side of tite diaturbance cauaing tite fiow. Later llackborn
[3]gaye a more detailed deacription of aucit fiow. It ja aitown in my paper
titat tite analogous sequence of eddiea ja in tite fiow in two connected
citanneis. Tite eddiea fartitest from tite opening in figure 1 are essentiaily
“Moffatt eddies” (or, more precisely, “llackborn eddiea”). Tite pjctnre
of fiow in a case of periodic system of point-like openinga la considered.
It la intereating that titere ja an opportnnity to citange the cIlaracter of
tite fiow by varying tite diatance between tIle openinga.

2. STOKESLET

Let us conaider firat of aB a 2-dimensional problem. In tIlia caae it
is convenjent to introduce a atrea.m function ‘P aatiafying tite relationa

04’ 04’
— y—-~ = 0a:¡

Titen tite Stokes equationa lead tc> tite following equation for tite function
4’: A24’ = O. Let us define a atokealet as a zero-range interaction for the
hiharmonic equation (tite correaponding information concerning to tite
bjharmc,nic eqllatiQn ja in [22]).

Let us conaider tite operator A~ in tite apace L
2(]R

2) acted as tite op-
eratQr A2 and defined on tite set of amooth finjte functions from L

2 (IR
2)

vanxahing near tite point zero. Tite closure of tIlia operator ja a symmet-
nc Qperator wjtit tite doman

= {u: u E L
2(IR

2), Ñu ~

Oit 02uu(O) = —(0) = (0) = 0, i,j = 1,2}.
Ox

1 0a:10x5

One can note titat functions from D(A¿) are continuona, and ita
derivatives (of first and second orden) are continuous too (u E C,0~) in
accordance witIl imbedding titeorema, that is tite boundary conditions
at tite point a: = O are correct.
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One can see that tite operator A~ Ilas deficiency indices (6,6). In-
deed, let ua conaider the fundamental solution g of tIle equation

A2g(a:) + k2g(z) = 6(x)

correaponding to tite regular point k2(k> 0) of the operator A2,

g(x) 1 1 eXPeGÑX»dc —

~ + k2

= ~(H~~(V~r) +

and let ¡¡a chooae such derivatives ~ whjch belonga to the apace
L

2(]R
2). TIlia fact takes place if j’ + j2 =2 Qn titis case tIle aingnlarity

at tite point a: = O ja aufficiently weak). It meana titat tIle deficiency
indjces are (6, 6).

To construct a self-adjoint extenajon jt is neceaaary to describe the
domain of tite adjoint operator. Taldng into account tite asymptotics of
tite fundamentad solution g one can obtain tIlat any element it from tite
domain of tite operator A~ takes a form:

2 2

it(a:) = >3 c’jgx~,t1(a:) + >3c’g~~(a:) + cog(a:)+
1,5=1

(5)
2 2

+ E(x)(ao — >3 ata:, + >3 a15 g15z1a:5) + uo(z).
1=1 t,j=1

llene uo E D(Ao), 915 = 1, ~ j, gjj = r’, 1,5 = 1,2,«a:) is a amooth
cutting function: «a:) = 1, x¡ =1, ¿(a:) = O, a: =2. Tite function
(A~u)(a:) at tite point a: (a: # 0) ia computed as

(Agu)(a:) = 62u(a:).

TIle blijuear form
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I(u,v) = (A~*it,V) — (it,A~*v)

on tite elementa from D(A~7) can be computed by taking into account
the representation (5):

I(u, y) =a¿~ — 4~3 + >3 (a’~— —

1—1 2

+ >3 (a~~ —

t,j=1,2

It ja necesaary to aelect aucIl linear aubaet of D(Ag*), titat tIle form
1 annjhilates on the elementa of tIlia aubset to construct a domain of
self-adjoint extension of tIle operator ¿j. It is an ordinary problem of
linear algebra in a apace (U6. As a reault we obtain

Thearem 1. Tite opera tor A~ (ca:tcnsion) is self-adjoint il and
only if á~ G A~ ci A¿*. Here D(A~) is such linear subset of D(A~)
itaving no exÉensions that one of tite following conditions is valid for tite
boundary vectors of anyfunctionfrom tite set D(A3)

1) U = (Uo,Ui), Uo = Al]
1, U1 =

U0 = (ag,ay,a’,ay1,a~j2,a’2), A: (U6 .4q~6, A =

2)Ui=AUo,A:C
6—*C6 A—A”,

3) U
0 = a + y, Uí = /3 + Ay, itere a,/3- are vcctors fromn un arbitrary

ortitogonal fixed subspaces N+ and NjN+,N c (U
6, y E IV, N =

C6eN+eN, A : N —* N, tite operator A is self-adjoint and reversible.

It ja more convenjent very often to describe an extension uaing tite
coefficients of tite asymptotica of functiona near the point zero and not
the coefficients of tite expression (5). Using a well-known asymptotica
of tite fundamental solution g one can show titat an element it from tite
set fl(A~”) has tite folLowing asymptotics near the point zero:
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=c0r
2ln y +2cír(ln r)coaó+

+2c
2r(ln r)ainó+cí¡(21n yA- 1+2coa

2O)+

+cí
2sin2G+c22(21nr+1+2ain

2O)+áo— (6)

—áírcos6—á
2rain6+2’á11y

2cos26~

+ 21ñ¡
2r

2 sin 26 + 21ñ
22r

2 sin2 6 + o(r2),

Ilere rcoa6 = a:
1, yajn6 = a:2, tite coefficienta co,e1,cq cojncides with

the corresponding coefficients from (5), tIle vector Uo, Uo = (ña, &1,&2,
aíi,a12,ñ22), satiafies tite following correlation: Uo = Un + BU1, here E
ja a self-adjoint operator in (6, which is determined by tIle asymptotics
of functian g near tite point zero. Using tIlia notation we can reformnlate
our statement:

Theorem 1’. Tite operator A~ is self-adjoint if and only íf A~ ci
ci A~”, itere D(A~) is sucit linear subsct of D(A5”), itaving no ex-

tensions, that mw of tite following conditions is valid for Éitc boundary
vector U of any function frorn tite set D(A~)

QÚ=(Úo,U1), Úo=AU1, A:C
6—*C6 A—A,

2)U
1=AUo, A: (U6>q~C, A—A

3) Úo = a + y, U1 = fi + Ay, itere cfi are sucit as itas been described
aboye.

Varioua Ilydrodynamics applications of atokealeta are described in
tite review of Haajmoto II., Sano 0. [8]. Let ua diacuss a relation be-
tween tite solution of tite model problem constructed in tite framework of
self-adjc>int operator extension titeory and tite solution of correaponding
“realistic” problem. We sitall make a comparison using arz example of
sucIl problem- a problem of description of Stokea fiow past a cylinder (a
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curve in ]R2). TIlja (“realistic”, not “model”) problem was conaidered in
[2]. Tite flow ja determined by tIle following correlation far from a body:

ji(w — tilo) = pino + A~+ xc+ O(x1), (7)
Ilere

— —1

pw,=Un(zfl—czz

z = a:
1 + za:2, tu = = — 1V2,

tu = tu0 is a boundary condition on the cylinder, constant valuea A and
x are determined by a ahape and a size of the cylinder. TIle value c
¡a computed by the matching of tIlia solution with aix externad fiow [23]
itaving tite following internad asymptotics:

jito = jito. + Ax,~ + y00c.

Hence

= ¡4(A00 — A)iflo — (x00 — Ñ)w

]

A00 — A¡
2 — IXoo — x12

The parametera A and x Ilave been computed for sorne bodies [2]. For
example, A = —2 lii a, x = o~2 for an elliptic cyllnder witIl halfaxea
a (1 + a2) and a (1 — ,2). Tite value A is called nauaily tIle parame-
ter of equivalent circular cylinder and x ja called tIle paraneter of tite
equivalent elllptic cylinder.

One can conaider a model problem to describe a fiow past a stokea-
let. It should be mentioned that tIlia prablem has a solution in an
explicit form (as has been described aboye) and tite form is the sanie
aa (7). It is easy to ahow tIlat titere exiat such values of tite extension
parametera titat the model solution coincides with tite aaymptotica (far
frQm a body) of tite solution of the “reaflatic” problem. Tite problem
of tite parametera A and x determination is in auch a way the problem
of citooaing of tite extension parametera from tite point of view of tite
operator tIleory.
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3. DISTOKESLET

The described operator acheme does not include “higIler stokealets”
becauae tite correaponding solutiona Ilave a strong singularity at tite
point zero and don’t belong to tite apace L2 But one can realjze tIle
operator approach in this situation too. It is neceaaary to expand the
injtjal apace by adding tite correspondjng aingular solutiona. Unfortu-
nately, tIlia way leada to arz indefinite metric apace, but thjs fact does
not deatroy tite conatruction. Let ¡¡a describe Ilow to take into account
a diatokeslet. We ahalí use an approach analogoua to one in [24, 20].

Let A1 be the following aet of functiona:

A1 ={f(a:): 1 E L2(IR
2), A2f E

I f(a:)¡x — x
0L

4da: — converges}.

h..
1(a:) =g(ii~>¡)(a:), it1 = (A

2 —

where A
0 is some negative value (a regular point of the operator A

2),
g(51152>(x) is tIle correaponding derivative of tite fundamental solution g.
Let U

1 be a set of elements whicit can be represented in a form

1 = 1’ + c1h1 + c.4h.1,
wIlere 1 E A1. We define a acalar product in U1 by tite following expres-
sion:

(1, so)u1 = (A~ soí)& + cff h1iflda: + fJTda:+
1V

+ (cfJ1 + ¿1cf) 1 it1&1da:
1V
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Tite topology in the set U1 is defined by astandard manner [25]. Tite
form (1, so)u1 ahould be tranaformed to a diagonal form. Tite obtained
expreaaion containa ane “negative aquare”. One obtains a positive form
by replacing the correaponding sign “minus” by “plua”. Thia form gives
an expression for a poaitively definite acalar product, which is cloaely
ljnked with a topology. Tite closure of tite set Uí in a apace with auche
topology ja a Pontryagin’a apace TI~.

Let us consider tite operator ¿2 wjth the domain

4 locD(Ñ) = {f E Áí, 1’ E W2’ , fi = f~ + eh1,h..<¡ «

witere 12 is sucit function from Ai, that

(¿2 — Ao)f2 E U1.

TIle operatQr A? acta as a aquare of the Laplace operator on tite set A1,
and tite image of the element /~1 is sucit that

(¿2 — Ao)hí = ¡u.1.

Tite operator ¿2 is a symnzetric one. More over it is a self-adjoint Qne
because tite following relation takea place:

(¿2 — Ao)D(A
2) = U

1.

Remark. One can note tIlat not only A0, but also the witole of
a negative hall-axis belonga to tIle set of regular pointa of tIle operator
A

2. The construction only dependa on tite cIloice of the parameter A
0,

but the apace Uí does not depend on it.

Let A~0 be a reatriction of tite operator ¿2 onto the set

D(A~,0) = {f: fE D(A~), ((¿2 — A0)f,h1) = 0}. (8)

The Qbtalned operator A ja a aymmetric one and Ilas deficiency
indices (1,1). Indeed, tite condition (8) meana tIlat tite element h1 la
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ortitogonad to tite set of imagea of tite operator ¿2 — A<>. Titere are no
otiter deficiency elements because the set U1 is a dense aubset of the
apace II~ in reapect to tite described topology.

It la neceasary to atudy a “boundary form” J for tite adjoint oper-
ator

.J(f,so) = ((A — Ao)f,so) — (f,(A~% — An)so), f,cp E D(A~%)

to conatruct a aelf-adjoint extension. Let us obtain tite following exprea-
sion for tite form J:

J(f, so) = cf e!~ —

Ilere

f = ((¿2 — Ao)f1,h...i). (9)
cl

Indeed, an element 1 from the set D(A%) can be represented in
a form 1 = f + c..1h..1, itere ¡ E D(A3). Tite definition of a acalar
product in U1 causes tite following relationsitip

((¿2 — A0)h1,h..1) = O.

TIle operator A~3 acta as ¿2 on tite set D(A
2). We obtain now the

expression for tite boundary form J by taking into account a aelf-adjoint-
nesa of the operator A2.

Remark. Tite coefficient cf la related with the asymptotics of
function f near tite point a:

0. One can get titia relationahip by a trana-
formation of tite expresaion (9) in accordance witit tIle Green’s formula:

Ok..1 _ __cf =((~¿2 — Aa)fi,h~i) = On Af
01A1u.i+

st

-1- _____ f———---, ——— Ñ2
OAMíOAfit Of 0 , Ok..

1
On

48n~ Oa:íOa:í \, On ) +
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+ 8h~í8(O1) 82 (ah)

— iti~2j~L))ds, fl~ = {a:: ¡a:
0 — xl = ej.

It ja neceaaary tofind alinear aubset of tite set D(A~) sucIl titat tite
form J anniitilate on tIlia aubaet to conatruct a domain of tite operator
At0. It is a simple problem of linear algebra similar to one in the aecond
paragrapIl. Thia investigation resulta jn tite following descriptjon of tite
domain in question:

Theorem 2. Tite dornain of self-adjoint extension of tite opera-
tor A?0 consists of alt elemnents frorn tite set D(A?%), satisfying tite
condition eí = ac.1, initere a is a real number.

TIlia result is tite description of diatokeslet or more precisely of one
element of tite distokealet family (witit fixed orientation). One can use
tIlia operator approach for the deacription of otiter distokeslets and a1sQ
for stQkealets of higIler orders.

Let us remark, itow to citange tIlia sciteme if we dea.l witIl a 3-
dimensional problem. In tIlia case tite Stokea equationa can be repre-
sented in tite following matrix form:

itere

A=t7 =úV~ (vi)

Let us consider tite operator A
2

A2=Q~ ~A1+A)

on tite set of elementa satisfying tite condition V•6 = O. On tIlia set tite
equation reduces to tite aystem of four Laplace equations (for every com-
pQnent). That la we can construct tite model for tite diagonal operator
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diag {A,A,A,A} in a apare of vector-functions (p,t’i,V2,va). llence,
tite construction of tite model reduces to tite standard zero-range po-
tentiad model (for tite vector-functiona). TIlis model can be conatructed
not only in tite apare L2 (see, for example, [13, 14]), but also in arz
extended apare [20]. It aitould be noted titat tite model is conatructed
itere for tite operator A

2 and not for tite operator A, titat ja wity it is
necessary to examine if our singular model functian ja a solution of tite
initial equationa or not. It is easy to aitow that tite singular solution (2)
(see Introduction) is a model solution in tite case when a dipole ja taken
into account in tite model Laplace operator.

4. CREEPING FLOW IN TWO CONNECTING CHANNELS
In thjs section we sitail describe one example of application of sug-

geated approarit. Let ¡¡a consider two-dimensional fiow in a citannel SV~
witit straigitt boundariea (a: = 2, a: = 0) witicit is connected witit the
identjcal citannel fha: = —2,z = 0) titrougit tite opening at tite point
(0,0). Here a:,y are Cartesian coordinatea of a point. We auppoae titat
tite following boundary condition is valid: 4’ = — O a:

— , =+2,0. Tite
described operator version of stokeslet approacit can be modified for tite
case witen a sjngularity ja at tite boundary. Let ¡¡a describe tite modifica-
tion of tite model for this situation. We ahalí conaider tite aquare of tite
Laplace operator with tite boundary condition mentioned aboye. Let
(At)2 be tite reatriction of tite initial operator onto the set of amootit
functiQna, witicit satisfy tite following condjtion near tite point (0,0) = y

0

of tite boundary:

D(At
2) ={u: u E L

2(fl~), Ñu E
II

itfro) = u~1,.(ro) = u~~.(ro) = 01.
Tite deficiency elementa may be obtained by tite following procedure.
Let 4 be an internad point of fl~. One can find tite solution of tite
problem:

A
2g(r) + k2g(r) = 6(r — 4), g(r)¡oo = g~,Ian = O.

Mere k2 > 0. The asymptotics of tite solution near tite point yf> ja tite
same aa one of tite fundamental solution. It is necesaary to look for tite
solution g and ita derivativea witen r~, —* yo. It occura titat tite function
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02—e~,, only gives a non-zerQ limit (non-zero derjvatjvea of itigiter ordera
odon’t belong to tite apace L2). TIlia function is tite deficiency element

of tite operator (At)
2. Titat la, tite deflciency indices of tite operator

(At)2 are (1,1). One can sitow titat tite main term of tite aaymptotica of
tite deficiency element near tite point y

0 is ecos
2 6, where 9 ja tite angle

between tite vectQr y — yo asid tite normal at tIle point ro.

Tite analogous conatruction (tite operator (A&)2) ja for tite second
citannel. Let tite operator A~ be tite ortitogonal sitm of titese operators.
It is the symmetric one witit tite deficiency indices (2,2). Tite domain
of tite adjoint operator conaists of tite following elementa:

u=(utufl,it±=atn++/3+v+ +ut,

witere

— 21(h + itfl, y1 = 21(h~ — ¡ifl,
A = k2is a complex regular point for tite operatora A~, 4 js tite corre-

+sponding deficiency element, u<~ E D(A~). One can olitain tite bound-
ary form 1 for tite adjoint operator:

1(1, ~)= a}/3t — /3fl4 + a¡/3; — fiya;

Tite domaS of self-adjoint extension is alinear aubset of tite domain
of tite adjoint operator, on tite elementa of whicit tite boundary form
anniIlilates. It ja easy to prove

Titeorem 3. Tite dornain of self-adjoint extension consists of al!
clements from tite dornain of tite adjoint operator, witicit satisfy tite con-
dition:

($) =A(~ ) or cc(s) — - (s))

Here A and B are Hermitian matrices.

Remark. Tite ricIlnesa of tite extenaions’ family (e.g., tite fact tIlat
tite number of tite deficiency elementa for tite case of aingularity inside
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tite domain ja aufficiently large, see Section 2) a]lows na to simulate
different pIlyaicad sjtuation. If we cIlooae, for instance, tite extension for
witicIl tite man singularity of tite element from it’s domain ja a In r,
we obtain “a aource of eddy” (a more common name for titis aingularity
is “une vortex” or “Une rotlet”), and one can use it to describe, for
example, a fiow due to a amail rotating body. A conventional stokealet
is represented by tite singularity y lii y cos e. In tite case of tite singularity
of tite boundary we itave tite following main term of tite aaymptotica:
c±cos2 e, we obtain (when c+c... < 0) “a saurce of masa” for one citannel
and “a point aink” for tite second one, itence, one can use tIlia type of
singularity to simulate tite fiow througit a amalí aperture. lii titia section
we deal witit tite extension of tIlia type.

Titere is not necessity to describe tIlorougitly alt extenajona of tite
same type (and we sitalí not do it) to obtain a result (mentioned aboye)
titat titere exista series of eddies. Only tite jntenaity of eddjes dependa on
tite citoice of tite extension, but ita sizea asid tite geometry of tite fiow does
not depend on it. Let us fix an extension. One can get tite corresponding
atrean function (singular solution of tite biIlarmonic equation) uaing a
Fourier transform:

00

4’ = 2,rRe >3(A,,(a: ±l)CAxfl¡vI + B,,(z ±1)e?h’niVI) (10)
n= 1

Here tite sign “-‘~ corresponda to tite first citannel, tite sign “+“ corre-
sponda to tite second one.

a:sin(21A,,a:)cos(2tAn) — ain(21A,,)cos(2’A,,a:

)

cos(A,,)+1

a: coa(2’p,,z)sin(2’p,,) — cos(21ji,,)sin(21ji,,z

)

B,da:) cos(g,,) — 1

A,, and ji,, are tite roots of tite equationa:

sin(A
72) + A,, = 0, ainji,, — ji,, = 0.
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One can obtain now a picture of atreanilines for tite fiow as a simple
conaequence of this consjderation (see figure 1). We suppoae titat tite
unperturbed solution ja following: a flow witit a stream function

4’o = y(4’a:2 — 8’a:3), O < a: < 2
in tite rjgIlt citannel caused by moving of tite channel boundary (a: = 2)
with constant velocity (i.e. 4’o satisfies tite boundary conditiona 4’o =
84’o 84’o

= 0, a: = O, 4’o = O, = const., a: = 2) asid tite abaence of fiow
in tite left one. Witile computing streamlines we suppose titat y = 1,
A,,, ji,, for mt> 5 are given by tite asymptotic formulan (4) aud first five
numbers A,,, ji,, are computed approximately by aolving tite equationa
(3) (titese values are, for example, in [26],see table 1). Tite aliproximate
solutiona of tite equationa (3) is obtained by tite complex form of New-
ton’s metitod. Namely, let H(z) = sjnz+z and z~ be an approximation
of tite root of tite equation 11(z) = 0. Tite next approximation la

= —

mt A,, ji,,

Y 4.21239+2.25073i 7.49768+2.76858i
2 10.7125+3.10315i 13.9000+3.35221i
3 17.0734+3.55109i 20.2385+3.71677i
4 23.3984.j-3.85880j 26.5545+3.98314i
5 29.7081+4.093701 32.8597+4.193251

Table 1. First roots of tite equationa

sin(A
72) + A,, = 0, sin ji,, — ji» = o.

Starting witit the asymtotic form for A,,, it was found titat only two
or titree iterationa were necesaary to obtain eigitt-figure accuracy. Tite
analogous conaideration is for tite second equation.

Tite atreamlinea of tite fiow depjcted in figure 1 are computed us-
ing a simple superposition of the unperturbed fiow 4’~ and tite atrean
functjon 4’ in equation (10). One can see tIlat tite far-fleid fiow in tite
first channel is similar to tite unperturbed flow (without opening), and
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tite far-field fiow in tite second citannel (witere a fiow ja absent with-
out opening) consiats of an infinite set of eddies witich are separated by
zero streamlinea. Eacit eddy of the far-field fiow itas a lengtit (in tite y-
direction) of about 2~r (ImAi)1 2.8: moreover, owing to tite presence
of tite exponential factor in tite expresaion (10), tite fiow at correapond-
ing pointa in adjacent eddies (i.e. at points witit tite sanie a:-coordinate
but differing by approximately 2ir(IniAi)’ in tite y-coordinate) differa
in speed by a factor approximately of expQrReAí (ImAi)1) ~ 360 and
is in opposite directiona.

Remark. Of courae, one can consider anotiter proifie 4’~ of tite
unperturbed flow. Titen due to tite llnearity of tite problem tite generad
solution will be 4’~ + 4’.

Let us consider now tite situation witen titere are periodic set of
point-like apertures at the pointa (0, mi a), mt is an integer. Tite solutjon
of model problem can be constructed in an expllcit form in tliia case too.
Tite atream function on one period (0 c y .c a) is

00

4’ =2rRe >3(A,,(a: ±1)(exp(—21A,,y)+

+ 2exp(—21A,,a)(1 — exp(—21A,,a)fl1cit(21A,,y))+

+ B,,(a:±

+ 2exp(—21ji,,a)(1 — exp(—2’ji»a))1cit(21ji,,y))).

Tite computation of atreamljnea is analogous to tite previous one. Tite
citaracter of tite fiow depends on tite ratio of tite period ato tite asymp-
totic period of eddiea (which ja related wjtit tite widtit of tite channel).
Por tite big period (a = 10) tite flow in tite left citannel consista of series
of eddies (figure 2), witicit are separated by zero streamlines as for tite
case of one opening. But for sma]ler values of tite period tite separating
zero streaxnlines are leas numeroua (figures 3), and furtiter decreasing of
tite period causes tite appearance of a fiow wititont eddies near tite wall
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opposite to tite openinga (figure 4, a = 2). We do not draw tite picture of
atreanljnes in tite rigitt citannel because titere is a simple superposition
of flow similar to one in tite left citannel asid tite main unperturbed flaw.
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Fig. 2. Tite picture of tite streamlines for tite case of periodic system of
aperturea. a = 10.
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Fig. 3. TIle picture of tite streamlines for tite case of periodic system of
apertures. a = 4.25.
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Fig. 4. Tite picture of tite atreamllnes for tite case of periodic syatem of
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