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INTRODUCTION

Stomata are the main gateways for the entry of microbial pathogens into leaves (Melotto et al.,
2008). However, some try to use hydathodes (Hugouvieux et al., 1998) or breach the cuticle
(Grimmer et al., 2012). Stomatal closure, therefore, is an effective measure to restrict pathogen
entry and provide the plants an innate immunity (Melotto et al., 2008, 2017; Sawinski et al., 2013;
Bharath et al., 2021). Stomata open when the guard cells are turgid and close when guard cells are
flaccid (Willmer and Fricker, 1996).Whenever plants are exposed to stress, the guard cells sense and
respond by a series of steps that include the production of ROS and NO followed by a rise in Ca2+

and the modulation of ion channels. These events promote the efflux of cations and anions from
guard cells. As a result, guard cells lose turgor leading to stomatal closure (Arnaud and Hwang,
2015; Agurla et al., 2018; Saito and Uozumi, 2019; Hsu et al., 2021).

The reopening of stomata is usually slower than the closure, ensuring that the leaves conserve
water for an extended period. For example, abscisic acid (ABA)-induced stomatal closure in the
epidermis took about 30min (and in leaf 3 h). In contrast, recovery took 1–6 days, implying short-
term and long-term effects on stomata (Liang and Zhang, 1999). Recently, we pointed out that the
stomatal closure by ABA was an essential component of plant adaptation to stress factors (Bharath
et al., 2021). This article proposes that the initial stomatal closure response triggers many defensive
strategies to fight the pathogens. We describe the follow-up of events limiting pathogen spread and
emphasize stomata’s role in ensuring plants’ long-term adaptation against microbes.

Stomatal Closure: An Immediate Barrier of Microbial Entry
Stomatal closure was a typical response againstmicrobial attack (Arnaud andHwang, 2015;Melotto
et al., 2017; Agurla et al., 2018). The process of stomatal closure is initiated by sensing the abiotic
(e.g., drought, chilling, and UV-B) or biotic stress (pathogens and insects) components (Agurla
et al., 2018). Most microbial pathogens produce pathogen-or microbe-or damage-associated
molecular patterns (PAMPs/MAMPs/DAMPs), perceived by pattern recognition receptors (PRRs)
present on the plant plasma membrane. Upon perception, plants activate a defense response
called pattern-triggered immunity (PTI). When pathogens attempt to overcome PTI, plants trigger
effector-triggered immunity (Cui et al., 2015; Nguyen et al., 2021). Bacterial elicitors that trigger
stomatal closure include flagellin22 (flg22), lipopolysaccharide, and other elicitor peptides, such
as, elf26 (Melotto et al., 2008, 2017; Arnaud and Hwang, 2015). Fungal elicitors, such as, chitin
oligosaccharide and chitosan, also induced defense responses in plants (Ye et al., 2020).

Guard cells perceive hormones (e.g., ABA) or elicitors (flg22) by their respective receptors. Upon
binding to ABA or flg22, the receptor kinases (e.g., open stomata 1 or botrytis-induced kinase 1)
activate RbohD/F and stimulate reactive oxygen species (ROS) production during stomatal closure.
However, the role of RBOHD in resistance against pathogens, particularly during pre-invasive stage
is not clear. The elevated ROS, in turn, trigger a rise in nitric oxide (NO) and Ca2+. The interaction

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.761952
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.761952&domain=pdf&date_stamp=2021-09-27
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:as_raghavendra@yahoo.com
mailto:asrsl@uohyd.ernet.in
https://doi.org/10.3389/fpls.2021.761952
https://www.frontiersin.org/articles/10.3389/fpls.2021.761952/full


Gahir et al. Stomata Provide Long-Term Pathogen Resistance

of these secondary messengers (ROS/NO/Ca2+) regulates the
downstream components in guard cells. Both NO and Ca2+

(via Ca2+-dependent protein kinases) promote the ion efflux by
activating K+ out, SLAC1, and SLAH3 channels and at the same
time inhibit the K-influx channel (Arnaud and Hwang, 2015;
Agurla et al., 2018; Kohli et al., 2019; Sun et al., 2019). Similarly,
ROS and Ca2+ activate Ca2+ influx and increase cytosolic Ca2+

levels (Klüsener et al., 2002). The elevated ROS, NO, Ca2+ and
H2S provide an extended pathogen resistance (Gahir et al., 2020;
Liu and Xue, 2021). Cytosolic pH is another secondarymessenger
that preceded the production of ROS and NO in guard cells,
but the exact mechanism is ambiguous (Gonugunta et al., 2009;
Bharath et al., 2021). It is necessary to study if such changes in
pHcyt can modulate the pathogen resistance as well.

Stomatal Closure Associated With the
Modulation of Plant Hormones
Stomatal closure during drought or microbial infection was
associated with an increase in plant hormones. Salicylic
acid (SA), ABA, methyl jasmonate (MJ), and ethylene (ET)
accumulate when microbes attack plants. The concerted action
of these hormones causes stomatal closure and induces systemic
resistance (Gimenez-Ibanez et al., 2016; van Butselaar and Van
den Ackerveken, 2020; Bharath et al., 2021). The modulated
hormonal status provides long-term protection to plants against
biotic and abiotic stress (Described below).

DISCUSSION

Closure Triggers a Network of Long-Term
Events to Ensure the Protection
Stomatal closure in response to microbial infection is an
immediate physical measure to prevent microbial entry.
However, such closure has long-term effects, such as, a marked
decrease in the intercellular CO2 of leaves, a reduction in
photosynthetic carbon assimilation, and an elevation in photo
respiratory activity. The reduction in transpiration can cause
mineral deficiency in leaves.We describe below the consequences
of these events and a few associated components.

Decrease in Photosynthesis and Increase in

Photorespiration and Peroxisomal Population
When stomata close, the intercellular CO2 is lowered, and
transpiration decreased, raising the leaf temperature. Both
these factors enhance photorespiration. The increase in
photorespiration occurred under conditions of biotic (microbial
infection) or abiotic stress (drought) (Lal et al., 1996; Pascual
et al., 2010; Voss et al., 2013; Vo et al., 2021). Even fluctuations
in transpiration triggered an increase in photorespiration
(Furutani et al., 2020). The enhanced photorespiration and
the associated rise in H2O2 could confer disease resistance
(Taler et al., 2004; Kubo, 2013; Sørhagen et al., 2013). Further,
glycolate, glyoxylate, and glycine, being pathway intermediates,
accumulate. Glycolate and glyoxylate are toxic to living cells
and can double up as antimicrobial compounds. Glycine is
the precursor of glutathione, an essential anti-oxidant in plant
cells. Photo respiratory enzymes/metabolites mediated the

plant defense during tomato-Pseudomonas syringae interactions
(Ahammed et al., 2018). Thus, photo respiratory metabolism
could help to resist pathogens.

The enhanced photorespiration was often associated with
an increase in the peroxisomal population in leaf cells
(Chen et al., 2016). Peroxisomal ROS could protect against
plant pathogens (Sørhagen et al., 2013). Besides ROS, other
components of peroxisomes, namely NO, Ca2+, and polyamines
(PA), upregulated the genes involved in SA signaling and PA
catabolism, reinforcing plant defense responses (Chen et al.,
2016; Wang et al., 2019).

Stomatal Closure Lowers Leaf Sugars
Stomatal closure, whether due to pathogen attack or drought,
causes reduced CO2 assimilation and decreased carbon
partitioning into sucrose and starch (Wang et al., 2016; Haider
et al., 2017). The pathogens required sugars for growth and
infection (Solomon et al., 2003; Scharte et al., 2005; Chang
et al., 2017). If sufficient sucrose is not available, the extent of
proliferation would be restricted (Huai et al., 2020). Therefore,
the deficiency in sugar availability lead to decreased fungal
growth (Bezrutczyk et al., 2018).

Reduced Transpiration Creates Mineral Deficiency
Transpiration is a prerequisite for long-distance transport
of minerals (Ruiz and Romero, 2002). A deficiency of
minerals would occur when stomata are closed. There was
a positive relationship between the transpiration rate and
mineral content of sunflower (Helianthus annuus) and maize
leaves (Tanner and Beevers, 2001; Shrestha et al., 2021). Since
microbial spread and multiplication within leaves depend on
macronutrients/micronutrients, the mineral deficiency could
affect microbial growth and enhance pathogen tolerance
(Fernández-Escobar, 2019). The N-status of leaves modulated
defense-related hormones, NO content, and then genes (Sun
et al., 2020). The deficiency of N increased the levels of phenolics
and restricted the spread of powdery mildew (Bavaresco and
Eibach, 1987). A similar situation under K+-deficiency was
reported with leaf spot, caused by Helminthosporium cynodontis
(Richardson and Croughan, 1989). Other examples of mineral
deficiency that favor pathogen resistance were zinc (Cabot et al.,
2019) and iron (Trapet et al., 2021). Readers can find a detailed
description of the dual role of the macro-and micronutrients for
the infection by bacterial and fungal pathogens elsewhere (Huber
et al., 2012).

Continuing Effects of Secondary Messengers, Plant

Hormones, and Secondary Metabolites
The secondary messengers produced during stomatal closure
can continue to protect plants. For example, the combination
of ROS/NO/Ca2+ was quite effective in limiting the spread
and multiplication of microbes within the leaf. These secondary
messengers trigger hypersensitive response (HR), synthesis of
pathogenesis-related (PR) proteins, and programmed cell death
(PCD) (Serrano et al., 2015; Marcec et al., 2019). Besides NO,
H2S produced during stomatal closure could confer pathogen
resistance (Vojtovič et al., 2020). It is possible that these
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FIGURE 1 | Schematic representation of events associated with stomatal closure. The closure restricts microbial entry during the short term, while the events initiated

during closure contribute to long-term adaptation against microbes. On sensing the microbial elicitor molecules, the guard cells trigger a rise in ROS, NO, Ca2+, and

H2S. These secondary messengers cause ion-efflux from guard cells and stomatal closure. As a consequence of closure, the entry of CO2 and transpirational H2O

loss are restricted, leading to increased photorespiration, decreased leaf sugars, and mineral deficiency. All these events help in restricting microbial multiplication,

spread, and growth. The disturbed hormonal status and reactive molecules ensure continued protection by upregulating PR/HR/PCD genes and promoting the levels

of antimicrobial secondary metabolites. Arrow represents an increase and ⊣ indicates a decrease.

components ROS/NO/Ca2+ can also induce priming effect
individually or in combination.

When plants were infected by pathogens, the leaves responded
bymodulating the hormones, which interacted with each other to
impart a long-lasting response. Plant hormones (e.g., SA, methyl
salicylate, MJ) and even PAs could induce systemic resistance
(Bürger and Chory, 2019; Chen et al., 2019; Seifi et al., 2019; Yuan
et al., 2019). These hormones (ABA/MJ/SA) primed the plant
tissue to stand against pathogens (Agostini et al., 2019; Feng et al.,
2020). These observations open up several exciting lines of work
for further research.

Several secondary metabolites produced by the plants are
prominently associated with protection against bacterial, fungal,
and viral attacks. The elevated levels of H2O2, NO, and
Ca2+ induced accumulation of secondary metabolites like wax,
callose, alkaloids, flavonoids, phenols, and PAs, reinforcing the
protection against infection (Walters, 2003; Luna et al., 2011;
Zaynab et al., 2018; Lewandowska et al., 2020). The PAs also
prime the plants against Botrytis (Janse van Rensburg et al.,
2021). Similarly, allyl isothiocyanate (AITC) keeps microbes like
P. syringae out by inducing stomatal closure (Bednarek, 2012).

CONCLUSION AND FUTURE
PERSPECTIVE

Stomatal closure erects a physical barrier providing immediate
relief against the entry of microbial pathogens into leaves
while decreasing the rates of photosynthesis and transpiration.

The closure has long-term consequences (Figure 1). The
restricted CO2 supply to the mesophyll cells lowers the rate of
photosynthesis, stimulates photorespiration and associatedH2O2

production. The elevated levels of H2O2, along with NO, H2S,
and Ca2+, can upregulate genes involved in HR, PR, and PCD to
prevent the spread of pathogens within the leaf. These reactive
molecules also promote the accumulation of antimicrobial
secondary metabolites. Parallelly, reduced transpiration creates
mineral deficiency and limits microbial growth. We suggest that
stomatal closure is a trigger to set off long-term events involved
in prolonged plant disease resistance.

We know that stomatal closure may not be a universal
mechanism to fight the microbial attack, e.g., root or stem
pathogens. But several pathogens are air-borne and land on
leaves (Melotto et al., 2008; Zeng et al., 2010). Plant-microbe
interactions are not unilateral since the pathogens try to reopen
stomata using compounds, such as, coronatine (Arnaud and
Hwang, 2015). Further work is needed to understand the
implications of stomatal closure on the antagonizing responses
by the pathogens. Peroxisomal H2O2 limits microbial growth,
but there are instances when microbes use peroxisomes to
their advantage (Kubo, 2013). An improved understanding
of peroxisomes and manipulation through biotechnological
techniques could open up possibilities of designing plants for
long-term adaptation to stress conditions. We believe that
stomatal guard cells are ideal for studying plants’ short-and long-
term responses to challenging stress situations. Stomatal closure
can be exploited to improve crop growth and grain yield under
environmental stress conditions. In crops such as, wheat and
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rice, reduced water requirement due to stomatal closure was
used as one of the physiological traits in crop breeding (Park
et al., 2020; Paul et al., 2020). Further studies on the long-
term effects of stomatal closure can be translated into additional
field applications.
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