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Abstract

Dynamics in microclimate and physiological plant

traits were studied for Pubescent oak and Scots pine

in a dry inner-alpine valley in Switzerland, at a 10 min

resolution for three consecutive years (2001–2003). As

expected, stomata tended to close with increasing

drought in air and soil. However, stomatal aperture in

oak was smaller than in pine under relatively wet

conditions, but larger under dry conditions. To explore

underlying mechanisms, a model was applied that (i)

quantifies water relations within trees from physical

principles (mechanistic part) and (ii) assumes that

signals from light, stomatal aperture, crown water

potential, and tree water deficit in storage pools

control stomata (systemic part). The stomata of pine

showed a more sensitive response to increasing

drought because both factors, the slowly changing

tree water deficit and the rapidly changing crown water

potential, closed the stomata. By contrast, the stomata

of oak became less drought-sensitive as the closing

signal of crown water potential was opposed by the

opening signal of tree water deficit. Moreover, param-

eter optimization suggests that oak withdrew more

water from the storage pools and reduced leaf water

potentials to lower levels, without risking serious

damage by cavitation. The new model thus suggests

how the hydraulic water flow and storage system

determines the responses in stomatal aperture and

transpiration to drought at time scales ranging from

hours to multiple years, and why pine and oak might

differ in such responses. These differences explain

why oaks are more efficient competitors during

drought periods, although this was not the case in the

extremely dry year 2003, which provoked massive leaf

loss and, from July onwards, physiological activity

almost ceased.
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Introduction

Plants are located within a water potential gradient along

which water and soluble compounds are passively trans-

ported. This beneficial situation for the plant can turn into

a negative one when the gradient becomes too steep and

causes damage either by dehydration of living cells

(Larcher, 2003) or by cavitation due to tensions in the

water columns of the xylem being too high (Tyree and

Sperry, 1989; Brodribb and Holbrook, 2003; Sperry, 2003;

Vilagrosa et al., 2003). Trees need, therefore, mechanisms

to maintain this gradient within a non-damaging range

(Bond and Kavanagh, 1999; Buckley, 2005). The most

important mechanism is the regulation of the stomatal

aperture, which decouples the canopy from the water-

demanding atmosphere by increasing the resistance for

water vapour leaving the crown (Meinzer et al., 1997).
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Stomatal regulation is a complex process as it depends

on how microclimate, leaf CO2 concentration, plant

hormones, leaf water potential and soil water potential

(Tardieu and Davies, 1993; Whitehead, 1998; Dewar,

2002; Tuzet et al., 2003; Messinger et al., 2006) induce
a variety of physiological responses that may regulate

stomatal conductance (Tenhunen et al., 1987; Tardieu and

Davies, 1993; Dodd, 2003; Thompson and Holbrook,

2004). Although isolated signalling pathways leading to

stomatal opening or closure have been described in detail,

the integration of this knowledge into a whole-plant-level

model is far from conclusive (Buckley, 2005). The reason

might be that models put a strong emphasis on leaf-level

processes. Leaf-level models for trees may be satisfactory

when soil moisture is adequate, but usually they fail in

simulating patterns of transpiration and conductance when

the soil water potential is very low or when it is

fluctuating over a wide range (Leuning, 1995; Dewar,

2002; Hanson et al., 2004).
Besides other factors, leaf water potential has been

recognized as playing a key role in stomatal regulation

(Comstock and Mencuccini, 1998; Bond and Kavanagh,

1999; Brodribb and Holbrook, 2003). The gradient

between leaf and root water potential is kept below

a threshold, as to avoid the negative effects of cavitation

on water flow and, ultimately, on carbon gain (Tyree,

1988; Sperry et al., 2002; Brodribb and Holbrook, 2003;

Buckley, 2005). The cohesion–tension theory (Dixon and

Joly, 1894) and the resistance flow model (van den

Honert, 1948) describe a tree as an integrated hydraulic

system and predict water potential gradients, water

fluxes, and leaf water potentials within plants. More

recent physiological tree models integrated water storage

pools into an extended, hydraulic system (Perämäki

et al., 2001; Zweifel et al., 2001; Messinger et al., 2006;
Steppe et al., 2006), and thus provided better predictions

for diurnal patterns of water flow, water potentials, and

water storage in plants. Beyond its influence on flow

dynamics and water potentials, water storage as a measure

of plant water deficit (Hinckley and Lassoie, 1981;

Zweifel et al., 2005) may affect the regulation of

stomatal aperture via plant hormones in a similar way to

the signalling from dry soil to the stomata as suggested

by Dodd (2003). Zweifel et al. (2002) combined

microclimatic factors with feedback signals from tree

water relations to explain the midday depression of Picea
abies. Tuzet et al. (2003) may be the first to develop

a physiological whole-plant-model that integrated most

factors to predict stomatal regulation in drought-stressed

plants. Their approach, however, has a few drawbacks:

the mathematical structures are not easy to interpret in

terms of physiological factors contributing to stomatal

regulation (Buckley et al., 2003), water storage was not

included in their hydraulic system, and the predictions

were not tested against field data.

In this study, a unique set of data is explored with

detailed measurements of air/soil microclimate and tree

physiology over three years at a 10 min resolution,

covering a wide range of drought conditions including the

exceptionally hot and dry summer 2003. This data

set allowed stomatal aperture values of an evergreen

conifer (Pinus sylvestris L.) and a deciduous ring-porous

tree species (Quercus pubescens Willd.) to be estimated.

First, the distinctly varying stomatal responses of the two

species to different severities of drought on diurnal,

weekly, and seasonal timescales, and between years, are

shown. Second, the performance was tested of a tree

model that simulates these species-specific ecophysiolog-

ical field measurements from a mechanistic integrated

hydraulic system (including water storage and water

potential gradients) and empirically weighted feedback

signals from light, stomatal aperture, leaf water potentials,

and tree water deficit. The model used (i) to evaluate how

the hydraulic system and the joint effects of different

signals contribute to dynamics in transpiration, storage,

water potential gradients, and, ultimately, stomatal aper-

ture on various times scales, and (ii) to produce

hypotheses about the different patterns of water use and

stomatal dynamics between the two tree species.

Materials and methods

Ecophysiological field study

Study sites and trees: The study site was located in an open oak–
pine woodland near Salgesch on the south-facing slope of the main
valley of the Wallis, Switzerland (46�19#27" N, 7�34#40" E, 975 m
asl). Central Wallis is an inner-alpine valley characterized by a dry
climate. This is mainly caused by inner-valley shielding. The valley
is oriented SE–NW with regard to the main storm tracks from the
West and wet air masses from the South. Mean annual precipitation
over the past 20 years was about 600 mm per year. Annual
precipitation at the site of measurement was 752 mm in 2001,
899 mm in 2002, and 495 mm in 2003.
Pubescent oak (Quercus pubescens Willd.) and Scots pine (Pinus

sylvestris L.) were the most abundant tree species and juniper
(Juniperus communis L.) was the most abundant woody shrub in the
vegetation of this very dry site. Whereas some oaks were up to 110-
years-old, 95% of them were younger than 70 years. Most of the
dominant pines were between 100-years-old and 150-years-old
(Zweifel et al., 2005). The investigated woody species stood in one
of the typical patches of trees (32 m2 in area), consisting of oaks,
pines, Viburnum lantana, and J. communis, surrounded by grass and
bare rock. The eight selected trees represented mature individuals of
the study site with estimated ages between 50 years and 120 years.
The height of the six selected oaks and the two selected pines ranged
between 3.5–4.0 m and 3.5–5.0 m, respectively, the stem diameter
between 7.2–9.5 cm and 11.9–23.2 cm, respectively, and the crown
projection area on the ground between 8 m2 and 18 m2 for both
species. The soil on this steep south-facing slope (;25�) was shallow
with a maximum depth of 0.1–0.3 m at the site of measurement.
Below the organic material was a mostly solid rock layer.

Climate data: Climate data were collected at the site with a solar-
powered logging and steering-system (IPS, University of Bern,
Switzerland and Markasub AG, Switzerland). The heart of the
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system was a logger (CR10X, Campell, UK). Details about sensor
types and installation are described in Zweifel et al. (2006).
Microclimate was resolved into north-exposed and south-exposed
canopy and in conditions outside of the vegetation. Microclimate
data were used as input to run the model (Appendix A).
The data set covered the relatively wet years of 2001 and 2002

and the hot and dry year of 2003 (Table 1). The years 2001 and
2002 were rather similar in terms of their averaged climatic
conditions, but in 2002 there was a remarkable drought period in
the last three weeks of June which led to very low WSoil, conditions
not comparable with those in 2001. The weather conditions in 2003
led to large water deficits in the soil and plants even before the
leaves of oak flushed at the end of April. From mid-July onwards,
the activity of the trees of both species ceased completely and came
back to a low percentage only in September. The leaves of oak had
already turned yellow and brown in July and some trees flushed
a few leaves in September.

Sap flow measurements: Sap flow was continuously assessed at
small north-exposed and south-exposed branches on five oaks and
two pines by heat balance gauges (Dynagage, Dynamax, USA). A
detailed description about the distribution of sap flow gauges within
the forest patch can be found in Zweifel et al. (2006).

Estimation of stomatal aperture from field measurements: Stomatal
aperture of the leaves of small branches was estimated from
continuous measurements of branch sap flow (which is assumed
to represent branch transpiration) and microclimate by computing
the ratio between actual (FBranch) and potential transpiration
(FPot_Branch). Since this ratio is mainly (but not only) changed by
the stomatal conductance (Hsiao and Acevedo, 1974; Wright et al.,
2003), FBranch/FPot_Branch can be used as a good approximation for
the degree of stomatal aperture (as a percentage) (Zweifel et al.,
2002, 2006). The measured values of FBranch/FPot_Branch were
averaged and scaled up to the entire crown (hE). This estimated hE
was compared with modelled stomatal aperture (h) which was
independently achieved by applying the model described below.
A crucial point in this procedure is to calculate the potential

transpiration of branches from microclimate. Potential evaporation
for a homogenous vegetation surface can be estimated by the single-
leaf model (Penman, 1948; Monteith, 1965). To use this concept for
three-dimensional objects, for example, individual branches of trees
(FPot_Branch), the single leaf model was modified by Zweifel et al.
(2002). In their model, microclimate (solar radiation, wind speed,
vapour pressure deficit, and air temperature) and the geometric
properties of the branch determine the potential transpiration.
FPot_Branch is calculated as:

FPot Branch ¼
Ds3 ððRad3�ÞWHÞ þ q3 cp 3

ðVPDÞ
ra

Dsþ c3 ð1þ rsmin

ra
Þ

3
k

k
3 ZT ð1Þ

where Ds is the slope of the saturation vapour pressure curve at the
actual temperature (T), Rad is net radiation flux, WH is heat flux
between the tree and the soil, q is air density, cp is specific heat of
the air, c is the psychrometer coefficient, rs min is canopy resistance
with fully opened stomata, ra is aerodynamic boundary layer
resistance to heat and water vapour diffusion and depends on the
boundary layer thickness (d) of the crown surface, ZT is the
idealized crown (branch) surface, � is the ratio of sunlit to shaded
parts of ZT (�¼0.01: crown completely shaded; �¼0.5: crown
completely in the sun), k is the conversion factor to the unit g h�1

per crown (k¼6036031000), and k is the latent heat of vapor-
ization of water. The parameters ZT, �, and rs min were found
according to the procedure described in Zweifel et al. (2002).

Leaf water potential: Water potentials of needles and leaves (Wleaf)
were measured with a pressure chamber (SKPM 1400, SKYE
Instruments, UK). Two to five samples were measured per record
and the average of these measurements was used for further
analyses. Day courses (about ten records per day) of Wleaf were
available for six days in 2002 and 2003.

Stem radius changes and tree water deficit: Stem radius changes
(DR) were measured with point dendrometers (ZB01, Markasub
AG, Switzerland) on six oaks and two pines (Zweifel et al., 2006).
The dendrometers were mounted at 0.5 m above ground on the
hillside (north) of each stem. The electronic part of the dendrometer
was mounted on a carbon fibre frame which was fixed to the stem
by three stainless steel threaded rods implanted into the heartwood.
The sensing rod was slightly pressed against the tree stem by
a spring. The contact point of the dendrometer head was positioned
1–6 mm into the bark surface, but still within the outermost dead
layer of the bark. The sensitivity of the dendrometers to temperature
and humidity was negligible due to the use of a weather-insensitive
carbon frame and a temperature-insensitive electronic transformer
(Weggeberpotentiometer LP-10F, Pewatron, Switzerland). The
electronical resolution of the dendrometers in combination with the
logger used was 0.4 lm.
Stem radius changes have two main components, radial growth

and water-related swelling and shrinkage of the stem with water
content (Daudet et al., 2005; Zweifel et al., 2005). Zweifel et al.
(2005) suggested an algorithm to separate the course of DR into
these main components. DR de-trended for growth represents the
tree water deficit (DW) as introduced by Hinckley and Lassoie
(1981). Absolute DW values typically range from 0 lm (fully
hydrated state) to about 800 lm, proportional to the reduction in
stem diameter due to dehydration of storage pools. DW represents
the water status of the entire tree since all water-carrying living
parts of a tree are hydraulically interlinked and pressure changes are
therefore transmitted and levelled (with a certain delay).

Scaled measurements: Microclimatic conditions, physiological
measurements (e.g. branch sap flow) and physiological estimations
from measurements (e.g. potential branch transpiration or estimated
stomatal aperture) were either collected in the south-exposed or the
north-exposed crown part of eight tree individuals. These measure-
ments were averaged for these two expositions and scaled to an
‘average tree’ of Pubescent oak and Scots pine. These virtual trees
consisted of 70% south-exposed branches and 30% north-exposed
branches, the leaf area was 25 m2 and 30 m2 for oak and pine,
respectively. This corresponded to a site-typical tree individual with
about 4 m in height and a cross-sectional area at the stem base of
about 230 cm2 for both species (Zweifel et al., 2005). These scaled
data were used to parameterize the model and to compare with the
model output. Appendix A lists all the parameters and declares their
property in terms of data acquisition and utilization in the model.

Table 1. Mean daytime values (6 h–20 h) of microclimatic
factors at Salgesch, Switzerland

Temperature (T), solar radiation (Rad), vapour pressure deficit (VPD),
soil water potential (WSoil) (seasonal minimum in brackets) and sum of
rain (24 h) over the vegetation period (15 May to 30 September) of the
years 2001 to 2003.

T Rad Rain WSoil VPD
[�C] [W m�2] [mm] [kPa] [kPa]

2001 19.1 409 472 –76 (–167) 0.89
2002 19.5 394 696 –82 (–283) 0.89
2003 23.1 417 401 –186 (–448) 1.45
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Model structure

The general modelling concept: A dynamic ecophysiological tree
model was developed and applied to explore how the integrated
hydraulic system, including water storage in stem and crown,
influences stomatal aperture and transpiration of the two species
(Fig. 1). The model needs potential transpiration of the crown
(FPot), light intensity (Rad), and soil water potential (WSoil) to be
run. In addition to these data, a set of dynamic physiological
measurements (transpiration or sap flow, leaf water potential, and
stem radius changes) over at least two weeks is needed to
parameterize the model.
The model tree consists of root, stem, crown, and water storage

compartments. Based on physical principles, water fluxes between
root and stem, between stem xylem and other tree components, and
between crown and air are formalized (Fig. 1a; Appendix A).
Further, the model calculates how the dynamics in stomatal aperture
are explained from empirically weighted signals by light (Rad),
stomatal aperture (h), crown water potential (WCrown), and tree
water deficit (DW). These signals allow an interpretation of how
much a certain measure in tree water relations contributes to
stomatal regulation but they do not a priori refer to one of the
specific pathways mentioned in the literature (Davies and Zhang,
1991; Dodd, 2003; Eisinger et al., 2003; Buckley, 2005).

Flow and storage system: The water flow and storage processes are
based on hydraulic and electrical circuit principles. An overview
about the flow and storage model components is given in Fig. 1 and
a short description including the applied mathematical formulations
are given in Appendix B. Detailed descriptions can be found in
Zweifel et al. (2001) and Steppe et al. (2006).

Transpiration: The current transpiration (FTransp) is the potential
transpiration (FPot) down-regulated by the stomatal aperture h. This
is formulated as:

FTransp ¼ h3FPot ð2Þ

Stomatal regulation: Model stomata directly respond to signals
from light intensity (Rad), crown water potential (WCrown), tree
water deficit (DW) and the current stomatal aperture (h) (Fig. 1).
These signals have opposing effects on h. The sum of all the em-
pirically weighted signals together determines whether the stomatal
aperture remains the same (signal¼0), increases (signal >0), or
decreases (signal <0).
WCrown always introduces a closing signal on the stomata

proportional to its actual value, whereas Rad and DW can have an
opening or a closing effect. In addition to these factors, the model

Fig. 1. (a) The model is based on hydraulic flow and storage principles with the components: water storage in stem (mainly the bark) (PStem) and
crown (PCrown), flow path with corresponding water fluxes (F1 to F3), flow resistances (R1 to R3), and the corresponding water potentials (W).
Variables are calculated (green), parameters are optimized (red), and input factors were measured (blue). Light-blue elements are input factors for the
calculation of the potential transpiration (FPot), and dark-blue elements are input parameters for the tree water relations model. (b) The interrelations
of the model components are indicated by labelled arrows. Labels refer to the equations 1–3 and B1–B8. Arrows carrying the symbol ‘+’ indicate
a positive correlation between the related elements, ‘–’ a negative one. Abbreviations are listed in Appendix A.
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introduces a dependency on the current h. Thus, stomatal aperture is
formulated as:

ht¼i ¼ ht¼i�1 þWCrown 3UCrown þ DW 3UBark þ
Rad � CRad

CRad

URad

ð3Þ

where ht¼i is the stomatal aperture at the time i, ht¼i–1 is the
stomatal aperture at the previous iteration step, UCrown, UBark, and
URad are weighting factors of the signals induced by WCrown, DW,
and Rad on h, and CRad is a light threshold.
The model was forced to have the following two constraints for

equation 3:

0 ¼ < h ¼ < 1 ð3aÞ

and

Rad � CRad

CRad

URad<URad ð3bÞ

where equation 3a makes sure that h remains within the possible
range of stomatal aperture between 0 and 1 (i.e. 0% and 100%), and
equation 3b formulates the ideas that (i) Rad <CRad proportionally
increases the closing-signal, that (ii) Rad between CRad and 2CRad

proportionally increases the opening-signal, and that (iii) Rad >2CRad

induces a constant opening-signal (¼URad) on h.
The model equations 2 and 3 are in many ways interlinked with

the flow and storage equations B1 to B8 (Appendix B). As
a consequence, the model design builds a network of feedback
loops between components of tree water relations and the stomatal
aperture. The entire network with all the mechanistic and empirical
interrelations based on these equations is depicted in Fig. 1b.
Dynamic variables in the system (green) are calculated from other
variables, optimized parameters (red) and microclimatic input
factors (blue). Due to this recursive, systemic nature of the model,
every component involved has at least an indirect effect on stomatal
regulation. The model was run on a time step of 10 min for three
subsequent growth seasons (2001–2003).

Model parameterization and tests

Sensitivity analysis: The sensitivity analysis of the model covered
two aspects: (i) the model sensitivity on variations of the parameters
to select the parameters driving most of the variability in model
output and (ii) the degree of independency of individual parameters
to test whether pairs of parameters were compensating each other.
A detailed description of the sensitivity analysis including the
corresponding results is given in Appendix C.

Parameterization: The model contains nine parameters to be
optimized (Appendix A), four parameters which are pre-set from
estimations or measurements (Appendix C) and three variables as
model inputs (Rad, FPot, and WSoil). All the tree-internal variables as
flow rates (FTransp, F1, F2, and F3), water potentials (WRoot, WBark,
and WCrown), water contents (PStem and PCrown), and stomatal
aperture (h) are the result of the model calculations. Four variables,
measured by independent methods, were used to optimize the
model output to fit the 10-min interval measurements: manually
measured WLeaf versus modelled WCrown, scaled continuous meas-
urements of branch sap flow FBranch versus modelled FTransp, DW
(deduced from measured DR values) versus modelled changes of
DPStem, and estimated versus modelled h (equation 3).
Nine parameters to be optimized in a single procedure seem to be

a high number, but the parameters can be unambiguously de-
termined (see sensitivity analysis in Appendix C) when having
a temporally highly resolved (<1 h) data set containing dynamic

information about leaf water potential, sap flow, and tree water
deficit (stem radius changes) for at least 2 weeks (plus the
microclimatic conditions needed to run the model). Such a set of
data is strongly limiting the range in which every parameter can
vary. If one of the parameters is set outside of this range, the
dynamics of the virtual tree collapse and the model is thus not able
to simulate the measurements any more (results not shown). In
particular, maximum and minimum leaf water potential data are
important for finding definite parameter values because they define,
together with measured soil water potential, the maximum steepness
of water potential gradients and, consequently, all the properties of
water movement directly affecting water uptake, water storage
dynamics, and, indirectly, stomatal control. In general, the in-
formation content of 3–4 independently measured variables as a time
series is, in almost all cases, high enough to identify nine
parameters of a recursive model.
In this investigation, every year’s set of data for oak and pine was

divided into two periods: May to July and August to September.
This arrangement led to two sets of parameters per species and year
(Table 2) and allowed a test to made of how consistent the
parameters were within the same season and over three years.
Further, the optimized parameters could be compared between the
two species and provided biological information on species-specific
drought responses, for example, flow resistances, or amount of
consumed water from internal storages, etc.
Best-fit estimates for the parameters were found by an iterative

procedure (Solver, Excel) which optimized the average value of the
modelling efficiency factors (EFm, see Appendix C) for the four sets
of measured data (WCrown, FTransp, DW, and h). The modelling
efficiency statistic was calculated according to Mayer and Butler
(1993) and Hanson et al. (2004):

EFm ¼ 1�
+
�

�yi �
S

yi
�

�

+jyi � �yj
ð4Þ

where
S

yi is the model value at the time i, yi is the measured value at
the time i, and �y is the measured average value of the factor m.

Statistical evaluations: To evaluate the ‘goodness-of-fit’ of the
model simulations for WCrown, FTransp, DW, and h, different
statistical measures were used according to tests proposed by
Hanson et al. (2004). In addition to EFm, mean bias (Bias) and
mean absolute bias (ABS) were calculated from the following
equations (Reynolds, 1984; Walters, 1994):

Bias ¼
+
�

yi �
S

yi
�

n
ð5Þ

ABS ¼
+
�

�yi �
S

yi
�

�

n
ð6Þ

Bias provides a direct measure of the tendency for over- or
under-prediction (positive or negative values, respectively). The
ABS value is a measure of the mean deviation from the observed
values. The EF value is similar to the calculated r2-value in
conventional linear regression, but it uses the one-to-one relation-
ship rather than the regression line as the reference (Hanson et al.,
2004). An EF value of 1 represents a perfect fit and values range
from 1 to infinitely negative. EF values of 1, however, are not
expected because of natural variability and experimental error
associated with data collection. In this paper, EF values are based
on data sets with 10 min resolution which lowers EF in comparison
to data sets with hourly or daily resolution. As a point of reference,
EF values >0.25 were considered as in satisfactory agreement with
measured data.
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Results

Measured physiological responses

The stomatal response to microclimate strongly varied

with increasing drought and showed significant differ-

ences between the two species investigated (Fig. 2). In

general, drought closed the stomata. However, this re-

sponse to drought was not linear. Under moderately wet

conditions trees opened their stomata at twilight in the

morning and only little down-regulation was detected

during the day. With ceasing daylight the stomata usually

closed, but Scots pine in particular sometimes showed

night-time transpiration. Under dry conditions both spe-

cies showed the typical pattern of midday depression

when stomata opened in the morning, were closing before

noon, and reopened in the evening. Under extreme

drought conditions, the stomata only partially opened in

the morning and very soon completely closed for the rest

of the day. When comparing days 4 and 5 in Fig. 2, the

effect of increased tree water deficit on stomatal aperture

becomes distinctly visible: the microclimatic conditions of

these two days were very similar, whereas tree water

deficit was significantly higher on day 5 inducing a more

distinct stomatal closure for both species. Besides this

non-linearity against an increase in drought stress, there

were distinctly differing stomatal response patterns of the

two species observed: Scots pine had relatively more

opened stomata in wet conditions whereas Pubescent oak

had relatively more opened stomata in dry conditions.

Further, there was a less severe drought stress level

needed to induce a complete closure of the stomata in

Scots pine than in Pubescent oak.

On a weekly scale, this species-specific stomatal re-

sponse became particularly obvious for drought periods

with a following rehydration by a heavy rain (Fig. 3). The

course of stomatal aperture of oak remained significantly

above zero for all daylight hours, whereas that of pine

went towards zero and remained very low from before

noon and for the rest of the day. After the rain on 28 June,

the stomata of both species opened much more the next

day and the two patterns became similar again.

On an annual scale, a comparison of mean daily

stomatal aperture values between Pubescent oak and

Scots pine clearly showed that the broadleaved species

was able to keep its stomata open significantly longer

than the co-occurring coniferous species during drought

(Fig. 4). The degree of mean daily stomatal aperture of

Pubescent oak was kept above 25% until a tree water

deficit of about 450 lm, whereas Scots pine fell below

this percentage at about 200 lm. The course of tree water

deficit was quite similar for both species over the three

years investigated (Fig. 5). Even in the extreme summer

of 2003 when the oak leaves wilted at the end of July, the

corresponding tree water deficit did not become sig-

nificantly different for the two species in the following

weeks.

Differences in the physiological response between

Pubescent oak and Scots pine appeared not only in

stomatal aperture but also in crown water potential and

sap flow. The range of crown water potentials of oak was

Table 2. List of model parameters optimized for sets of half-season data

Statistically significant differences of the mean parameter values between the two species are indicated by an asterisk (t test, P <0.05). SD, standard
deviation. Abbreviations and units are listed in Appendix A.

May–Jul 01 Aug–Sep 01 May–Jul 02 Aug–Sep 02 May–Jul 03 Aug–Sep 03 Meana SDa

Quercus pubescens

R1,3 0.0006 0.0005 0.0005 0.0005 0.0010 0.0139 0.0006 0.0002*
R2 0.11 0.14 0.12 0.11 0.11 0.21 0.12 0.01
CRad 92.4 87.3 62.3 61.6 16.5 15.8 64.0 26.9*
UBark 0.349 0.370 0.327 0.306 0.122 0.186 0.295 0.089*
URad 0.204 0.205 0.192 0.195 0.292 0.269 0.218 0.038*
k1 4.74 3.34 4.32 4.83 7.54 8.77 4.96 1.40
k2 0.92 0.79 1.16 1.19 0.95 1.10 1.00 0.15
CCrown 93.4 98.1 93.9 86.3 98.2 61.8 94.0 4.3*
CStem 122.6 110.6 143.0 141.9 86.2 78.8 120.9 21.2

Pinus sylvestris

R1,3 0.0002 0.0002 0.0004 0.0005 0.0004 0.0011 0.0003 0.0001*
R2 0.12 0.06 0.09 0.11 0.02 0.03 0.08 0.04
CRad 32.5 37.9 26.3 22.2 4.9 5.3 24.8 11.3*
UBark –0.032 –0.033 –0.035 –0.034 –0.032 –0.037 –0.033 0.001*
URad 0.102 0.104 0.143 0.135 0.144 0.077 0.126 0.019*
k1 6.39 4.78 16.85 14.21 2.19 2.56 8.88 5.65
k2 1.27 1.17 1.90 1.77 0.50 0.56 1.32 0.50
CCrown 204.1 222.2 146.6 117.8 135.0 124.6 165.1 40.7*
CStem 269.1 245.9 137.4 146.6 136.7 172.3 187.1 58.0

a Mean and SD without data of the second half of 2003.
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about the double (0 to –4.8 MPa) as the one of pine (0 to

–2.7 MPa) (Table 3). Corresponding to the faster stomatal

closure of pine after reaching a daily maximum in the late

morning (e.g. Fig. 2, 12 June 2002), the diurnal course of

pine sap flow usually showed a more distinct flow peak

than that of oak.

Model performance

The tree model successfully simulated 10-min stomatal

aperture values and flow and storage dynamics of the two

tree species over three years. The model caught short-term

responses over days as well as long-term dynamics of the

drought and heat periods over months (Fig. 6). And the

Fig. 2. Measurements on five days with different drought stress: 13 July 2002 was a cloudy day in a relatively wet period, 24 May 2001 was
a partially sunny day in a relatively wet period, 12 June 2002 was sunny in the morning and cloudy in the afternoon in a moderately dry period, 22
June 2002 was a sunny day in a very dry period, and 10 July 2003 was a sunny day in an extremely dry period. Diurnal courses of stomatal aperture
(hE) of Pubescent oak (grey lines) and Scots pine (black lines) strongly vary with the severeness of drought. Rad, radiation; T, air temperature; WSoil,
mean daytime values (6–20 h) for soil water potential; VPD, vapour pressure deficit of the air; FTransp, transpiration; and DW, tree water deficit.

Fig. 3. Measurements in a drought period over 20 days in June 2002: the stomata of both species open less with the ongoing drought, however, the
stomatal aperture (hE) of Scots pine is much more affected than hE of Pubescent oak. With the rain on 28 June soil water potential (WSoil) releases and
hE increases again.
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Fig. 4. Mean daily stomatal aperture values (hE) of Pubescent oak and Scots pine related to the corresponding tree water deficits (DW) over three
years.

Fig. 5. Courses of relative tree water deficits (DW) of (a) Scots pine and (b) Pubescent oak over the three seasons 2001 to 2003.

Table 3. Characteristic physiological measures of oak (Quercus pubescens) and pine (Pinus sylvestris)

Transpiration (FTransp), maximum sap flow in the lower stem section (F1 max), maximum water exchange rate between stem and bark (F2 max),
maximum depletion of the crown (DPCrown max) and the bark (DPBark max¼DWmax), minimum crown water potential (WCrown min), minimum tree
water potential (WBark min), minimum root water potential (WRoot min), and stomatal aperture (h).

2001 Measured 2001 Modelled 2002 Measured 2002 Modelled 2003 Measured 2003 Modelled

FTransp Quercus (sum of season) 2051 1960 1969 2164 476 469 [kg]
FTransp Pinus (sum of season) 1871 1848 1527 1614 330 254 [kg]
F1 max Quercus n.m.a 3251 n.m. 3938 n.m. 2133 [g h�1]
F1 max Pinus n.m. 3516 n.m. 3637 n.m. 2335 [g h�1]
F2 max Quercus n.m. 8.4 n.m. 9.5 n.m. 10.2 [g h�1]
F2 max Pinus n.m. 8.4 n.m. 13.7 n.m. 10.4 [g h�1]
DPCrownmax Quercus n.m. 374 n.m. 369 n.m. 491 [g]
DPCrownmax Pinus n.m. 401 n.m. 441 n.m. 350 [g]
DPBarkmax Quercus 177 140 233 224 307 247 [g]
DPBarkmax Pinus 160 180 261 255 278 315 [g]
WCrownmin Quercus n.m. �3.8 �2.9 �3.9 �3.8 �4.8 [MPa]
WCrownmin Pinus n.m. �1.8 �1.6 �2.2 �1.7 �2.7 [MPa]
WBarkmin Quercus n.m. �1.3 n.m. �1.6 n.m. �3.5 [MPa]
WBarkmin Pinus n.m. �0.6 n.m. �1.5 n.m. �1.6 [MPa]
WRootmin Quercus n.m. �1.1 n.m. �1.5 n.m. �3.6 [MPa]
WRootmin Pinus n.m. �0.7 n.m. �1.3 n.m. �1.6 [MPa]
h Quercus (mean) 28% 22% 27% 30% 13% 11% [%]
h Pinus (mean) 32% 25% 30% 28% 9% 6% [%]

a n.m., Not measured.
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most important point, the model was able to reproduce the

observed species-specific patterns.

The simulations, obtained by applying the parameters in

Table 2 for the corresponding periods, were analysed in

terms of their quality to explain transpiration (FTransp),

stomatal aperture (h), tree water deficit (DW), and leaf

water potential (WLeaf). The parameterization process was

forced to find a solution for an optimum overall mean

Table 4. Statistical evaluations of the ‘goodness-of-fit’ between simulation and measurement of transpiration (FTransp), tree water
deficit (DW), crown water potential (WCrown), and stomatal aperture (h)

Bias, ABS, and EF are calculated according to equations 4–6.

2001 2002 2003

n Bias ABS EF n Bias ABS EF n Bias ABS EF

Quercus pubescens

FTransp [g h�1] 18459 –42.54 184.80 0.74 18752 46.08 214.43 0.69 19808 –2.30 88.08 0.54
DW [lm] 18558 0.00 0.02 0.32 19945 0.00 0.02 0.52 20015 0.00 0.03 0.58
WCrown [MPa] 0 n.m.a n.m. n.m. 26 0.04 0.34 0.54 48 –0.11 0.48 0.35
h [%] 18372 –0.06 0.11 0.53 18752 0.02 0.13 0.53 19808 –0.02 0.08 0.52
Average 0.53 0.57 0.50

Pinus sylvestris

FTransp [g h�1] 18362 –15.48 203.71 0.68 18176 0.28 186.70 0.64 20015 –22.80 78.74 0.43
DW [lm] 17593 0.00 0.03 0.35 18127 0.00 0.02 0.48 20015 0.02 0.05 0.46
WCrown [MPa] 0 n.m.a n.m. n.m. 15 –0.03 0.15 0.87 37 0.01 0.14 0.37
h [%] 18341 –0.05 0.15 0.40 18121 –0.02 0.14 0.49 19975 –0.03 0.07 0.50
Average 0.48 0.62 0.44

a n.m., Not measured.

Fig. 6. Comparisons between measured and modelled courses of physiological factors for the same days as shown in Fig. 2. Black symbols
represent Scots pine, grey symbols represent Pubescent oak, circles indicate measurements, and lines show model predictions: crown water potentials
WCrown, tree water deficit DW, crown transpiration FTransp, and stomatal aperture (h).
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simulation quality (EF) for all four variables measured

(Tables 3, 4). EF changed slightly between years and

species, but an overall EF value >0.44 suggests that the

simulations provided good predictions for all variables

measured (Table 4).

The simulations were precise enough to distinguish

between the species-specific h and FTransp responses of

oak and pine to the same microclimatic conditions (Fig.

6). Oak characteristically regulated its transpiration rate to

a level, which was kept more or less constant over the

Fig. 7. A selection of comparisons between measured and modelled courses of physiological factors (a) on a diurnal scale, (b) on a weekly scale,
and (c) on a seasonal scale. (a) Measured (circles and squares) and modelled (lines) courses of crown water potentials of Pubescent oak (grey
symbols) and Scots pine (black symbols). (b) Measured and modelled crown transpiration FTransp in combination with estimated potential
transpiration FPot of Scots pine. Estimated stomatal aperture (hE) is compared with modelled stomatal aperture (h). (c) Measured and modelled tree
water deficits (DW) of Pubescent oak.
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day, whereas pine showed a distinct sap flow peak in the

morning followed by a decreasing course over the day

(Figs 6, 7b). Deviations larger than the average occurred

for night-time transpiration of Scots pine, which were not

caught by the model (Fig. 7b).

The general courses of tree water deficit of both species

were simulated very well for the three seasons (Fig. 7c).

Deviations larger than average occurred in September

2001, in June 2002 (pine) and in July and August 2003.

Increased deviations occurred usually, when WSoil was

poorly correlated to DW or in other words when DW was

lowered after little rain but this rain did not affect WSoil (or

was not sensed by the equitensiometers). In general, the

simulated crown water potentials fitted the small number

of measured data from 2002 and 2003 very well (Fig. 7a;

Table 4). However, deviations between model and

measurement occurred in cases where measured leaf water

potentials (oak) reached extreme negative values, which

were underestimated by the model simulation (e.g. 17

June 2003, Fig. 7a). The distinct difference between the

WCrown ranges of the two tree species was caught very

well by the model (Fig. 7a; Table 3).

Model interpretations

The parameter values were found to be very consistent

within a species for all half-year data sets, except for the

second half of 2003 (Table 2). This exception was no

surprise since the very hot and dry conditions led to early

leaf senescence and a cessation of physiological activity

from mid-summer onwards, which may have changed

morphological and physiological properties represented in

the parameters optimized: in parallel with increasing

drought, there was a tendency towards an increase in R1

(¼R3) and a decrease in CRad, CCrown, and UBark for both

species. Or in other words, the (model) trees had higher

xylem flow resistances, more pronounced stomatal reac-

tions on tree water deficit, a lower light threshold to open

stomata, and less water to withdraw from the crown (per

MPa�1) under dry conditions than under moderate ones.

Other parameters showed no consistent patterns over the

years.

The mean values of the parameters were in five out of

nine cases significantly different between oak and pine

(Table 2). Species-specific variations of parameters were

found for R1, CRad, UBark, URad, and CCrown. Oak had

a higher flow resistance, its stomata responded more

strongly to Rad but needed a higher light threshold to

open compared with pine. Remarkable, however, is the

finding that the stomata of oak responded positively to

DW, which means that the stomata were less (closing-)

sensitive to WCrown at high DW than during well-watered

conditions. Pine, in contrast, responded more sensitive to

changes in WCrown during periods of high DW than during

periods of saturation.

Development of (model-) water potentials during

a drought

Oak and pine responded with a general decrease in

predawn water potentials with increasing drought and

both species gradually decreased their root water poten-

tials to more negative values when the soil was drying

(Fig. 8). Since root water potentials decreased more

rapidly than soil water potentials, the water potential

gradients over the soil–root depletion zone became

steeper as the soil dried. In addition to the general

pattern, there were also distinct species–specific differ-

ences in the courses of water potentials. Since oak was

able to keep its stomata partially open all day even, for

example, during the driest time of the drought period in

2002 (Figs 3, 8), it maintained a water potential gradient

between roots and crown (Fig. 8), remained able to

withdraw water from the soil, and continued to transpire.

Fig. 8. Courses of water potentials in soil (WSoil), roots (WRoot), bark (WBark), and crown (WCrown) of (a) Pubescent oak and (b) Scots pine during
a drought period in June 2002 (see also Fig. 3). Rain at the site is quantified on the right axis of (b).
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In general, oak reached slightly lower root water

potentials than pine (Table 3). By contrast, pine seemed

to reach a critical predawn water potential level at about

–1.5 MPa (22–27 June, Fig. 8). The coniferous species

was hardly able to keep its stomata open (Fig. 3), thus,

the water potentials within the trees levelled off, the

corresponding potential gradients disappeared and no

water transport could be maintained. After the rain at 28

June 2002 (Figs 3, 8), both species returned to physio-

logical patterns that were observed before the drought

started.

Sensitivity of the (model) stomata: species-specific

patterns

According to equation 3, the effect of light on h is

determined by Rad, CRad, and URad. Darkness leads to

a closing signal whereas light induces an opening signal

(Fig. 9). Both species reached the signal towards opening

stomata at relatively low Rad (pine <50 W m�2, oak <100

W m�2). The model successfully determined the timing of

stomatal opening in the morning and stomatal closure in

the evening (equation 3). This stomatal response to

radiation may be a simplification and did, for instance,

not allow for possible night-time transpiration. This

approach, however, facilitated the analysis of the effects

of water potential and tree water deficit on physiological

patterns between sunrise and sunset.

The course of WCrown was mainly responsible for the

diurnal course of h during daylight (Fig. 9). But because

of the combination of the different (opposing) signals, the

response of h to WCrown was non-linear and resulted in

hysteresis between these two factors within day courses

(Fig. 10).

The signal of DW on h was found to be stomata closing

for pine and stomata opening for oak (Table 2). This

means that with increasing drought stress the stomata of

oak tended to stay open longer at a given decrease of

WCrown, whereas the stomata of pine tended to close faster

under the same microclimatic conditions (Fig. 9). The

stomatal responses of oak and pine thus diverged under

contrasting conditions: by contrast with oak, pine had

a less intensive closure of the stomata during the wet

Fig. 9. Signals of light (left y-axis), crown water potential (left y-axis) and tree water deficit (right y-axis) (equation 3) affecting stomatal regulation
over a drying period in June 2002 (see also Fig. 3). (a) Pubescent oak. (b) Scots pine. (c) Modelled relative stomatal closure (h), and (d) measured
relative stomatal closure of the two species (hE). Related crown water potentials are shown in Fig. 8.
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conditions, but a stronger closure the drier the conditions

became. Eight days without rain in June 2002 (Fig. 9) are

a good example for the divergently developing responses

to drought of the two species. The different responses

became also visible on 24 June 2001 (Fig. 10), when

stomatal aperture of pine was much more reduced than

that of oak.

Discussion

Three steps from data to modelling and interpretation

Temporally highly resolved ecophysiological field data of

Scots pine and Pubescent oak over three years were

analysed in three steps: (i) a pattern analysis to recognize

species-specific responses to microclimate, (ii) a model

simulation to quantify the goodness-of-fit of the new

model approach, and (iii) an interpretation of model

assumptions and parameters to explain the species-specific

differences with mechanisms and plant properties:

(i) From the analysis of measured data it was learned

that pine kept its stomata more open than oak under

relatively humid conditions, but closed stomata more

rapidly and maintained higher crown water potentials with

increasing drought. Since it was suggested that these trees

had no or only little access to deeper water sources via

cracks in the rock (Zweifel et al., 2005), the observed

difference in the responses between oak and pine are

considered to be mostly physiologically, and not environ-

mentally, driven. (ii) The model with a mechanistic

backbone for tree water relations and empirically

weighted feedback loops to the stomata (Fig. 1) success-

fully predicted the species-specific stomatal response

patterns on a diurnal and seasonal time-scale, as well as

for successive years. While in most other models (Ball

et al., 1987; Leuning, 1990; Tuzet et al., 2003; Xu and

Baldocchi, 2003) empirical response functions predefined

the relationships between stomatal sensitivity and, for

example, leaf water potential, such relationships emerge

from the model assumptions on integrated water relations,

feedback signals, and the species-specific parameterization

in our modelling approach. (iii) The quality of simulation

was high enough to interpret the model assumptions and

the optimized parameters for physiological information.

The species-specific model tree properties suggested that

oak had higher flow resistances than pine and that it

withdrew more water from the storage pools than its

coniferous neighbour. These properties and the species-

specific stomatal sensitivity, particularly to tree water

deficit, led to a consistent explanation for the observed

ecophysiological measurements.

Model parameters

Three of the optimized parameters of the model which

could be compared to values reported in literature were

the hydraulic resistances of the flow path (R1, R3) and the

water storage capacitance of stem (CStem) and crown

(CCrown). The obtained hydraulic flow resistances were

between 0.00021 and 0.01394 MPa h g�1. The values are

within the lower end of the range of hydraulic resistances

in tree species reported in literature, ranging between

0.00028 and 0.051 MPa h g�1 (Steppe, 2004). The values

for CStem (ranging from 78–269 g MPa�1) and CCrown

(ranging from 86–222 g MPa�1) were also found to be

within the wide range of values reported, varying from

0.2–1440 g MPa�1 (Hunt et al., 1991; Kobayashi and

Tanaka, 2001; Steppe, 2004; Steppe et al., 2006). Yet, the
values cited are to be handled with care when comparing

them with the ones obtained in this investigation since

they refer in no case to mature trees under similarly dry

field conditions. The trees cited were younger (Steppe,

2004), potted (Steppe, 2004) or growing under moderate

wet conditions (Hunt et al., 1991). This may at least

partially explain the variety of parameter values found.

Diverging response of pine and oak to tree water deficit

Pubescent oak had higher flow resistances and lower mini-

mum crown water potentials (–4.8 MPa versus –2 MPa)

Fig. 10. Modelled hysteresis patterns of Pubescent oak (grey symbols) and Scots pine (black symbols). Crown water potential (WCrown) in relation to
the stomatal aperture on two days in the drying period in June 2001. (a) 17 June 2001 (wet). (b) 24 June 2001 (dry). Every dot represents a 10 min
value. Arrows indicate the time course, numbers refer to daytime.
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than Scots pine (Figs 6–8; Table 3). As radial exchange

resistance (R2) did not differ significantly between both

species, these more negative water potentials enabled oak

to withdraw more water from the leaves compared with

pine, despite its lower hydraulic crown water capacitance

(Table 2).

Yet, the most striking difference between the two

species occurred in the signal from tree water deficit to

the stomata. The stomata of pine showed a more sensitive

response to increasing drought because both the tree water

deficit and the crown water potential had a closing effect

(Fig. 9). By contrast, the stomata of oak became less

sensitive with increasing drought as the closing effect of

the rapidly changing crown water potential was opposed

by an opening effect of the slowly changing tree water

deficit (Fig. 9). These species-specific differences in

properties led to relatively more open stomata of pine

during relatively wet conditions (WSoil > approximately –

50 kPa) and to relatively more open stomata of oak during

dry conditions (WSoil < approximately –50 kPa). Conse-

quently, oak had an advantage over pine in dry conditions

in terms of keeping its stomata open and thus a potential

advantage in fixing CO2 with photosynthesis. These

results further suggest that oak was more efficient in water

uptake than pine during dry periods. The lower root water

potentials predicted by the model for oak, compared with

pine (Table 3), support this finding and suggest a compet-

itive advantage of root water uptake of oak over pine

during drought periods.

Diurnal patterns

The tree model assumes that the diurnal regulation of

stomatal aperture depends on signals from light, the

current stomatal aperture, crown water potential, and tree

water deficit (equation 3). Light delivers a strong signal

that initiates a rapid opening of stomata in the morning

twilight, and a rapid closing of stomata in the evening

(Fig. 9). The signal from crown water potential opposes

the opening signal from light during the day. This signal

may slow down the opening of stomata in the morning,

and provoke a midday depression (Xu and Shen, 1997) or

gradual closure of stomata during the day. Although the

signal from tree water deficit was relatively small (Fig. 9),

it had significant effects on the diurnal patterns of stomatal

aperture, particularly under dry conditions (see section

‘seasonal patterns’).

The importance of this tree water deficit can be

illustrated by comparing the stomatal aperture against

crown water potential on a dry versus a wet day (Fig. 10).

The hysteresis is particularly strong on a dry day (Takagi

et al., 1998; Oren et al., 2001; Tuzet et al., 2003). Tuzet
et al. (2003) suggested that the diurnal changes in soil and

root water potential may explain this pattern. Our model

results suggest an alternative, or additive, contribution of

the hydraulic system to hysteresis in the stomatal aperture,

via the diurnal changes in water storage and its con-

sequences for the signals from the tree water deficit and,

indirectly, from the crown water potential.

Seasonal patterns

The tree model successfully predicted the differences in

the physiological dynamics between Scots pine and

Pubescent oak during ongoing drought. Pines had lower

hydraulic resistances, lower water consumption and, on

average, less negative leaf and root water potentials than

oak (Tables 2, 3). In pine, the minimum leaf water

potentials tended to go towards less negative values, and

stomatal aperture and transpiration gradually decreased as

the soil dried (Figs 8, 9). The decrease in the water

potential gradient between crown and roots and the

decreasing stomatal aperture is attributed to the sum of

the closing signals by crown water potential and tree

water deficit, whereby the tree water deficit signal became

more important while the soil dried. By contrast, oak main-

tained the minimum crown water potential at an almost

constant level (Fig. 8). In this species, a closing signal by

crown water potential was partially compensated by an

opening signal of tree water deficit, which increased with

ongoing drought. The interaction between these two oppos-

ing signals and the hydraulic properties may explain why

oaks remained physiologically active over longer periods

than pines during drought periods. We can thus conclude

that the same signalling responses, as driven by the hydrau-

lic system, explain the physiological divergence between

the pine and oak on diurnal and seasonal time scales.

Heat wave in 2003

During the extreme drought in 2003 (Beniston, 2004),

Pubescent oak and Scots pine (like other tree species in

this area) dramatically reduced their physiological activity

from mid-July onwards (Zweifel et al., 2006). The leaves

of oak either turned white from one day to the next or

they showed early leaf senescence like that usually

observed in autumn. During the same period pine had

more needles than usual that turned yellowish and were

shed about one month later. We may speculate that the

roots were no longer able to supply sufficient water to the

tree body to maintain a balance between saving water to

avoid cavitation and transpiring water to cool overheated

leaves. Although we are uncertain whether the leaves

wilted because of heat damage or embolized elements in

the water supply chain, the early loss of leaves might have

helped to avoid lethal damage to the conducting system of

individual branches or even of the main water-conducting

system of the stem.

The hydraulic resistances (model result) in the second

half of 2003 were found to be markedly increased com-

pared with the two previous years (Table 2). This increase

can be attributed to cavitation occurring more intensely in

dry periods (corresponding to acoustic emission data, data
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not shown). As many investigations suggested, cavitation

increases the hydraulic resistance in the flow path of trees

because every event reduces the conducting area of the

xylem (Grace, 1993; Sperry et al., 1993; Magnani and

Borghetti, 1995; Vilagrosa et al., 2003).

Conclusions

The investigation gives an explanation of how soil water

potential, microclimate, and the hydraulic system, in-

cluding water transport and storage, influence stomatal

aperture and transpiration in Scots pine and Pubescent oak

during three successive growth seasons.

The model predictions revealed diverging species-

specific dynamics in gas exchange which were caused by

differences in physiological properties. The properties of

Pubescent oak with a higher hydraulic flow resistance, the

ability to withdraw larger amounts of stored water from

stem and crown, and the ability to maintain lower water

potentials from the leaves to the roots without inducing

cavitation, led to relatively more opened stomata during

dry conditions compared with pine.

The model assumptions did not allow for predicting night

time transpiration (Phillips and Daley, 2006) and revealed

a dynamic in hydraulic resistances over time, which were

assumed to be constant in the model. Nevertheless, the

model successfully predicted multiple patterns related to

stomatal aperture, while for example the leaf CO2 concen-

tration was not considered (Farquhar and Wong, 1984).

The species-specific differences in functional properties

are concluded to be the reason for a more efficient water

uptake from dry soil and thus a competitive advantage of

Pubescent oak over Scots pine in an environment which

has been exposed to increasing temperatures and more

frequent droughts over the past decades (Beniston, 2004).

Our results from the extreme drought year 2003, however,

suggest that both pine and oak completely ceased their

physiological activity, and emphasize the potentially

serious consequences of ongoing climate change for both

pines and oaks in this area.
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Appendix A list of parameters

Unit Description Measured Model-Input Scaled/interpolateda

Calculated Model-Output
Optimized Constant

Microclimate
Rad [W m�2] Net radiation Measured Input/Input eq. 1 Interpolated for crown

expositions
PAR [lmol m�2 s�1] Photosynthetic active radiation Measured Input eq. 1 Interpolated
T [�C] Air temperature Measured Input eq. 1 Interpolated
Rain [mm] Rain Measured
RH [%] Relative humidity of air Measured
VPD [kPa] Vapour pressure deficit of air Calculated from T and RH Input eq. 1 Interpolated
uz [m s�1] Wind speed Measured Input eq. 1
WSoil [kPa] Soil water potential Measured Input Interpolated
Potential transpiration
FPot_Branch [g h�1] Potential transpiration for

a branch-like geometric surface
with constant porosity

Calculated from microclimate
and FBranch

b, eq. 1

FPot [g h�1] Potential transpiration of
a crown

Calculated Input Scaled up to crown
size from

ra [s m2 m�3] Aerodynamic boundary layer
resistance of branch

Calculatedb, eq. 2 Output

Ds [ ] Slope of the saturation vapour
pressure curve

Calculatedb, eq. 2 Output

� [ ] Proportion of direct solar
irradiation and shaded parts of
the crown

Optimizedb for eq. 2 Constant
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Appendix A (Continued)

Unit Description Measured Model-Input Scaled/interpolateda

Calculated Model-Output
Optimized Constant

(�¼0.01: branch completely
shaded; �¼0.5: branch
completely in the sun)

WH [MJ kg�1
�K�1] Heat flux between stem and

branch. WH¼ 0
Constant

q [kg m�3] Air density Calculated, eq. 2, Output
cp [MJ kg�1

�K�1] Specific heat of the air (1.01 *
10�3)

Constant

c [kPa �K�1] Psychrometer coefficient Calculatedb, eq. 2 Output
d [m] Boundary layer thickness of the

branch surface
Calculatedb, eq. 2 Output

ZT [m2] Idealized branch surface Optimizedb for eq. 2 Constant
rs min [s m2 m�3] Minimum stomatal resistance of

the branch
Optimizedb for eq. 2 Constant

k [MJ kg�1] Latent heat of vaporization of
water

Calculatedb, eq. 2 Output

Tree
FBranch [g h�1] Branch sap flow rates Measured Scaled up to tree size. (1)
F1 [g h�1] Water flow through root and

lower stem section
Calculated, Appendix B Output

F2 [g h�1] Water flow into and out of the
stem storage tissues

Calculated, Appendix B Output

F3 [g h�1] Water flow through upper stem
section towards the crown

Calculated, Appendix B Output

FTransp [g h�1] Transpiration Calculated, eq. 1 Output (1)
WRoot [MPa] Root water potential Calculated, ¼ WSoilR Output
WBark [MPa] Bark water potential Calculated, eq. B6 Output
WCrown [MPa] Crown water potential Calculated, eq. B7 Output (2)
WLeaf [MPa] Leaf water potential Measured Interpolated for crown

expositions (2)
R1 [h g�1] Flow resistance root/stem Optimized Constant
R2 [h g�1] Flow resistance stem/bark Optimized Constant
R3 [h g�1] Flow resistance stem/crown¼R1 ¼R1 Constant
PStem [g] Tree water storage Calculated, eq. B5 Output (3)
PStem max [g] Maximum available water from

the bark¼800
Set Constant

PCrown [g] Crown water storage Calculated, eq. B4 Output
PCrown max [g] Maximum available water from

the crown¼5000
Set Constant

DR [lm] Stem radius changes Measured
DW [lm] Tree water deficit Calculated from DR,

(Zweifel et al., 2005)
(3)

he_Branch [] Estimated stomatal aperture of
a branch

Measured and calculated from
FBranch and FPot

he [] Scaled up estimated stomatal
aperture of the crown

Calculated from he_Branch Scaled up to tree size (4)

h [] Modelled stomatal aperture of
the crown

Calculated, eq. 3 Output (4)

UCrown [MPa�1] Weighting-factor for the impact
of WCrown on h¼0.11

Set Constant

UBark [g�1] Weighting-factor for the impact
of DW on h

Optimized Constant

URad [ ] Weighting-factor for the impact
of Rad on h

Optimized Constant

CRad [W m�2] Threshold for light (impact
on h)

Optimized Constant

CCrown [g MPa�1] Crown water capacitance Optimized Constant
CStem [g MPa�1] Stem water capacitance Optimized Constant
k1 [ ] Transformation factor 1 for

calculating WRoot from WSoil

Optimized Constant

k2 [ ] Transformation factor 2 for
calculating WRoot from WSoil

Optimized Constant

a Numbers in brackets indicate the pair of variables which were compared between measurement and model output.
b (Zweifel et al., 2002).
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Appendix B: equations of the flow and storage
system

The flow and storage concept of this model is based on the water flow
along water potential gradients, corresponding to the dynamically
changing water potentials in roots (WRoots), bark (WBark), and crown
(WCrown). This concept can be understood as a hydraulic system
(Fig. 1a) whose flow dynamics between given water potential poles
are analogous to the electron flow in an electrical circuit. The main
driving force for water fluxes is the current transpiration (FTransp).
Due to the water loss from the crown by FTransp, crown water
potential (WCrown) decreases and water potential gradients are
induced between the crown and the bark (WBark), roots (WRoots),
and soil (WSoil). Along these gradients water is transported in the
xylem from roots, through the stem and branches to the bark and the
leaves (F1, F2, and F3), according to the cohesion theory. Two water
storage compartments are located in the flow system of this model
tree: the stem (PStem) and the crown (PCrown). The stem water
storage mainly consists of water in the elastic phloem cells in the
bark and of available water in the wood. Crown water storage
consists of water in the elastic cells of the crown mainly in the
leaves. Both compartments are coupled to the hydraulic system and
thus stem and crown become depleted or replenished depending on
the occurring pattern of water potentials. The depletion of the bark
becomes visible in a shrinkage of the stem. If FTransp stops and WSoil

remains unchanged the fluxes level out the gradients within the tree
and water movement ceases. Hydraulic flow resistances are applied
for the two stem segments (R1 and R3) and for the water exchange
between the xylem and the stem water storage compartments (R2).
For given water potential values and flow resistances (R1 to R3),

the resulting water movement in the lower (F1) and upper stem
section (F3), and the water exchange between xylem and tree water
storage (F2) can be calculated. The flow equations are obtained by
applying Kirchhoff’s current law to the junctions and nodes in the
circuit, whereby the flow rates are assumed to be analogue to the
traditional currents in an electrical network according to the Ohm’s
law. Equations B1 to B3 formulate the flow rates for F1, F2, and F3
(Zweifel et al., 2001; Steppe et al., 2006):

F1 ¼ F2 þ F3 ðB1Þ

F3 ¼
WBark �WCrown þ F2R2

R3

ðB2Þ

F2 ¼
WRootR3 �WBarkR3 �WBarkR1 þWCrownR1

R2R3 þ R1R3 þ R2R1

ðB3Þ

Transpiration (FTransp) and the water flow in and out of storage
locations changes the hydration status of stem (PStem) and crown
(PCrown):

PCrown;t¼i ¼ PCrown;t¼i�1 � FTransp 3Dt þ F3 3Dt ðB4Þ

PStem;t¼1 ¼ PStem;t¼i�1 þ F2 3Dt ðB5Þ

To link the flow equations (B1 to B3) to the storage status of the
tree (equations B4 and B5), PStem and PCrown have to be set in
relation to the water potential of the respective compartment. From
a given water status of a storage compartment, the water potential
can be calculated as:

WBark ¼
PStem � PStemmax

CStem

¼
DPStem

CStem

ðB6Þ

WCrown ¼
PCrown � PCrownmax

CCrown

ðB7Þ

where PStem max is the maximally available water that can be
withdrawn from the elastic stem tissues (mainly the bark), DPStem is
(negative) stem water deficit which is assumed to be proportional to
(positive) tree water deficit (DW)(Zweifel et al., 2005), PCrown max is
maximally available water that can be withdrawn from the leaves,
and CStem and CCrown are capacitances of the respective storage
(Steppe, 2004; Steppe et al., 2006). The (constant) capacitances
determine how much water is withdrawn from the storage
compartment for a given change in water potential and how PCrown

is related to WCrown: the lower PCrown is the more negative is
WCrown.

Equation for the soil water and root conditions

Several investigations showed that measured mean soil matric water
potential (WSoil) is more moderate than the conditions in the soil
next to the roots (Donovan et al., 2001; Mediavilla and Escudero,
2003; Tuzet et al., 2003). Tuzet et al. (2003) found that the
variation in WSoil is a function of distance from the roots and
concluded that the use of WSoil as a measure for root water potential
(WRoot) leads to incorrect values of resistances to plant water flow
especially during periods of drying soil. The non-linear decrease of
water potentials between a point at a certain distance to the roots
and the soil next to the roots is functionally explainable with an
increasing resistance to water flow in drying soil accelerated by the
root water uptake. The relationship can be formulated as:

WRoot ¼ k1ðF1ð2hÞÞabsðWSoilÞ
k2 ðB8Þ

where WRoot is assumed to be equal to the soil water potential next
to the root surface, F1(2h) is the mean root water uptake of the past 2
h and k1 and k2 are soil and plant specific parameters of the model.

Appendix C: sensitivity analysis

Sensitivity analysis

The sensitivity analysis covered two aspects: (i) the model
sensitivity on variations of the parameters to select the parameters
driving most of the variability in the model outputs and (ii) the
degree of independency of individual parameters to test whether
pairs of parameters were compensating each other.
(a) The model sensitivity S

�

S

yi
�

on each parameter was calculated
according to Steppe et al. (2006) as:

Sð
S

yiÞ ¼

S

yiðsþ DsÞ �
S

yiðs� DsÞ
23

S

yiðsÞ
100 ðC1Þ

where
S

yiðsÞ is the model output at the time i with the original
parameter value s and the perturbation Ds. Perturbation was chosen
to be 10% of s. Based on S

�

S

yi
�

, the sensitivity measure nmeas was
calculated as:

nmeas ¼
1

N
+
N

i¼1

�

�S
�

S

yi
��

� ðC2Þ

where N is the number of S
�

S

yi
�

-values along the time axis. A high
nmeas for a certain parameter means a high sensitivity of the model
on this parameter. A nmeas close to zero means that the model does
not depend on this parameter very strongly.
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(b) The dependency of pairs of parameters were tested with
a correlation of the respective S

�

S

yi
�

-values. If a parameter was
found to be highly correlated to others, it was set and not involved
into the parameterization process.
The sensitivity analysis was done with 10 of the 13 model

parameters. Three parameters were pre-set: R3, PCrown max, and
PStem max. The flow resistances for the upper stem section R3 was
set equal to R1. There was no reason to deal with different
resistances because the stem storage was reduced to a single spot in
the middle of the flow path and the model is therefore not able to
differentiate between small variations in resistances along the flow
path. PCrown max was set to 5000 g. This value was roughly
estimated from values in literature for other tree species (Hunt et al.,
1991; Zweifel and Häsler, 2001; Steppe, 2004). A good estimate for
PCrown max was to take 1.5-fold the value of the maximally
measured stem sap flow rate (g h�1) as a maximum value of water
storage (g). Similar reflections led to the setting of PStem max¼800 g,
which was about a quarter of the maximally measured stem sap
flow rate.
The averaged sensitivities of the model outputs F1, DW, WCrown,

and h on the 10 parameters were ranked as follows: k2¼R1 >CCrown

>UCrown¼UBark >CStem >k1¼URad >CRad >R2. Slightly changed
rankings occurred with different parameterizations. Overall, F1 was
found to be most sensitive on parameter perturbations in compari-
son to DW, WCrown, and h. High correlations were found between
the parameters UCrown and UBark, UCrown, and CStem, and UBark and
CStem. These findings led to the exclusion of UCrown from the
parameterization process. The parameter UCrown was set to the con-
stant value of 0.11, which was about the average within the range of
values obtained in about 100 model test runs. The other nine
parameters were identifiable with the parameterization procedure.
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Zweifel R, Böhm JP, Häsler R. 2002. Midday stomatal closure in

Norway spruce: reactions in the upper and lower crown. Tree

Physiology 22, 1125–1136.
Zweifel R, Häsler R. 2001. Dynamics of water storage in mature,

subalpine Picea abies: temporal and spatial patterns of change in

stem radius. Tree Physiology 21, 561–569.
Zweifel R, Item H, Häsler R. 2001. Link between diurnal stem

radius changes and tree water relations. Tree Physiology 21,

869–877.
Zweifel R, Zeugin F, Zimmermann L, Newbery DM. 2006.

Intra-annual radial growth and water relations of trees: implica-

tions towards a growth mechanism. Journal of Experimental

Botany 57, 1445–1459.
Zweifel R, Zimmermann L, Newbery DM. 2005. Modeling tree

water deficit from microclimate: an approach to quantifying

drought stress. Tree Physiology 25, 147–156.

Stomatal response of trees 2131


