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NOTATIONS

The set of positive integers is denoted by IN. The symbol IR stands for
the field of real numbers and € for the complex numbers. We use ¢ for

the cardinality of RR.

We consider normed vector spaces (X, | |> over T. The dual of a
|) is denoted by (X*,l

X and X*. If x € X and x* e X*then the value of x

normed space (X, | |). Often we just write

* at x is given by
<x,x*>.

The letters S and T denote topological spaces. If T ¢ §, then TC=S/T.
For complex valued functions we use ¢ and y , whereas f,g and h stand for
vector valued maps. The restriction of a map f, defined on S, to a subset
T ¢ S is f|T. The space of bounded, complex valued, continuous functions on §
is (C(S), ||+|]), where ||¢|| = sup {|¢(s)| | s € S} for ¢ e C(S).

The following notation was introduced by Professor Dr. H.Freudenthal.

Let M and N be sets and f a map from M into N such that the value of £

at me IN is given by LI where r € IN, then we write f = \|/ or

m e Mrm
f= T;rm. For example, let ¢ € C(S) then |¢]| = j:|¢(s)] is the element of
C(S) which in s e S assumes the value |¢(s)|. Similarly if ¢,y € C(S) then
ooy = WZ ¢(s)y(s) is the pointwise product of ¢ and y . The numbers 1 and O

will also denote respectively the maps | =‘T; cs 1 and O = j; €S 0.

We list some symbols and abbreviations together with the page on which

they occur for the first time.

P
CL(X) 34 Ly (BS,u) 24 Aps A 16
c(s), ] R R

(s) 9 u,p'Rs 33,34 Au 18
c.(s 13 s”

0( ) 13 PLp 36
C(S,X),CO(S,X) 21 X(T),X(w) 16 0. p.% 36
co’w(s,x) 21 X(w . 18 T¢ 43

B
f 1 X ,

3 P 21 m nu 26,27
F 0 -
. . X(T)",X(T) 27 el L1 16
L B, H T, 4l x 0 y- 3) -1 ®
2 9 [ ]

Mo Hs H UsP’ TH,P U,P 21
J 22 S 13
K(S,X) 21 r 15
L(X,Y) 33 f,u 14

L(H) 40 v 15






INTRODUCTION

Let X be a Banach space and S a completely regular space. We denote by
(C(s,X), |
with norm ||£|| = sup{||£(s)|| | s € S}, f e C(S,X) and define a map
v i C(5,X) > C(S) by w(f) = [ |[£(s)] ]

If 1 is a locally convex topology on C(S) them v (1) is a locally

|) the Banach space of bounded, continuous maps from § into X,

convex topology on C(S,X). We denote by NT the closure of 0 € C(S,X) with
respect to v-l(r). R.A. Hirschfeld defined in <10> the t-hull of C(S,X)
as the topological quotient space C(S,X)/NT, where C(S,X) has the v—l(r)
topology. This generalizes work of J.W. Calkin <4> and S.K. Berberian <2>,
In 1.3 below, this definition is generalized to so-called continuous
families of normed spaces. To each s € S corresponds a normed space X(s).
We consider linear subspaces T ¢ HS cS X(s) and define v on T by
v(f) =‘T; c s |[E(s)]|, £ er. The pair F = {{X(s) | s « S},T} is called
a continuous family if v(r) ¢ C(S).(1.3.1). If 1 is a topology on C(S) then
we define the t1-hull of F in a way which is very similar to the one des-
cribed above for the constant family with T = C(S,X).
Two classes of examples of hulls are discussed in 1.4, Let T be a
closed subset of the Stone - Cech compactification BS of S. We define a

on C(S) by ||q>||T = sup {[¢(s)| | s € T}, ¢ «€C(S) and we

semi-norm || - lT

study the hull of F, the so-called T-hull, with respect to the | . ]T -
topology on C(S). We denote the projection of T into the T-hull by AT and

we put X(T) = ATF. Special emphasis is put on sets T which consist of only
one point w € BS/S and the corresponding w-hulls X(w).

Also let {i be a state on C(S), that is, i < C(S) , ||ii||= <1,i> =1,
where 1 is the identity in C(Shv and 1 < p < =». Then one defines K lu,p
on C(S) by l|¢||u,p = <|¢|P,i> P with |¢]| = j; |$(s)|. It is well-known
that | . |u’ defines a semi-norm on C(S). The hulls corresponding to the
|- lu.P - topology are called (p,p)-hulls, The canonical projection of T

onto the (u,p)-hull is denoted by /\u and we put AUF= X(u).

Various properties of X(T) and X(u) are discussed. We endow X(T) and
X(y) with the norms |[A |}, = [[v(f)]|, and ||Auf||u’p = ||\)(f)||u’p
respectively, and prove that if I' is such that for all ¢ ¢ C(S) and fe T
also ¢-f € T, where (¢p+f) = T; $(s) £(s) =4 if T is complete with respect
|, then (X(T), ||-!|

to | ) .. cowpiete. (l.4.1.3).

T
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We note that by the Riesz - representation theorem to each state J
on C(S) there corresponds a positive Radon-measure py on BS. We show
that under the same conditions as for T - hulls,plus a mild additional

conditiong the (u,p) - hulls are complete iff supp py is finite. (1.4.2.1).

.IIU)p) by X )

u,pP
It is remarked that if F is a continuous family of Hilbert spaces

We denote the completion of (X(u),

then xu,2 is also a Hilbert space. (1.4.2.2).
From 1.5 onwards we consider but constant families, i.e. T = C(S,X).
Let K(5,X) be the subspace of C(S,X) consisting of those f € C(S,X) for
which £(S) is relatively compact. According to the compactification
theorem (1.1.1) each f € K(5,X) has a continuous extension fB over RgS.
The map £ - fB is an isomorphism from K(S,X) onto C(BS,X). By means of
this map we construct an isomorphism J from the Au - image of C(gS,X) in
its (u,p) - hull onto the A - image of K(S,X) in the (u,p) - hull of
C(S,X) as follows : JAuf6 = A f, fe K(S X). By definition the completed
(u,p) - hull of C(BS,X) is the space L (BS.u) So we can embed LXP(BS,M)
in the completed (u,p) - hull x p of C(S,X). (1.5.3). It is shown that

’

(BS u) * X ", p if S = IN, X infinite-dimensional and | a state on C(IN),
wh1ch annihilates the functions, which vanish at infinity. (1.5.4).

We note that for T ¢ RS, T closed, the AT image of K(S5,X) in X(T) can
be identified with the space C(T,X).

In the next section 1.6 we assume that X is the dual of a normed space Y.
Every f € C(S,X) has a bounded, thus relatively weak” - compact range. Since
all f ¢ C(S,X) are also weak” continuous on S, there exists a weak” continuous
extension f ° of f over 8S by the compactification theorem 1.1.1. We have

v(f B) < v(f)B (1.6.1) and it can be proved that if X is reflexive and {i a

state on C(S) then each f B is py - measurable. Moreover If B | ,p || ||u .
- ’

for all £ € C(S,X) and so f 8 € L (BS,u) (1.6.3). We define n on X(u) by
nTAEf-= Jf B. Thus the continuous exten51on of n is a prOJect1on of norm one
from X onto JL (BS,u) and H is called the Stone - Cech operator. (1.6.4).
In 1.7 we deal w1th the f0110w1ng problem., For T & 8S we put X(T) -{A f|f¢C(S X),
£, 8l]; = 0. Let C ) (5,X) be the set {£| € C(S,X), <y,f> & Cy(S) for all
y € Y} and X(T)" = ATC0 (S,X). What is the relation between X(T)o and X(T)"?
It 1s readily seen that X(T)" < X(T)O.

We give the following characterization. For f € C(S,X) we have

ATf e AT(K(S,X) + CO w(S,X)) iff fwBIBS/S is strongly continuous at every point
b ]



of T.(1.7.4). Using this characterization we show that if T ¢ 8BS
contains P - points only, and thus is finite, then X(T)0 = X(T)".
If in addition X is reflexive than this condition is also necessary
(1.7.7),(1.7.8).

For chapter II let X and Y be Banach spaces and L(X,Y) the Banach
space of continuous linear transformations from X into Y. If 3¢C(S,L(X,Y))

then we can define a transformation A§ from C(S,X) into C(S,Y) by
@D = T, §(s)E(s), £ € C(S,X).
Now if X(u) is the (u,p) - hull of C(S,X) with respect to a state j
on C(S) and Y(u) similarly for C(S,Y), then we can define a map R @,
$ € C(5,L(X,Y)) from X(u) into Y(u) by (R Q)(A f) = A (AQ)(f), f‘eC(S X).
A similar thing can be done for T - hulls.
If X = Y then C(S,L(X,X)) is, with point-wise multiplication, a Banach

algebra. In this case R > is an algebraic homomorphism.(2.1.2). If § is a

point measure then the Ru p " image of C(S,L(X,X)) in L(Xu p,xu p) acts

’ *

irreducibly and contains even all degenerate operators on X .o (2.1.3)
»
Next we turn our attention to the subspace of C(S,L(X,X)), which consists

of the constant maps and is isomorphic to L(X,X). The restriction of R“ P to
*

this subspace induces a representation p of L(X,X) into L(X _,X ).
H,P HyP  H,P

We prove that if X is separable then every cyclic subrepresentation of

a pusp’ that is p p and the underlying topological space is S, is equivalent

’ Hy

to a cyclic subrepresentation of a p:Np.(Z.Z.Z). The subspace Jpr(BS,u) is

v
invariant for pu and if X 1s reflexive also the kernel X 0 of the Stone-Cech

sP Hs

operator is invariant. The restriction p 0 to X 0 of p annihilates the
H,P UsP U,p
compact operators on X.(2.2.4).
In 2.3 finally we assume that X is a Hilbert space, notation H. The
representation Pu.2 is a ¥representation of L(H,H). The principal result is
»
that every cyclic *representation of L(H,H), which annihilates the compact
operators is “isomorphic to a cyclic subrepresentation of a pu02 with y a
’

point measure on BIN/ IN. The cyclic vectors l\ufel-lp o can be chosen to be
1)

orthogonal to Au(K(IN,H) + Co w(IN,H)). (2.3.5).
»






CHAPTER I

1.1 The Stone - Cech compactification.

1.1.1 Compactification theorem. <9, th 6,5>,

Every completely regular topological space S has a compactification BS
with the following equivalent properties :
i. (Stone). Every continuous map £ : § - K, where K is a compact space,
has a continuous extension fB : BS > K,
ii.(Stone). Every bounded, continuous and real-valued function ¢ on S has
a continuous extension ¢Bto BS.
8S is unique in the sense that, if a compactification S of S satisfies
ior ii , then there exists a homeomorphism of BS onto S which leaves S

pointwise invariant.

8S is called the Stone - Cech compactification of S. For a map f de-
8

fined on S, we shall refer to £~ as the Stone — extension of f. Since S

is by definition dense in BS <9, 3.14> fB is uniquely determined by f.

The ma is an isometric ositive, algebraic homomorphism
P ’ ’ P

¢B
¢e C(S)
from C(S) onto C(BS). A model for BS is the structure space of C(S) in its
hull-kernel topology <9, 7M,N>. Thus the map T;¢B turns out to be the
Gelfand representation of C(S).
The space BS/S will be denoted by §~, The symbol w always means a point

of 7,
The following lemma will be useful <9, 7F>,

1.1.2 If CO(S) is the closed subspace of C(S), consisting of the functions
vanishing at infinity, then ¢ e CO(S) iff ¢ | s™= 0.

proof : Take ¢ ¢ CO(S) and ¢ > 0. Whence the set A = {s | s e S,]¢(s)| 1.5}
is compact in S. As such A is closed in BS. For w € S°, there exists ¢ e C(BS)
with 0 < ¢ < 1, such that ¢(w) = 1 and y(A) = O.
Consider ye¢. Then ||y-¢|| < € and [6Cw) | = Ju()o(w)| = |ved(w)] <
< |[¢-¢|| < €. Since ¢ > O1is arbitrary, we conclude ¢(w) = O.
Now let ¢ « C(BS) be such that ¢|S~= 0. For ¢ > 0, let A = {s|s « 8BS,
o (s)] > €}.Then A is a subset of S, which is compact in BS. Consequently

A is compact in S.
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In the sequel we impose the assumption of complete regularity on all

given topological spaces S.

1.2 States.

1.2.1 Definition : A linear functional i on C(S) 1is called a state if:

i) ¢eC(S), ¢ > 0, implies <¢,{i> >0,

ii) <1,f>= 1.

We shall use 1 both for the number 1 and for the identity in C(S).
It can be readily verified that a state is bounded and has norm I.
The Riesz - representation theorem applies to states of C(BS) to the
effect that each state jI determines a unique positive regular Borel measure

p of mass 1 on BS such that for ¢ € C(BS) we have
<p,u> = f¢ du.

Henceforth we shall denote the functional associated with a measure yu
by H.
We are especially interested in states {i so that the support of u is
contained in S”, We shall refer to these states as to free-states,
A state is called singular if it annihilates CO(S). The set of free states

is contained in the set of singular states, This is a consequence of 1.1.2,
1.2.2 All singular states are free iff S is locally compact,

proof : Suppose S is locally compact and il a singular state. For every
s « S, there exists an open neighborhood O of s with compact closure. By
complete regularity we can find ¢ « C(S) with O < ¢ < 1 such that ¢(s) = |
and ¢(J) = 0. Clearly <¢,{> = O and thus s € supp u.

If S is not locally compact, there exists a point s e« S which has no
compact neighborhood. Every ¢ € CO(S) vanishes at s. The assignment

T; e C(S) ¢(s) defines a singular state, which is not free,

An example of a non-locally compact space, is the set Q of rational

numbers, with the topology induced by the ordinary topology of the real

numbers. The space CO(Q) consists of the zero function only <9, 7F>.

1.3 Continuous families of normed spaces.

Let S be a completely regular space and {X(s) | s ¢« S} a family of

normed vector spaces. We consider elements from "s c SX(s), that is maps f
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defined on S such that f(s) € X(s) for s « S. The set HS < SX(s) is a
linear vector space, where addition and scalar multiplication are de-
fined pointwise. Multiplication with ¢ e C(S) is made possible by

putting ¢-f =\T S ¢(s) f(s), where f e HS < S X(s). Also we define

s e

a map v from Hs e s X(s) into the ring of real valued functions on S by
v(f)=j“s‘s||f(s)|| fen _ o X(s).

1.3.1 Definition : A continuous family F = {{X(s) | s € S},T'} of normed

spaces consists of a set {X(s) | s e« S} of normed spaces and a linear

subspace T g_HS e S X(s), so that v(I) € C(S).

The space T' is endowed with the supremum norm ||+|] ,» defined by

[1El] = [|v(E)|| = sup {||£(s)]|]| | s « S} f «T.

The completion T of T with respect to | | can be identified with a

subspace of Hs X(s). Here X(s) is, as usual, the completion of X(s).

€ S

1.3.2 Definition : The pair F = {{X(s) | s e S}, T} is called the

completion of F. A continuous family F is said to be complete if F = F.

In general the inverse image under v of a locally convex topology T
on C(S) is a locally-convex topology v—l(r) on I'. We denote the closure of

0 in T with respect to v_l(r) by NT.

1.3.3 Definition : (R.A. Hirschfeld <10, def 2> ). The hull of a continuous

family F with respect to a topology T on C(S) is the topological quotient-

space T/N of the topological vector space T provided with the topology v—l(r).
T

We see that (F,l

|} can be considered as the hull of F with respect
to the topology of uniform convergence on S for C(S). A similar definition
for hulls may be given for metric spaces. The analogue of T should be a set
of maps such that the pair distance function\T; €S d(f(s),g(s)), f,g e T,
is contained in C(S). Locally convex spaces can be handled by treating each
semi-norm separately,

The above definition is a variation on work done by J.W. Calkin <4>,
and S.K. Berberian <2> for Hilbert spaces and by R.A. Hirschfeld <10>
for Banach spaces. In <2>, <4> and <10> only constant families are

considered, that is, X(s) = X for all s € S, S being the set IN of positive



-16-

integers in its discrete topology. In <4> T is taken to be the set of
vector sequences weakly converging to zero, whereas in <2> and <10> T
is made up of all bounded sequences in X. Calkin <4> obtained singular
representations of the algebra of bounded operators in Hilbert space in

terms of hulls.

1.4 Examples and elementary properties of hulls.
1.4.1 Let F = {{X(s) l s ¢ S},T} be a continuous family of normed spaces.

Suppose T is a closed subset of RS. We provide C(S) with the semi-norm

defined by
T

8]l = sup{leCs)] | s « T},

on ' is then

The corresponding semi-norm, also denoted by | lT‘
||f]lT = ||v(f)||T = sup {||f(s)|| | s € T}. We denote the hull of F with
H - hull of F, by

lT) and the map from I onto X(T) by AT' Then we have for all feT.

respect to the |

x(m), |

lT ~ topology, or shortly the ll-

AfE=1g | gerT, [lg-f]l; =0}

If T consists of one point s « S, then the | |T - hull of F can be
identified with the subspace {f(s) | f « T} of X(s). We may as well suppose
that {f(s) I f €« T} = X(s).

We introduce a special notation for the case where T consists of a point

|w - hull of F will be denoted by (X(w), |

w e S”. Instead of |

|{w} we simply write | o'

1.4.1.1 Definition : The |

1)
and is called the -hull of F. The canonical projection from T onto X(w) will

be denoted by Aw'

Now ‘it is possible to extend, for a continuous family, the maps f € T

from S to AS by putting for w « S7 :

f(w) = A £ € X(u)).
W

The set of thus extended maps is denoted by FB.

1.4.1.2 Definition : Let F = {{X(s) | s € S}, T} be a continuous family of normed

gs X(s)

spaces. The set of normed spaces {X(s) | s € RS} together with FBQ HS <



forms a continuous family FB of normed spaces on B3S. The family Fis

called the hull of F.

We remark that the hulling-device, as given in definition 1.3.3., set
up with the family PP instead of F leads to the same spaces. The advantage
8

of working with F~ instead of F is that sometimes we get a better insight

in the hulls of F with respect to the various topologies on C(S).

The following result concerns the completeness of the | |T - hulls

for a special class of continuous families.

1.4.1.3 Let F = {{X(s) | s € S},T} be a complete continuous family of Banach
spaces, We suppose that if feTl and ¢ € C(S) then ¢+f « I'. We have for all
f e T and all (closed) subsets T ¢ B8S.

£ = inf {||g|] | g e T, ||g-f||; = O}.
The || |T - hull of F is complete.
proof : We put for f e T, |||f|||T = inf {||g|| | g e T, |lg-—f||T = 0}.
If g e [ is such that |[f=g||, = 0, then ||£||y = ||g|ly - lg]|. Upon caking
the infimum over all such g, we get ]|f||T < l||f‘||T.

To prove the converse we may suppose ||f||T > 0, Let A = {s | s € BS,

v(f)(s) > ||f]|;}. The function ¢ = v(f)_l||f|| x + X , where x, is the
— T A AC A

characteristic function of A and y " 1 - x , is contained in C(S) and
A A
¢(T) = 1. Clearly we have ||¢-f - f[]T =0 and ||¢+f]|| = ||f||T. This implies
HEe 2 TTTEN e
From the equality ||f||T = |||f|||T it follows that the topology of the

X(T) = P/ATO, where T is taken with the |

|T - hull of F is the same as the quotient topology of the space

|-topology. It is well-known that
a quotient-space of a Banach space with respect to a closed subspace is com-

plete in the quotient topology.

Next we consider an other special case. If each X(s) is a normed algebra,

then Mg X(s) can be made into an algebra, where multiplication is defined

e S
pointwise.

1.4.1.4 Let F = {{X(s) I s € S},T} be a continuous family of normed algebras.

If T is closed under multiplication, then T is a normed algebra with respect
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to the supremum norm (1.3.1). The | IT ~ hulls of F are normed algebras

and AT : T > X(T) is for all T < BS a continuous algebra homomorphism.

proof : For f and g in T we find j; c S||f(s) g(s) || <
To e sIE@IIT, , glles) || and consequently | ||| < ||£]
as well as ||fg||T §_||f|]T||g||T for all T ¢ gS.

The first inequality shows that (T, |

| A

-|lel]

|) is a normed algebra. From

the second one we infer that the multiplication in X(T) is well-defined by
ATf . AT g = AT
with multiplication defined in this way. The last statement is obvious.

feg. It is clear that (X(T), |

|T) is a normed algebra

1.4.2 A second set of examples, which is of interest, can be got in the
following way. Let {i be a state on C(S) and | < P < w. We consider c(s)

with the semi-norm || Iu > defined by :
’

1/
oll, = (<lolP, &) P o € C(S).
u,P
We denote the ||- |u o " hull of a continuous family F by (X(u),]|- p).
’ Ho
We remark that X(p) = X(supp u) and that X(u) is independent of p. The
ical jecti f to X is d ted b . We h A=A .
canonical projection from T onto X(u) is denoted by /\u e have A supp u
I1f supp p consists of only one point, then [ is multiplicative and
Hl -] is independent of p. Moreover we get ||«]| = ||| in this
W,P HsP SUpp u

case. In general the inequality |

| < l|~|| holds.
P — sSupp H
As acorollaryto 1.4.1.3 we have.

1.4.2.1 Let F be as in 1.4.1.3. If the set {s | s ¢ BS, v(f)B(s) = 0 for all

f&T} is empty, then (X(u), ||-||u p) is complete iff supp y is finite.
3

proof : For complete (X(u), |

| ) the inverse-mapping theorem applies to

| ) onto (X(u), II.Ilu,p) to the

u
the canonical injection of (X(u), [T- supp 1

|1 and | |
HsP supp H
On the other hand the equivalence of the norms and the completeness of

(X(U)a Il'l'supp u
X, | Iu p) is complete iff |

effect that the norms |

are equivalent in that case.

) ensure the completeness of (X(u), |

| ). Therefore
HsP

Iu,P is equivalent to ||.]]

|supp u
equivalent. For supp M infinite, take € > 0. There exists a point t & supp u

supp u

If supp 4 is finite the norms |

| and | obviously are
HsP

and an open neighborhood O of t such that u(0) < €, Let ¢ € C(BS) be such
that 0 < ¢ <1, ¢(t) =1 and ¢(0c) = 0. There is an fe T such that v(f)s(t)*o.



Because I is a module over C(S) we may suppose W(E) (t)=1 and P

We consider p+f. Then we find |!¢f|] =] and |'p-f|] p I P. Since
; ! Hp £
.l and |!-]]| are not equivalent

|
e >0 is arbitrary we see that | ||
Hs P ‘ Supp

in this case.

We infer from 1.4.2.]1 that theorem 4.! in <4>, which asserts for the complete

family F considered, that (X(u), [ Iu,z) is incomplete for every state , on
C(S), is not true in the alleged generality. The proof as it is given hinges
on the suggestion made by J. von Neumann, that a Hilbert space of dimension c,
the cardinality of the continuum, should contain 2% elements. This remark,
however, is not valid, as can be seen from the following argument.

Let {ea | @ € IR} be an orthonormal basi; for H. Every element from H has
[
i

an expansion Ea c a e , where ¥ < o, This implies that at most

R o a a & IR,aa
countably many of the coefficients a, differ from zero. The cardimality of H
is not greater than the product of the cardinality of a separable Hilbert
space, equalling c, and the cardinality of the set IRIN, consisting of the

maps from IN into IR. The latter also equals ¢ and we have ¢ x ¢ = ¢,

1.4,2.1 is a generalization of theorem 1.6.1 in <6> of J.B. Deeds,
covering the case X(s) = C, I'= C(S), S =IN and § a translation invariant

generalized limit. The proof given here is much simpler than the one in - 6-.

A property of |-} - hulls worth mentioning is the following.
1.4.2.2 Let F = {{X(s) { s € S},T'} be a continuous family of normed spaces,
such that each X(s) 1s a Hilbert space. Suppose § is a state on C(S). Then

the =!°

]u 9 hull of F is an innerproduct space. The innerproduct is

given by :

(A £ah,8) = <] (E(s),8(s)), B> fge .

proof : It is readily verified that (-,-) is an innerproduct. If f = g we

: ‘ 2 . Cety
find (A“f,uug) = (v(f)°,0) = I!f'iu,Z’
is derived from the innerproduct.

which shows that the norm |-!}! 9
U

1.4.3 Next we shall give some simple properties of hulls.
Proposition 1.4.2.1 brings to our attention the question of the relation

between the various hulls of a continuous family F and those of its completion.
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We consider this problem only for the two examples of hulls mentioned here.
Therefore, let us look at a not necessarily complete, continuous family

F of normed spaces. We consider the map A, T being a closed subset of gS§,

T!
lT - hull X(T) of F. The image of T under this map can

from T onto the l

be identified with X(T). It is clear from the facts that I is dense in

with respect to | | and that A, is |[]-

| continuous that (X(T), |

T ) is
dense in (X(T), ||~||T) after this identification.

It is not hard to prove that the extension operator for continuous
families commutes with the closure operator, i.e, F8 = ?B.

At first sight it seems rather surprising that, in some cases, it makes

no difference, whether we start with F or F. The resulting | - hulls are

1
equal.

1.4.3.] Let X be a normed space with completion X. We consider the constant
family F with X(s) = X for all s ¢ S, where S =IN, and with I the set of
bounded sequences in X. If T < IN",then X(T) = X(D).

proof : For every f e« T there exists h ¢ T such that v(f - h) « CO(IN).
From 1.1.2 we infer v(f - h)B [ IN®" =0 and h e ATf. Consequently ATf=ATh

and X(T) < X(T). The converse inclusion is known.

It follows from the preceding discussion that the respective completions
of the | IT - hulls (X(T), | IT) and (X(T), |
a state on C(S), then the same can be said about the completions of
X, l | ) and (-)—((U): |

H,P
x .
( u,p’ II IUip)
that the elements of Xu p

IT) are the same. If I is

| p). We denote these completions by
1]

. A modification of the usual procedure for Lp spaces, shows

are equivalence classes of elements from ns c BSX(s).

Often we shall meet situations where a subset Tog& T is given. With the

image of T, in X(T), T ¢ BS, we mean the set A_I'. If a continuous family

F' = {{X(S? | s e S},r''} is given and another g = {{X(s) | s « S},T'} such
that ' c T, then we can identify the hulls of F' in a canonical way with the
image of T' in the corresponding hulls of F.

A slightly more complicated situation is treated in the following

proposition, which we record for later use.

1.4.3.2 Let F = {{X(s) | s € S},T} be a continuous family of normed spaces
on S and F' = {{X'(s) | s € S'},I''} ditto on S'. Suppose 8: S > S' is a

continuous map such that for fe TI'' we have f 0 6 ¢ T'. If I is a state on



that K(S,X) is isometrically isomorphic to C(gS,X). Every f ¢ K(S,X) has
£B

€ K(S,X)

is an isometry from K(S,X) onto C(BS,X). In fact for f ¢ C(BS,X) the range

a continuous Stone-extension fP to gS by (1.1.1). The map\rf

f(BS) 1is compact. The restriction £ |S is in K(S,X). The uniqueness of the
Stone - extension implies (f | S)B = f on 8S.
For £ € C(BS,X) and T ¢ RS, let ‘KTf be the class of elements in C(RBS,X)

equivalent to f with respect to |]-||T, i.e.

ATf = {g | g € C(BS,X), ||f—g||T = 0},

B

1.5.3 The assignment J : ATf *.KTf , £ € K(5,X) is well-defined and sets

up an isomorphism from ATK(S,X) onto fXTf | f € C(RS,X)}. This isomorphism

is isometric in the | |T - norm, If §i is a state on C(S) and T = supp u,

then the isomorphism is isometric in every norm ||-||lJ Il <p < =,
?

p’

proof : For g € K(S,X) we have v(gB) 6 C(8S) and thus v(g)B = v(gB).
We find

IIAT8||T=SUP{\J(8)B(S) | s e T}=sup{v(g3) (s) | S‘T}=||_5Tg8| l‘r

The second statement of 1.5.2, concerning the |

| - norms, follows as
u,Pp

easily and it is clear that the defined map is onto.

In <3, ch IV, §3, n2 4> Bourbaki defines the spaces LXP(BS,u), with u a
positive measure on RS, as the completion of the set of equivalence classes of

maps f € C(BS,X) with respect to the semi-norm
P l/P
f = {[{f|" dul} 1 < < »
|| 'Iu.p I | H N

In other words LXP(BS,u) is the completion of the space {Ksuppuflfé C(BS,X)}
with respect to ||«]] .
HsP

By means of the isomorphism in 1.5.3 we can establish an identification

L KEX, ], ) and (R o flEeCes, 0, [[-]], ).

J between (A
supp

By continuity this identification can be extended to hold between all of

K(S,X) in the . - hull, X
PP S | |u,p > Tu,p’
the constant family considered here.

P
LX (BS,u) and the closure of ASu

of
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1.5.4 i) If C(S,X)

Jpr(ss,u) I <p < o

K(S,X) then X
Hs P

’

ii) For dim X = =, 1 a singular state and & = IN, X p#Jpr(BS,u)
]

8
I < p < o,

iii) (ASupp " K(S,X), | lu p) is complete iff supp ;; is finite.

proof : i) If C(S5,X) = K(S,X) then (X(u), |!-

lu,P) hJpr(u),
whence the statement.

ii) We infer from a well-known lemma of Riesz's that if dim X = =,
there exists a sequence JXn | n e IN} in X with i'xn|| = 1 and an—xm|| > l/2
for n 4 m. If for x ¢ X and some n ¢ IN, ||x’—x]::}/4, then for m # n we find

|x—xn|| > l/4. This proves lim infn {X.xn|| 3_1/4 for all x e X.

> CDI

Consider g e x(nq,x)Band f € C(IN,X) defined by f = j; N

Then v(f—g)B | W = v(f—gs) | IN® > l/4 and thus we get

| [ £-g || > Y4 for 1 < p < w». Since A K(S,X) is dense in JL,P(gS,u)
P — - H X

supp
this implies f ¢ JLXP(BS,p).

iii) We apply 1.4.2.1 to the complete family X(s) = X for s € S
and T= K(S,X).

Remarks., 1) If X is finite dimensional, the bounded sets in X are relatively
compact, therefore C(S,X) = K(S,X).

ii) In case we would admit also locally convex spaces X, C(S,X)
would consist of all continuous maps from S into X with bounded range. In
Montel spaces the closed bounded sets are compact, hence C(S,X) = K(S,X).

It is readily verified that 1.5.4 i) is also valid for locally convex spaces.
For Montel spaces hulling does not give anything new.

iii) It is interesting to find conditions on S, X and w&$S~, guaran-
teeing X = X(w). We shall exhibit an example where X = X(w) for every X
whatsoever.

Let W denote the space of all countable ordinals in its interval
topology. The Stone - Eech compactification 3W of W is nothing but the
Alexandroff one-point-compactification of ¥ <9. 5.12>. For f € C(W,X),f(W) is
countably compact since W is countably compact. Because f(W) is also metric
it is compact and it follows that f € K(S,X). From 1.5.2 ii) we infer X = X(w).

iv) If S = IN and X is separable, then the density character of Xp,p'
with §i a singular state, equals c, the cardinality of IRR. The argument runs

as follows.
Let Y be a countable and dense set in X. The same reasoning as
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in 1.4.2.2 shows that the image under Au of the set C(IN,Y) is all
of X(u). The cardinal number of C(N,Y) equals ¢ and the image is
dense in X ,p’ 1 <p <=

On the other hand consider the map f € C(S,X) defined in the
proof of 1.5.4 ii). Using well-known techniques <4, 4.2> it can be
easily shown that there exists a subset {¢a [ o € I} of the set of all
permutations of IN, where the cardinality of the index set I is ¢, such

that v(f o ¢y = fo ¢a')8 | m

-~

11/2 for o« # a'. Then we find for 1<p < =

1
that 0 - 2 '. Th he d i
a |lAsupp y (fog -fo ¢a')||u,p > /2 for a # a us the density
character of X is at least ¢, since it is also not bigger than c, it
?
equals c.

A similar result holds for the | IT - hulls, provided T & IN~,

1.6 The Stone - Cech operator

In the sequel of this section we shall assume that the Banach space
X 1s the dual of some space Y. The space X can be endowed with the g(X,Y)
topology, or so called weak®™ topology, notation Xw. Every map f & C(S5,X) is
also continuous with respect to the weak™ topology on X. It is well known
that bounded sets in X‘,are relatively compact. By the Stone - theorem 1.1.]
each f € C(5,X,) has a continuous extension fwB : BS » X_. The value of

£8 in w e S” is given by

W
fwB(w) = jj

v ey <y,f>B(u)

where <y,f> = W; s <y,f(s)>.
For f € K(5,X) we have two extensions ; the strongly continuous one fB

and the weak ™ continuous one fwB. It is easy to see that they coincide.

1.6.1 Let X be the (normed) dual of a normed space Y and f &£ C(S5,X).

The weak™ continuous extension fwB of £ to BS satisfies

v(£ B < v(n)B
proof : Let y€ Y, ||y|| :_l, then v(<y,f>) E.V(f) and \;(<y,f>)B = v(<y,f>B) =
= “(<y’fw?>) :_v(f)B. Upon taking the supremum over all y € Y with ||y|| <1
we get v(f %) < v(p)B.
w' =
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1.6.2 The map ﬂw : X(w) - JX, where J is as in 1.5.3, is defined by
Hw Awf = wae(w), f € C(5,X). Hm is a projection of norm 1 onto JX.

. . 8 8 B
proof : If g ¢ Amf we find ||fw (w) - 8y (w) || < v(f-g) "(w) from 1.6.1.
This shows that nm is well-defined and has norm one. It is obvious that |

W
is linear, idempotent and onto JX.

Following J.B. Deeds <6> we call Hm the w-Stone - Cech operator.

To obtain a corresponding result for states {I not pertaining to point

measures, we have to impose the additional condition of reflexivity on X.

1.6.3 Suppose X is a reflexive Banach space and §i a state on C(S).

For f € C(S,X) we have

1) fw is p - measurable

.. B P 8.
ii) fw € Ly (BS,u) and llfw ||u,P < | 1 <p <

HINN
b
proof : 1) According to <3, ch IV.$ 5.n> 5. prop 10> to prove that fwB
is y - measurable it suffices to show that fwB sends supp u into a separable
part of X, because for each x* ¢ X', the function <wa,X*>, being continuous,
is certainly measurable.

We consider X with its weak topology and define a state U on C(X) by
-~ _ BA = B
v = T;e c(xX) <¢ o fw y1>. Then we :ave supp v = {f_ (supp u)}. App. |
applies to v, to the effect that f (supp py) < supp v is a separable subset
of X.

i1) Since fwB is measurable we need to prove only that ||fwB||u D <
< ||f!lu P’ It follows from 1.6.1 that v(fwB) < v(£)® on 8S and consequently
hl , b
B ByP l/P ByP l/P
e 1y, = v PerumDHPany P = el I <p < o
We define amap I : X - X , called the y -Stone - Cech operator, by
U HsP HsP

noar= JXg® f e C(S,X)
u u - ‘_l W H ’

v
where A fws is the equivalence class of fB in LXP(BS,U).
u

1.6.4 The continuous extension of Hu to Xu . is a projection of norm one of

bl
X onto JLXP(BS,u) for 1 < p < .



proof : We remark that the assumption that X is reflexive still holds.

It follows from 1.6.3 that H is well-defined, maps (X(u), ] . |‘J p)
b
into JL p(BS u) and has norm not exceeding one. By continuity we get
mx, e JLy (8, ).
W u,p— ( H
If £ € K(5,X) then H A f = JA f 6 - ! f Since A K(S,X) is dense in

(BS,u) we infer that H leaves JL (BS,U) 1nvar1ant.

Remarks. i) If £ ¢ C(S,X) thenA o 8 €L m(BS,u) as follows readily from
1.6.3. We have no 1dent1f1cation of the image {A f | f € C(S5,X)} with a

Isupp W

subspace of (X(u), |

ii) Proposition 1.6.4 is a generalization of 1.5.8 in <6>. The use
of K(S,X) in the proof is reduced to those points, where it is essential,
to wit, the identification of L (BS u) with a subspace of X p and the

’
fact that L (BS u) 1is invariant under application of Hu.

1.7 The kernel of the Stone - éech operator.

In this paragraph we are interested in the kernel of the Stone - Cech
operator. Suppose X is the dual of a normed space Y, S a completely regular

space, T ¢ BS, then we consider the set

x(m)° = (£ | £ e C(S,X), ||fw8||T = 0}.

We suppose that T c S” and consider the AT image of CO w(S,X) in the
’

- hull of the constant family we study. We put

Iz
X(T)™ = (A f | £ e Co w(S: X0}

For f € Co (8,X) we have f B | s*= 0, because <y,fwB

y € Y and therefore Ilf B|| = 0. This implies X(D)” < X(i)o. Our point will

> | 8°= 0 for every

be the relation between X(T)“ and X(T)

The following special case of a theorem of Arens's <1> will be used in

the sequel.

1.7.1 (R. Arens <1>). Let A be a closed subset of a compact Hausdorff space

K and let h be a continuous map from A into a complete convex metric subset M
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of a locally convex topological space. Then h can be continuously

extended over K with values in M.

Using the Arens theorem it is easy to characterize the maps f € K(S5,X) +

+ C (S X), if S is locally compact.

1.7.2 Let S be locally compact. If f € C(S,X), then f &« K(S,X)+Co w(S,X)
]
iff fwB | S© is continuous in the strong topology of X. The subset

K(S,X) + C0 w(S,X) of C(S,X) determines a complete subfamily.

proof : If f = fl + f% with fl ¢ K(S,X) and f
= f 2 + fZBw and f2,w | S~ = 0. Moreover f]Bw = f P and thus fwis | §™ =
f | S™ , where the last map is strongly continuous.

B _
s € CO,w(S’X) then fw =

Now suppose f € C(S5,X) is such that fwB | 87 is strongly continuous.
Because S is locally compact, S” is a closed subset of gS. The Arens theorem
1.7.1 guarantees the existence of gB e C(B8S,X) such that gB|S‘ = f B|S‘. It
is clear that (g—f)wB | 8° = 0 and this implies g - f € Co L(8:%X).

It is easy to see that K(S,X) + C (6,X) is a subspace of C(5,X) which

0,
is closed with respect to ||+|| if one uses the characterization, just given.
It follows from 1.7.4 and 1.4.1.3 that the space

|T)'
To characterize the elements of this subspace we also need the following

I\T(K(S:X)+Co,w(snx))

is a closed subspace of (X(T), |

property.,

1.7.3 Let S be discrete. Suppose one of the following conditions is
satisfied :

i) X is the dual of a separable Banach space Y.

i1) X is reflexive and S = 1IN.
Then for f € C(S5,X), such that v(fwB) | SA.iE there exists a g e C(S,X) so
that ||g|| < e and gB | s° = £B | s~.

proof : If i) is satisfied, then the weak® topology of bounded sets in X is
metric.
Now assume ii). For £ € C(IN,X) the closed linear span Z of f(IN) is

also weakly closed in X and as a consequence contains fB(BIN). The g(Z,Z*)

and g(Z,X") topologies on Z are equal. In addition Z is reflexive and separable.
We infer that Z” is separable and that o(Z,Z"™) is metric on bounded sets,
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We note that in both cases the premises of 1.7.1 are satisfied with

K=, A=S8" and h = fwB | S® ; M is the closed ball in X, respectively
Z,with radius e and center O. By 1.7.1 there exists a weak® continuous
extension of h over RS with values in M. Since S is discrete, this extension

is also strongly continuous on S.

Now we have

1.7.4 Assume the conditions of 1.7.3. Let T £ S” and f e C(S,X). There

exists a g <« ATf with g £ K(S§,X) + CO w(S,X) iff fwB | S” is strongly

continuous at every point T.

proof : Suppose such g ex1sts with g = g + g, and g € K(S,X),

B8 B

: ; 8y € CO’W(S,X).
Then O < v(f —g ) = u(f —gl ) < v(f-g)" on S” because g2

w | 7= 0. Since
v(f—g) vanishes on T, is continuous on BS and majorizes v(f -gl ) on S

the map wa—gIB | S” is strongly continuous at every point of T. Because glb
is also strongly continuous, the necessity obtains easily.

Now the sufficiency. By the Arens theorem 1.7.1 £, B | T has a strongly
contlnuous extension g, over BS. Consider h = f—g] Then we have h [ T=20
and h l S™ 1s strongly continuous at every point of T. We next show that
A h can be approximated by ATg with g « CO,W(S,X) with respect to || lT'
Because ATC0 w(S,X) is closed in (X(T), ||-||T) this implies that

ATh e ATC0 (5,X). We recall that CO’W(S,X) determines a complete subfamily
of C(5,X) and 1.4.1.3 applies.

Since T is compact the hypothesis implies that for every ¢ > O there
exists an open neighborhood 0 of T such that v(hwe) < e on 0. There is a
¢ € C(BS) with 0 < ¢ 5_1,¢|T =1 and ¢ | $°/0 = 0. Consider ¢+f. Then
Ile-£ = £llp < [le=t]lp [If[l =0 and v(of) [ 87 < e. By 1.7.2
there exists g € C(5,X) such that ng | 87 = ¢+f | $° and ||g||_i €.
We infer ||f-(¢°-f - g)||T = ||g||T < e and (¢+f - g),,” | $° = 0. That is,
¢ f - g e C (S X) and ]|A f-A (¢ f - g)||T < e

We remark that the necessity of the condition in 1.7.3 is valid for
any space S and set T & gBS.

Before we can state our next result we need one more definition.

1.7.5 Definition : Let T be a topological space. A point t « T is called

a P-point iff every Gg containing t is a neighborhood of t <9, 4L>.
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If we assume the continuum hypothesis it is possible to prove that the

set of P-points in IN" is not empty <12>.

1.7.6 Let w be a P-point in S” with S locally compact. Under the

assumptions of 1.7.2 we have X(m)0 = X(w".

8
proof : Let f e C(S,X) and £, (w) = 0. In 1.7.3 we showed that fwB(BS)
is contained in a metric space. This implies that the sets of constancy
sets. Consequently fwB vanishes on a G

of pr are G say A, containing w.

8 8’

By the very definition of P-points y ¢ A, with A the interior of A.
There exists ¢ ¢ C(BS) with O <¢ <1, ¢(w) =1 and 4 | S“/K = 0.

We consider ¢ +f. Then ¢ + f ¢ Awf and (¢ - f)wB | 8 = 0. The latter

implies ¢ cf e Co w (8,X).

For reflexive spaces we have a converse theorem.

1.7.7 Let S be discrete and suppose X is a reflexive Banach space.

If w € " is a non - P-point then X(w)" + X(m)o.

proof : In view of 1.7.4 it is sufficient to construct f € C(S,X) such that
fwB ] S” is not strongly continuous at u and fwB(w) = 0, where y is a given
non - P-point,.

M.M. Day <5, ch IV, §3.5> has proved that in every infinite dimensional
Banach space X, there is a closed infinite dimensional subspace Z, admitting
a normalized Schauder basis {bi | i € IN}. Also, passing to an equivalent norm
Li=i
sup {||0gx|| | m & ™), chen |[x||">||x]].

| <5, ch IV, §3, th I>.

will not affect our result. Put x

. m .
= I, Bi(x)bi' We define ||x||'

It is well known that |

Bi(x)bi for x € Z and Umx =

|' is equivalent to |
I

Since w is a non - P-point there exists ¢ € C(gS) such that 0§¢§},¢(w) =0

We may assume Z = X and l

and ¢ is not constant on any neighborhood of y in S™ <9, 4L>.
By induction we shall define for every s € S a bounded sequence

{fm(s) | m € IN} in X such that for m € IN and all s € S.

i) fm+l

i) [£ ()™ = ¢(s).

(s) - fm(s) is a multiple of bm+l'

We put fl(s) = ¢(s) bl and suppose f](s),...,fm(s) are defined and satisfy

i) and ii). We note that ¢(s) '™ is non - decreasing in m for fixed s. There



1/

. s s m+ ]
exists a number B ool such that ||f (s) + B.1 m+ll| o(s) . Let
f +](s) = fm(s) + Qm+l bm+1' This completes the induction, We note that

Uk fm(s) = fk(s) for m > k.
For each s, the sequence {fm(s) | m e IN} 1s contained in the unit ball
of X, which is weakly compact, since X is reflexive. Let f(s) be a cluster-

point, then there exists a subsequence {f | k € IN} weakly converging to

f(s). Since the projections u, are continuous in the weak topology we find

limk_)m Um fmk(s) = Umf(s). For m o > m we have Um fmk(s) = fm(s) and therefore

Um f(s) = fm(s). This proves that f(s) is uniquely determined and is in fact
the weak limit of {fm(s) l meée W}, Put f = 7; cs f(s), then £ ¢ C(S5,X).
This f will do the job.
k2
For x"¢ X we see <U f,x+>B = <f,U* x*>B =<f B,U X, = <U f 8 x >,
m m w ' m

B _ B B By _
therefore (Umf)w = Umfw . We remark that Umf € K(5,X) and y(f") Z.V(Umf ) =

1/
= v(Umf)8 = ¢ ™, In every neighborhood of  there are points ' with #(w') ¥ 0
1/
and then ||fw8(m')|| > sup {¢(w') n | m ¢ N} = 1. On the other hand

||Um fB(w)II = 0 for all m, thence fws(m) =

An extension of 1,7.5 should deal with sets T such that T consists of
P - points only. However, it is well-known that compact P - spaces are finite

<9. 4L>. Thus a trivial generalization only can be obtained.
A direct corrolary to 1.7.7 and 1.7.2 is the following,

1.7.8 Let S be discrete and X an (infinite-dimensional) reflexive Banach
space.

i) If T € S is such that there exists a non - P-point w - T then
X(T) $ Ap(K(S,X) + €y u(SsX0).

ii) If §j is a state on C(S) with supp p finite and so that supp j contains

a non - P-points w and if X = denotes the closure of » C ($,X) in X ,
Hy u O,w LsP

P -~
then X JL, (BS,u) + X .
U,P * X BS,u HyP
proof : i) In 1.7,7 the existence was proved of f € C(S,X) such that fwB | s©
is not strongly continuous at the given non - P-point . It follows from the

remark following 1.7.4 that AT f & \T(K(S,X) + Co,w(S'X))'
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ii) We conclude from 1.4.1.3 that AT(K(S,X) + C0 w(S,X) = JLXP(BS,u) +
]

X © . The statement is now readily proved.
bl

If S is locally compact, then S™ is closed and every infinite closed

subset T £ S” contains non - P-points, Nevertheless the existence of states

-~

~ . .. P
with su not finite, can be proved so that X =J S +X
", PP M , P w,p - Ly (BSawX ",

1 <p <=,
Let {mi | i « N} be an infinite discrete subset of IN consisting of
. L 3
P-points only. Give w; a measure l/2l and define <¢,{i> = I (1/2)1¢8(wi).

1=1

It 1s readily verified that every element of X Il < p < =, can be

’
approximated by ATf with f € K(IN,X) + CO’W(IN?iE.
In <7> the existence is proved of generalized limits {i on C(IN) such
that XU?Z % xu:Z' In this case Y is taken to be a Hilbert space, R, Raimi
has proved that {I can be taken to be translation invariant <7>, We note
that X 0 , the kernel of the y - Stone - 6ech operator, denotes the closure

»
of X(supp u)o in Xu



CHAPTER 1I

2.1 Representations on hulls.

Let X and Y be Banach spaces and L(X,Y) the Banach space of all
continuous linear transformations from X into Y. Suppose S is a com-
pletely regular space. We denote the elements of C(S,L(X,Y)), the space
of continuous maps from S into L(X,Y), by ¢ and ¢ . We define a map A
from C(S,L(X,Y)) into the space L(C(S,X), C(S,Y)) of bounded linear maps
from C(S,X) into C(S,Y) by

At = Yf ¢ cs.x) A g 8(S)E(S) 6 € C(S,L(X,Y)).

For all se S, f € C(5,X) and %e C(S,L(X,Y)) we have

[ae £¢s) [ < [1e(s) |

£ |-
It is easily verified that A acts isometrically on C(S,L(X,Y)).

Now let us look at the constant family Fx = {{X(s) | s € S},T} with
X(s) = X for all s e S and I' = C(S,X). Correspondingly we have FY. Suppose
.!:u p_ hulls of FX and FY, which we
ol ).
||Usp
It follows from the above inequality that for ¢ & C(S,L(X,Y)), A¢

fi is a state on C(S). We form the |

denote respectively by (X(u),I!-Hh p) and (Y(u), |

leaves A“O = {f | £ € C(5,X), l[fl]U 0 = 0} invariant. Thus we can define a

map R]-1 . from C(S,L(X,Y)) into L(X(u), Y(u)) by

’

R ¢ N E =1 Atf
H,P M H

where ¢ € C(S,L(X,Y)) and f € C(S,X).

If we provide X(u) and Y(u) with the |, -}|] o -topologies, then R p$
Uy Ko
becomes a bounded operator with norm ||R p@il. If the state [ is such that
Hs
supp v consists of one point s ¢ 55, then R b 1s independent of p and we
o

simply write RS.

2.1.1 i) For all ¢ e C(S,L(X,Y)) we have }jRLl p:il <l lel! =

= sup {}|#(s)|]| | s e supp p}.
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ii) The value of ||R _¢||is independent of p and ||R _¢|| =
HsP HyP
= sup {||RS¢|| | s ¢ supp u}.
iii) If S is discrete then ||R _¢|| = ||o]|] .
W,p supp u
proof : i) HRu,pMufHu.p < H‘Pllsupp y I|Auf||u,p'
ii) We put a = sup {||RS¢|| | s € supp u}. Then we get for
f € C(S,X)
P = P =~
R, pohE P = <Tollse@ [P, 5

P -
< <TlRGIPTIEE TP 55 < &P £]] P,

and therefore llRu,p¢l| < a.

For every ¢ > 0, there exists f € C(S,X) with v(f) = | and an open
set C < BS such that Cnsupp u ¢ @ and v(¢f)8 > a(l-¢) on C. By complete
regularity there is a ¢ € C(8S) such that ¢|gS/C = O and ||¢IIH:P =1,

We consider

. P = P~
I|RU:P¢AH¢ fllu,p <‘T’sl|(I)(S)4’(S)f(5)H T

P
> a(l-e)<(v(¢'f)6) ,ﬁ>=0p(l'€)pllAu¢'f||u?p'

This being true for all ¢ , we find ||Ru p¢|| > a.
’

iii) For every ¢ > O there exists f e C(S,X) with v(f) = 1 and v(Ad®f)>
> v(®) (1-e). Therefore we have||RS¢|| > v(¢)8(s) for s ¢ BS.
Because the reverse inequality is also valid we get ||RS¢|| = v(¢)B(s) for

all s € S. In view of ii) the desired equality is easily proved,

If X = Y then C(S,L(X,X)) is a Banach algebra.

2.1.2 The map Ru > from C(S,L(X,X)) into L(X(p), X(u)) is multiplicative.

»
proof : For ¢,Y e C(5,L(X,X)) and f ¢ C(S5,X) we find

R de¥A £ = A Ad-¥f = A Ad-AV¥E
P H u H

= R @A A¥f
u,p u

R ¢ YA £
HyP HsP U

and thus Ru ¢y = R ¢-R _¥ by continuity.

P HsP HyP

‘R



2.1.3 If S is discrete and w € S~ then Rw(C(S,L(X,X)) is an algebraically
irreducible subalgebra of L{X(w)).

proof : It suffices to prove that Rm(C(S,L(X,X)) acts transitively on the

unit sphere of X(w). For Awf and Awg from X(w) with |lf||uj = ||g|]uJ =
there exists f € Awf and E € Awg such that v(f) = v(E) = 1 on S. For every
s € S there i1s a ¢(s) ¢ L(X,X) so that ||¢(s)|| =1 and $(s)f(s) = g(s).

The map AY; c S¢(s) transforms f into g and Rw¢hwf = Awg.

Each #(s) in the proof of 2.1.3 can be chosen to have one-dimensional
range. Let FL(X) be the algebra of degenerate operators in L(X,X). Already
Rm(C(S.FL(X)) acts irreducible on X(w). In fact it is easy to see that
R (C(S.Fi.(X)) 2 FL(X(w)).

An extension of 2.1.3 to more general states is the next.

2.1.4 For discrete spaces S, the center of Ru p(C(S,L(X,X)) is isometric -

ally isomorphic with C(supp u).

proof : For ¢ € C(S) we define ¢¢ by ¢¢(s) = ¢(s)E where E is the identity
in L(X,X). Obviously ¢¢ is in the center of C(S,L(X,X)).
For f € C(S,X) we have Ru’p¢¢Auf = Agef and ||Ru,p°¢||supp .y |]¢[|Supp L
The restriction of C(BS) to supp p is all of C(supp u) and thus C(supp u) is
isometrically isomorphic to a subalgebra of the center of Ru'p(C(S,L(X,X)).
Suppose R ¢ commutes with RJ pW. We infer from 2.1.1 that
]IR oy - W¢)|| IIR (¢W - ¥ )||- 0 for all w e supp u. This shows that
R ¢ is in the center o% R (C(S,L(X,X)) for w € supp u if R p® commutes with
Ru’p(C(S,L(X,X)) We obtaln from 2.1. 3 that R ¢ 1s a multlple X(m)E of the
identity E on X(w). We must show that ) { A(w) is continuous on supp u.
We put ¢ (s) = E for all s € § and con31der ?, T ¢, (s).
For f ¢ C(S.X) and any constant a we find v(A(¢- a¢l)f) = |- alv(f)

: | . . . *
supp u. Since !i-a| is continuous for all o , also A 1s contlnuous on supp L.

Of course it 1is not necessary for the theorems just proved that to every
s € S, there corresponds one and the same space X. One readily obtains corres-
ponding theorems for continuous families of Banach spaces after the necessary

modifications.



2.2 Representations of L(X,X).

The subalgebra of C(S,L(X,X)) consisting of the constant maps is
isometrically isomorphic to L(X,X). The restriction of the representations

R of C(S,L(X,X)) to the subspace of constant maps induces by means ¢f

this isomorphism representations, called;L P,of L(X,X) on X b
> W

A representationp of L{X,X)on a Banach space Y is called cyclic if

there exists a vector y & Y such that {p(A)y | A ¢ L(X,X)'}is dense in Y.

We denote the restriction of QU to the closure of{uLl p(A)ﬁ | A e L(X,X))},
b b
where ¥ « X by ¢ ~. Then ~ 15 a cyclic representation of L(X,X
wp 7 Fu,p,R “u,p, % Y P of L{X,X)

with cyclic vector X. We shall show that for a separable Banach space the
class of cyclic representations 2 which can be gotten with IN as the

UsPs
underlying topological space is complete in a certain sense.

2.2.1 Definition. A representation p of L(X,X) on a Banach space Y is said

to be isometrically equivalent to a representation g of L(X,X) on a Banach
space Z iff there exists an invertible isometric operator U € L(X,Z) such

that o(A)U = Up(A) for all A € L(X,X).

To indicate in the next theorem the underlying space S we shall write

o5, x5 etc. A similar result holds for the | - hulls.

Hs P s P .IlT

2.2.2 Let X be a separable Banach space, S a completely regular space and

- o S . a IN
L a state on S. For every X € X there exists a vector Z ¢ X‘, psuch that
Hy oy
S

D ~ 15 isometrically equivalent to ¢ , -
Ly Py X H ,P,2

proof : First we show that S can be chosen separable. Let X e xuSp be given,
’
S

converges to ¥ in X .
k k & UsP

We define an equivalence relation ~ in S by putting for s,t e S : s n t iff

There exist f, € C(5,X), k € IN, such that Auf
fk(s) = fk(t) for every k € IN. The equivalence class containing s is denoted
by 6(s) and T = {6(s) | s € S}. The map T;e(s) maps S onto T. With each fk we
associate the unique fk from T into X such that fkoa = fk' The space T is
endowed with the topology generated by the semi-norms 9 defined by
qk(e(s),e(t)) = ||fk(s)-fk(t)l| for k €« IN and s,t ¢ S. This topology makes T
completely regular. The maps fk as well as the map 9 are continuous in this

topology. The following argument shows that T is separable.

There exists a countable base (Ok | k € IN} for the topology of X. We

putO'1 K= fk-l(Ol), then {O1 K ] 1,k ¢ IN} is a countable subbase for the



topology of T. Hence T is separable.
Now we apply 1.4.3.1 to 6 : S » T with T = C(5,X) and I'' = C(T,X) to
the effect that XOqu is isometrically mapped into Xusp by the map 0O defined

in 1.4.3.1. It can be readily verified that for A ¢ L(X,X) we have DUSP(A)G =

_ T . _ T T .

= Opeu.p (A). Since fk fkoa we have A&u’fk € 0 xeu,P and because OXBU,P is

closed % € 0 X . It is now obvious that p S ~ is isometrically equivalent
EU,pP HyP,yX

to p@u?p, O-lﬁ' This finishes the first part of the proof.

. . . T -
Now suppose T is separable and consider a representation p P, &’ where
Hs

»
is a state on C(T) and X ¢ X T . There exists a dense subset {tk | k ¢ IN} of T.

Hs

We consider 8' = TL e IN %K Again we apply 1.4.3.1, now to ¢',T = C(IN,X),

e?p' p > Xuni’ where 1i' is a state
9 »
on C(IN) such that 8'{i' = 7i. We note that 6' maps IN onto a dense subset of T

and ' = C(T,X). We find an isometry 0' : X

L el ]

and according to the remark following 1.4.3.1, then §I = 6'{i' for some state },'

on C(IN).
The representation Pgr, . is isometrically equivalent to a subrepresent-
. IN . .. . . IN
ation of and clearl T _ is isometrically equivalent to o
rul;P y DU,P,X y ed pu',p,@'x

We note that 2.2.2 holds not only for the |]|- lu,P - hulls. It is not
hard to see that if we consider the hull of C(S,X) with respect to a metric
topology on C(S), such that a continuous representation of L(X,X) on this hull
can be defined, that then a corresponding theorem can be proved.

In <6 Introduction> J.B. Deeds poses the question wether for separable
Hilbert spaces the class of cyclic representations pJNZ 2 contains,up to
equivalence, allpviz’ﬁ. Theorem 2.2.2 answers this quéséion in the affermative.
In 2.3.5 a more detailed answer even is given.

If X is not separable, IN in 2.2.2 must be replaced by a discrete set with
a cardinality equal to the density character of X to obtain a corresponding
theorem. The proof of 2.2.2 carries over to this more general situation almost

without change.

It is an interesting question wether every cyclic representation of L(X,X)
is isometrically equivalent to a cyclic subrepresentation of a representation

of L(X,X) constructed by means of a hull. A partial result is the following.

2,2.3 If X is a not-separable, reflexive Banach space, then there exists a

cyclic representation p of L(X,X) such that p is not isometrically equivalent
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to any subrepresentation of a representation of L(X,X) by means of

a hull of C(IN,X) with respect to a metric topology on C(IN).

proof : We comsider in L(X,X) the set M of operators which have a
separable- range, that is M ={A | AX is separable}. The set M is a
closed two-sided ideal in L(X,X). The identity E on X is not contained
in M and so M 4 L(X). Let = be the canonical projection of L(X) onto
L(X)4F Since M is an ideal we can define o(A) in L(L(Xybp by p(A)n(B) =
= n(AB) for A,B € L(X). Then » is a cyclic representation of L(X,X), with
cyclic vector n(E), which annihilates M.

Let o be a cyclic subrepresentation of a representation of L(X,X) in
a hull XI of C(IN,X) with respect to a metric topology 1. We suppose % e X_
is the cyclic vector. There is a sequence {fk | k € IN} such that their
images AT fk in XT converge to X. The set {fk |(IN) | k « IN} is contained
in a separable subspace Y of X.According to theorem L | of J. Lindenstrauss,
cited in the appendix, there exists a projection P in L(X,X) such that PX o Y
and PX is separable. The continuity of ¢ and the fact that Arfk = AT Pfk for
all k € N imply that % is left invariant by o(P) and that therefore o(P) + 0.

Yet, we have P € M and thus o cannot be isometrically equivalent to p.

Now we go back to the full representations o, .
bJ

2.2.4 Let S be a completely regular space and §| a state on S,

1) The subspace JLXP

Du’p(L(X,X)), I < p < =,

(BS,p) of X > is invariant with respect to
9]

ii) If X is reflexive, also XUOP and XLI are invariant subspaces
b ]
for 1 < < ™,
pU p’ <P

’

We remark that similar results hold for the | -['T— hulls.

proof : i) Every A € L(X,X) maps K(S,X) into itself. By continuity of °u.p

P P
then °Lp (A) Ly (BS,1) ¢ Ly (BS,u).

»
11) The operators in L(X,X) are continuous with respect to the weak

topology. If f ¢ CO w(S,X) then Af ¢ C w(S,X) for every A € L(X,X). For the

, o,
Stone - extensions fB of f ¢ C(5,X) we have (Af)B = A(fs) on g8S.
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2.2.5 i) If A e L(X,X) is compact then A)X c L. P(gs .
) ( P OU:P( ) D = X (B ’U)

1]
If X is'reflexive and

ii) A is compact, then P, (A) annihilates X Op.
Hs

iii) S = IN then, if for A e L(X,X) the operator p (A) annihilates
WP

X ° for some p, | <p < =» and some state ;;, then A is compact.
, =

proof : i) A compact operator maps bounded sets into relatively compact sets,

therefore, A C(5,X) < K(S,X) and °p (A)A C(S,X) « A K(S X) e xP(ss,u). B

’
continuity of pu p(A) this inclusion relatlon can be extended to X
»

Hs P
ii) We know from 1) oL p(A)Xu pgi LXP(BS,U). We infer from 2.2.4 1i)
0 : . P 0]
that A)X X . Th t ction of the spaces L S and X
at o, o (A) u,pi u,p e lntersectio p X (8BS, w) up’

being respectively the range and the null space of the projection Hu, consists
of the 0 vector only.

iii) We want to show that A maps sequences which converge weakly to zero
into sequences which converge strongly to zero. Since X is reflexive this
implies that A is compact.

Therefore let f e CO,w(IN’X)' For a permutation ¢ of IN we have
fo ¢e CO(IN,X).

Suppose § and p are such that pu.P(A) Xu: = 0. Then we have
|lpu,p(A)Au f o ¢|lu,p = 0 and v(A(f o ¢))B | supp u = 0. Every map ¢ :IN » IN
has by the Stone - theorem 1.1.]1 a continuous extension ¢B tRIN > RIN. Then
we have for every permutation ¢ of IN that u(Af)B | ¢B(supp y) = 0. It is
readily verified that for w ¢ IN~ the orbit {¢(w)| ¢ a permutation of IN} is
dense in IN~. We obtain v(Af)B |]N‘ = 0. We infer from 1.1.2 that Af(k)

converges strongly to zero as k increases.

The condition S = IN in 2.2.5 1iii) cannot be replaced by e.g. S is discrete.
We shall give two counter-examples where S = IRu’ and where IRa is the set of
real numbers in the discrete topology.

Let M be the closed ideal in C(IRa) consisting of all functions which
are zero except for at most countably many points. From the general theory
of continuous-function spaces we know that there exists a closed subset
T ¢ 8S such that ¢ ¢ M iff ¢P(T) =
Y' with Y separable. For f < C (IR ,X) we have by

a) We suppose X
definition <y,f> € CO(IRa) for y € Y. We note that CO(IR ) 1s contained in M.
a
Let {yk | k € IN} be a dense set in the unit ball of Y. It is easy to see

that v(f) = sup {]<yk f>| | k € WN}is contained in M. Consequently we find
’
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for w € T that v(f)s(m) = 0. In this case X(., ~= 0.

b) Let X be a non-separable reflexive Banach space and P a projection
onto an infinite-dimensional, but separable subspace of X. Then P is not
compact. If f ¢ C (IR ,X) then also Pf ¢ C (]R ,X). The same reasoning
as in the preceding example shows that for w « T the operator Py p(P)

annihilates X(w)”™ with w e T.

We remark that the set of operators A such that p (A) annihilates

Xu“p for some 1 and p is always a two-sided ideal in L(X X) if X is reflexive.
’

We denote by CL(X,X) the ideal of compact operators in L(X,X). If X is

, A o .
a reflexive Banach space, then the restriction of o, to X induces a
»

L]
representation puop of the quotient algebra L(X,X) / CL(X,X) in the following

way. Let m be the canonical projection of L(X,X) in L(X,X) / CL(X,X). We define
O (n@a)) = o (&) | x % . It follows from 2.2.5 that this definition is
P Uy, P U P

independent of the chosen representative in n(A).

2.2.6 Let X be a reflexive Banach space and §| a singular state omn C(S).

. . 0
i) The representation pu has norm one.
bl
ii) If S = W, then N b is one-to-omne.

proof : i) For B € w(A) we have [IB]] > ||p (B)|| ||p (B) | XUOPI‘ =
’ b
||p (n(A))|| Upon taking the infimum over all B ¢ n(A) we find indeed
||n(A)|| ||p (n(A)||. The ouop - image of the identity on X is the
’

identity on Xuop' Thus we find ||O || =

i1) If DU (r(A)) = 0, then p p(A) | Xu“p = 0. We obtain from
2.2.5 that A ¢ CL(X X) or n(A) =

2.3 *Representations of L(H).

We shall apply the foregoing to the representations 0.2 of L(H),
b

where L(H) = L(H,H) and H a Hilbert space. First a little attention will

be paid to H .
P My 2

Let S be a completely regular space and [ a singular state on C(S).

We infer from 1.4.2.3 that H is a Hilbert - space. The innerproduct for

U:z
elements from (H (u), l|-||u 2) is given by
b ]

(Auf9Aug) = <(f’g)’ﬁ> fsg € C(S,H).
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A first result is the following.

2.3.1 The projection HLl : Hu P JLHZ(BS,M) defined in 1.6.4 1is

self adjoint.
proof : This is a direct consequence of the next identity
(A £,0 @)= 8w, 0 e)=(£8w, elw)=(h £,1 1 g)
LUUJ’LU w ’w w ’W ‘(.U’(.DLU’

where © ¢ B8S and f,g ¢ C(S,H). Integration with respect to p yields
(n A f A g) (A £, n A g)

Consequently the kernel H of ﬂ is orthogonal to JLH (8S,1);

U:z

particular the subspace Hu 2 of Hu 2 is orthogonal to JL (BS,u) Let us
’ ’
denote the orthogonal complement in Hu‘2 of H )2 by H +2.
H ,

We note that the spaces H(w) for w € S are Hilbert spaces too and
that they are equal to the Aw-image of C(S,H) (1.4.1.3). The AuJ - image
of CO,w(S’H) in H(w) is closed and equals H(w) (1.4.1.3). We know by 1.7.6
that for S = IN and P-points w e IN~ the space H(w;+consists of the O only.
We consider the representations p”’2 of L(H) into L(H 2). These

')
representations were studied in <2>, <4 > and <6 » We collect some information

concerning p .
& us2

2.3.2 i) The representation pu , are C* - isomorphisms.

. o 2 -~ +
i1) The subspaces JLH (BS,u), Hu,2 and Hu’2 reduce pu’z

iii) The restriction of P.,2 to JLHZ(BS,u) is normal <8, A 27 >.
’

iv) The restriction of pu 2 to Huo2 annihilates the ideal CL(H) of
’ ]

compact operators in L(H) and induces a C* - homomorphism g 02

Hos

of the quotient algebra L(H)/CL(H) into L(H 02)
Ho

proof : i) For f,g € C(S,H) and A < L(H) we have

-~ _ - oy \od .
(o, (N £,h g)=<(Af,g),0>=<(£,4 ), 0>=(h £,0 ()N 8)

By continuity this extends to all of Hu 9
9

Because o, ,(8) | JH = JAJ" we get that p

is an isomorphism.
p,2
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ii) We infer from 2.2.4 that JLH (BS u) and H 2 are invariant for

It is well known that then JLH (BS,u), H =, and their common

P H,2

u,2°

orthocomplement H are reducing.

U, 2

iii) The restriction of o to JLHZ(BS,u) has no singular subrepresenta-

H,2
tions. Since every™ representation of L(H) is the direct sum of a normal

"representation and a singular representation the conclusion obtains
<8, 4.7. 22c >.

iv) This 1s a direct consequence of 2.2.5 and of the fact that L(H) / CL(H)

is a C"- algebra in its quotientnorm.

The restriction of PL.2 to LHZ(BS,u) is nothing but a direct sum of
’
identity representations < 8, 4.7, 22c >. The interesting part of P2 is
b4

. 0 .
therefore the restriction of pu 2 to Hu 2+ Every ‘representatlon of a c* -
’ »

algebra is the orthogonal sum of cyclic *subrepresentations. Therefore we

are interested mostly in the cyclic *subrepresentations Pu.2,8° with
? ]

0 .
)‘i € H as a cyclic vector of .
H,2 Y ’ Pu,2

A first question is : How many representations do we get in this way.

The sequel of this section will be devoted to this question. We start by

making the problem more precise.

2.3.3 Definition. A state on the algebra L(H) is an element § ¢ L(Hf

such that <A*A,3> >0 for every A ¢ L(H) and with <E,3> = |, where E is the
identity in L(H).

We denote the set of states on L(H) by o(L(H)).

States of the form‘T; e L(H) (Ax,x), with x « H, ||x|| =1, are called
vector states.

States which annihilate the compact operators are called singular,

It is clear from the definition that o(L(H)) is a weak™ closed subset
of L(H)¥.
There is a one-to-one correspondence between cyclic *representations

of L(H) and states on L(H) < 8, 2.4.1 >. The state determined by p

0 T U)zyi'
i X i i b A)X, R).
with X ¢ Hu,z’ on L(H) is given by A e L(H) (pu’z( )X, %)
Now we may formulate our question on how many representations;u 2%

are there, as follows. Which states on L(H) are of the form Az,x),

A e LEXPy,2
and § is a state on C(S)? Of course only singular states can be
0]

u,2°

where ¥ € H 0
M, 2

written in this form with X € H



-43-

2.3.4 Let f e C(S,H) satisfy v(f) = 1 on S. We define a map

1 BS -+ o(L(H)) by

£ .
<A, 1 (s)> = af, £) B(s) A cL(H), s e gS.

Then e is weak™ continuous on 8S.

proof : It is easy to see that rf(BS) < o(L(H)). The weak” continuity of ¢

is equivalent to the continuity of each of the functions <A,1_> with A ¢ L(H).

f
The latter functions clearly are continuous.

From 2.2.2 we know that we do not find more cyclic representations,
and thus more states, by considering topological spaces S $# IN as soon as
the Hilbert space H is separable. For Hilbert spaces and cyclic* representa-

tions of L(H) (2.2.2) can be much improved.

2,3.5 Let H be a separable Hilbert space. There exists f ¢ C (IN,H),

v(f) = 1 such that every singular state on L(H) is of the form

] ~
\rA € L(H) (Af’f) ((l)) w e IN".,

+
It is possible to choose w € IN~ so that Awf e H(w) .

Pproof : A lemma of Dixmier's <8, 11.2.1> states that the set of singular
states on L(H) is contained in the weak” closure of the set of vector states
on L(H).
Since H is separable there exists a sequence {x_ | n « IN} in the unit
sphere {x | ||x|| = 1} = B |- We put £ =] x .
Consider the set T = {w | w e N", ||fwB(m)|| = 1}. For all x € H with

of H, which is dense in H

||x|| = 1,there exists a subsequence {n, | k €« IN} of IN such that
1imk+w f(nk) = x. The intersection of the closure in BIN of the infinite
set {nk | k € IN} with IN® is not empty. For w in this intersection we find
fwB(w) = x and <A,rf(m)> = 1imk+m (Af(nk), f(nk)) = (Ax,x). We conclude that
w € T and that rf(T) contains all vector states.

Since the closure T of T in IN" is compact and because ¢ is weak®
continuous, the image rf(T) is weak™ compact in o(L(H)). From the Dixmier
lemma we infer that rf(T) containg all singular states.

If for w e T the state rf(w) is singular then fwe(w) = 0. This implies
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that w ¢ T and that if rf(m) is singular then fwB | IN® is not strongly
continuous at w. The last statement of 2.3.5 can now be easily proved by

invoking 1.7.4.

Remarks : i) The map T;(Af,f), with f ¢ C(IN,H) as defined in 2.3.5 is a
bicontinuous positive map of L(H) into C(IN). The norm ||(Af,f)|| of the
image of A is equal to the numerical radius r(A) = sup{|(Ax,x)| | ||x|[|}=1
of A. For self-adjoint operators we have r(A) = ||A||. Thus j;(Af,f) sets
up an isometric, positive map from the real Banach space L(H)h of all self-
adjoint operators on H into C(IN). In this way the study of g(L(H)) can be
reduced to the study of the restriction of the set of states 0(C(IN)), to a
real subspace of C(IN).

ii) If H is not separable, a theorem which corresponds to 2.3.5
can be stated if IN is replaced by a discrete set with cardinality equal
to the Hilbert-dimension of H.

iii) 1If follows from the proof of 2.3.5 that {<A,{>| i o(L(H))}
equals the closure of the numerical range W(A) = {(Ax,x) | | |x|| = 1} of A.
In fact, with £ as in 2.3.5, we find {<A,f>| feo(L(H)} = {(Af,£)P () |we BIN}=
= W(a).

We infer from 2.2.3 that if H is not separable, then we do not get all
of o(L(H)) in the form T;(Du Z(A)ﬁ, X) with X ¢ Hu 29 if we allow S =IN only.
» ?

Yet we can ask:Which states do we get in the above form and with S = IN?

2.3.6 Let H be an infinite - dimensional Hilbert space.

i) The singular states on L(H), which are of the form Tf(w) with » e IN®

and f € C(IN,H) are precisely those singular states &, for which there exists
a projection P € L(H) with separable range and such that <P,d> = 1.

ii) Those are the states which induce a representation of L(H) / CL(H), any

subrepresentation of which is isometric.

proof : i) For any state vf(m) with f € C(IN,H) and w « IN*, let P be the
projection on the closed linear space of f(IN) in H. Then <P,rf(m)> =1,

If there exists a separable projection P such that for the singular
state § under consideration we get <P,d>= 1, then & induces a singular state
on L(PH). Since PH is separable, there is a f € C(IN, PH), v(f) =1 and a
w € IN® such that rf(w) equals this state. We have <A,8> = <PAP,3> for A € L(H)

and therefore <A,3>= <A,Tf(w)>.
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ii) We infer from i) that if a singular state @ lives only on a separable
subspace then & = Tf(uD for some f ¢ C(IN,H) and weIN*. If we put i =7;¢B(w),then
the corresponding representation is Pu,2,A £ It can be readily verified that
every subrepresentation is isometric on L(H) / CL(H).

If a state @ induces a representation which is isometric on L(H) / CL(H),
then it follows from the comstruction of this representation <cf.8. 2.4.1>
that there exists a projection P ¢ L(H) with separable range such that
<P,3> 3 0. We consider the family, partially ordered by inclusion, of all sets
{Pi $+ i €1} of mutually orthogonal,separable projections such that <Pi,&># 0.
By Zorn's lemma there exists a maximal set ({P. ie Im}. A simple argument

Pi and Q =E-P. Then
m

[

|
shows that Im is at most countable., We put P Lie 1
P is separable and <Q,&> = O.

The last assertion can be proved as follows. If x is the cyclic vector
for the representation p constructed with &, then it is well known that
||p(Q)x||2 = <Q,8>. Since for every separable projection P' < Q we have
<p',d>= 0, the cyclic ® subrepresentation of p with cyclic vector p(Q)x
annihilates all operators with separable range. This subrepresentation is,
consequently, not isometric on L(H) / CL(H) and must vanish., This implies

||O(Q)x||2 = <Q,8>= 0 and <P,3>= 1.

We go back to the separable case. It follows from 2.3.5 that every
singular state can be given the form rf(m) with f ¢ C(IN,H), v(f) = 1 and
A € H(w)'. It is an open question wether we can replace H(w)' by H(.) or
more generally wether all singular states can be put in the form
W;(pu'z(A)i, X) with %e Hu:2 for some state i on C(IN).

Let us make some remarks concerning this problem.

The fact that we showed in 2.3.5 that is was sufficient to consider only
one special f € C(IN,H) does not help us very much. In fact for g € C(IN,H)
K | k € IN} of IN such that
for k € IN and f as defined in 2.3.5. The closure of

with v(g) = 1, there is a subsequence {n
lle@y - st || <«
{nk | k € IN} in BIN is homeomorphic with B IN. If ' is the point, which
corresponds to w e IN” then Tf(w') = Tg(w).

By considering a continuous map 1 : IN - IN and forming f o 1 for
f e CO,W(IN’H) it was shown in <7 > that not+always Hu:Z = Hu?Z' If 1 as well
as fl are properly chosen then Au(f 2 1) € Hu,Z' The following identity shows
that one gets in this way always functionals which can be described by vectors

from HuAZ' For A € L(H) we find

(pu’z(A)Auf't,Aufo )=<(Af,f),rp>=(pTu’Z(A)ATuf,ATuf).
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We note that t{i is defined by <d¢oi,fi> = <¢,Tn> for ¢ € C(IN). Although
+ -

s2 TU,Z'
There is a variant on this procedure. Let f € CO w(IN,H) and

»
{en | n € IN} an orthonormal basis for H. We put Ki = {x | |(x,en)|=

it might be possible that A for € H we yet have A f e H
u H TH

= |(f(i),en)| for all n € IN}. Every Ki is compact and K = ;ZG Ki is
weakly compact., We consider maps g : IN - K. By means of such g many
singular functionals can be constructed. It is again an open problem
wether we get thus all singular states and wether these states can be
described by vectors from Hu:Z for some ﬁ.‘ft can be shown that the maps
f, defined in 1.7.7, such that Aw f € H(w) , are of the form f = fl + f2
with f1 € K(IN,H) and f2 of the type just introduced, such that

v(f) = v(fz) on BIN.



APPENDIX

App. 1. Let X be a reflexive Banach space. We consider X with its
weak topology. If v is a positive Radon measure on X then

supp v is contained in a separable subspace of X.

proof : In the course of the proof we will invoke the following recent

results of J. Lindenstrauss < 11 >.

L.1 < 11, Prop. 1 >. Let X be a reflexive Banach space and let Y be
a separable subspace of X. Then there is a linear projection P from

X into itself so that ||P|| = 1, PX 2 Y and PX is separable.

[
38

< 11, corr | >, Let X be a reflexive Banach space. Then X has an

equivalent strictly convex norm.

It follows from L 2 that we may assume that X has a strictly convex
norm, that is, if x and y are in X and ||x+y]|| = ||x||+]|]|y||, then x = Ay
with A ¢ C.

It is sufficient to prove App 1 for the case where supp y is a bounded
subset of X.

We denote the unit ball of X* by U and the set of finite subsets of U
by F(U). If V is a subset of U and A e L(X) we put

IAlv - W; e X sup{ | <Ax,x">| | x” & V}.

and |A| = |A|U' The identity in L(X) is denoted by I.
We remark that the functions|A|V are lower semi-continuous. We apply

<3, ch Iv, §1, n2 1, th t > to the effect that

S|Tldv = ssup{|I|, | K € F(U)}dv = sup {/|I|  dv | K e F(D)}.

The first integral exists because |I| is bounded on supp u and |I| is certainly

measurable. There exists an increasing sequence {Kn l ne€ IN} in F(U) such that

S|Tfdv = sup{s|I|  dv | ne IN} = J sup{[I|, | neIN}dv (.
n n

We put K =U Kn and let Y be the closure of the linear span of K in x*.
n=|
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The subspace Y is separable. We infer from L 1, that there is a projection

P* on X* of norm one, which leaves Y invariant and which has separable range.

Suppose P* is the adjoint of P then P has norm one and separable range too.

1) > || = sup (T, _ gl B | | % u)

> sup {IIIK | neIN}.
n

Upon integration and using (1) we find

f|Ildv > fipldv > f

Consequently we get

v-almost everywhere.

v~almost everywhere.

v-almost everywhere.

we readily get that

sup {|I|K | ne IN}dv = s|1]|dv.

n
S1T|dv = /|P|dv and since |I| > |P| we have |I| = |P|
Because ||P|| = 1 we find for 0 < p < I,

1] 2 [eTr(1=p)P| > |oB+(1-0)"| = [2] = |1|

The strict convexity of the norm gives us then Px = x
The operator P is continuous for the weak topology and

supp u is contained in PX, which is separable,
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SAMENVATTING

Zij S een volledig reguliere topologische ruimte. Als (X, |

-II) een
genormeerde ruimte is, dan geven we met (C(S,X), ||-||) de ruimte aan
van alle continue begrensde afbeeldingen van S in X. De norm |

C(S,X) is de supremum norm : ||f|| = sup {||f(s)|| | s € S}, £ e C(S5,X).

| in

We defini&ren vw(f) = j; . S||f(s)||. De afbeelding v = j; v(f) is een
isometrische afbeelding van C(S,X) in C(S,IR) = C(S). Indien 1 een
locaal-convexe topologie is voor C(S), dan is V_](T) een locaal-convexe
topologie voor C(S,X). De afsluiting van O ten opzichte van v—l(r) is N .
R.A. Hirschfeld defini&erde in <10> de 1 - hull van C(S,X) als de topolg-
gische quotientruimte C(S,X)/NT van (C(S,X), v-](r)).

We bekijken twee klassen van voorbeelden van hulls. Zij T een
gesloten deelverzameling van de Stone - Cech compactificatie gS van S en
||¢||T = sup {|¢B(s)| | s € T}, waar ¢Bde Stone-uitbreiding is tot gS van

¢ € C(S). De hull X(T) van C(S,X) ten opzichte van de ||- - topologie

Iz
- hull van C(S,X) genoemd. De canonieke afbeelding van

wordt de |

|z
C(S,X) op X(T) wordt aangegeven met AT' De |

lp = hulls van C(S,X) zijn
volledig als X volledig is.

Vervolgens nemen we een toestand j van C(S), d.w.z. § € C(S)*,
<1,i> =1 en ||{i]| = 1. Iedere toestand ji correspondeert met een waar-
schijnlijkheidsmaat y op BS via <¢,pu> = f Sdp voor ¢ € C(S). Zij voor
b eCE, 1 <p <o |loll, = <lolPd> /P, dan is [+11,,, een semi-
norm op C(S). De overeenkomstige hull van C(S,X) heet de y,p - hull van

C(S,X). De notatie voor de canonieke projectie van C(S,X) op de j,p - hull

is Au. De completering van de yu,p — hull wordt aangegeven met (xu»P'l -||u.p).
Het is eenvoudig in te zien dat als X een Hilbertruimte is dat dan Xu,z ook
een Hilbertruimte is.

We bestuderen de structuur van de ruimten X . Als f ¢ C(S5,X) een

’
relatief compacte waardenvoorraad heeft, schrijven we f ¢ K(S,X).
Iedere f € K(S,X) heeft een continue Stone - uitbreiding £8 tot gS. De

afbeelding B is een isomorfie van K(5,X) op C(BS,X). Gebruikmakend

fe Kk(s,%)F
van dit gegeven tonen we aan dat de afsluiting in X > van A K(S,X) isomorf
1) H

is, via een isomorfie J, met de wel bekende ruimte LXP(BS,u). Indien X eindig

dimensionaal is, bijvoorbeeld, geldt Xu p = JLXP(BS,p). Als X oneindig dimen-

’

sionaal is daarentegen, S = IN en supp u ¢ BIN/ IN dan is JLXP(BS,M) $ Xu D
14
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Voor reflexieve Banachruimten X heeft JLx (BS,n) een d1recte summand

in X . We construeren als volgt een projectie op JL (BS,u) Indien

»
X reflexief is, zijn gesloten en begrensde verzamellngen in X zwak

compact en heeft iedere f € C(S,X) dus relatief zwak compacte-waarden-
voorraad. Zodoende heeft elke f & C(S,X) een zwak continue Stone - uit-
breiding f B tot BS. We bewijzep dat f 8 u- meetbaar is in de norm

topologie van X en een element A f B
N van X of JL (BS,u) wordt gedef1n1eerd door H Af = JA f 8 voor f< C(S,X)

u H,P
en verder met behulp van continuiteit.

in (BS,u) bepaalt, De projectie
Ly 3, De proj

In de laatste paragraaf van het eerste hoofdstuk tenslotte bestuderen
we de relatie tussen de nulruimte X ? van IIu en de afsluiting xu:p van het
Au - beeld van de verzameling CO,W(S,X), die bestaat uit die f e C(S,X)
waarvoor\T;<f(s),x*> € CO(S) voor alle x"« X*. We laten zien dat in
X © , maar geven ook voorbeelden met X ° X~ .

H, P H,P U, P HsP
In het tweede hoofdstuk bekijken we voornamelijk representaties van

sommige gevallen X

de algebra L(X,X) van alle continue operatoren op X. Als A e L(X,X) en

f € C(5,X) dan is Af =\T;Af(s) € C(S,X). We definiéren nu een representatie
pu,p van %(X) ig L(xu,p’xu,p) doo; pu,pFA?Auf = AuAf voor ffC(S,X),AcL(X,X).
De beperking p van p ",p tot Xu’ annihileert de verzameling CL(X,X) van
compacte operatoren op X. Indien p = 2 en X een Hilbertruimte is, is pu’2
een ¥representatie van L(X,X). Het belangrijkste resultaat is dat iedere
cyclische ¥representatie van L(X,X), X een separabele Hilbertruimte, die
CL(X,X) annihileert, *isomorf is met een cyclische subrepresentatie van een

,» Waar u een puntmaat is op BRIN/IN.



STELLINGEN

I

Laat S een volledig reguliere topologische ruimte zijn en X een
gelijkmatig gladde of gelijkmatig convexe Banachruimte, Dan zijn
de gecompleteerde u,p-hulls, Xu p? van C(S,X) (cf. opmerking

?

na 1.4.3.1 in dit proefschrift) voor 1 < p < = reflexief.

IT

De klassificatie van alle twee-zijdige idealen in de ring L(H) van
continue operatoren op een separabele Hilbertruimte H, zoals gegeven

door J.W, Calkin, kan gegeneraliseerd worden tot W* algebras,

J.W.Calkin : Ann.of Math.iz(l941)839—873.
B.Gramsch : Journ,f.d.R,und Ang.Mat.225(1967)
97-115.

W.Wils : Aarhus preprint series.1968,

III

Als n een singuliere*representatie is van L(H), H een Hilbertruimte,

op een Hilbertruimte H' en A € L(H) is normaal, dan heeft n(A) een zuiver
punktspectrum, In het algemeen echter zullen de eigenvectoren van m(A)
niet de hele H' opspannen.

J.W.Calkin : Ann.of Math.ig(l94])839—873.

Iv

Bij de beantwoording van de vraag van R.,V,Kadison en I.Singer of de extremale
toestanden op de maximaal abelse deelalgebra aa van L(H), H een separubele
Hilbertruimte, die bestaat uit alle operatoren die diagonaliseerbaar zijn
t.o.v. van een gegeven orthogonale basis in H, een unieke uitbreiding hebben
tot L(H), is het relevant zich af te vragen of het beeld van dﬁ-onder de
kanonieke projectie van L(H) in L(H)/CL(H), waar CL(H) de algebra van compacte
operatoren is, maximaal abels is,

Bovenstaande vraag kan positief beantwoord worden voor Hilbertruimten en meer

algemeen voor reflexieve Banachruimten met een onvoorwaardelijke basis.

R.V.Kadison, I.Singer : Amer.J. of Math.81(1959)
383-400.






Het is mogelijk een uitbreiding tot Banachruimten te geven van het
begrip c-additieve *representatie van L(H), H een Hilbertruimte. Een
structuurstelling voor zulke zgn. reguliere representaties kan bewezen

worden,

VI

Een bevredigende definitie van meetbare families van Hilbertruimten kan
gegeven worden zonder de gebruikelijke aftelbaarheidsvoorwaarden op te
leggen. Met behulp van een structuurstelling voor deze gegeneraliseerde
meetbare families is het mogelijk een eenvoudigere benadering te geven
voor de multipliciteiten-theorie van spectrale maten,

J.Dixmier : Algébres d'Opérateurs. Ch.III,

Paris, 1957,
R.Halmos : An Introduction to Hilbertspace. Ch,III,
New York, 1957,

W.Wils : Aarhus preprint series. 1968,

VII

Een aantal belangrijke stellingen uit de theorie van de ontbinding van
W¥ algebras kan gegeneraliseerd worden tot het niet-separabele geval,
J.Dixmier : Algébres d'Operateurs. Ch.II,
Paris, 1957,

J.Vesterstrym,W.Wils : Aarhus preprint series. 1968.

VIII

Zij (S,p) een eindige maatruimte, M een W* algebra of M = L(X,X), waar X

een reflexieve Banachruimte is, In Lm(M,Q,u) kan op natuurlijke wijze een
product gedefinieerd worden, zodat Lm(M,Q,u) een Banachalgebra wordt.

Dit product hoeft niet samen te vallen met het puntsgewijs gedefinieerde

product, zo dit al gedefinieerd is,

S.Sakal : Bu11.Amer.Math.Soc.Zg(l964)393-398.

IX

Het door Braun en Koecher gegeven bewijs van Satz 7.4, Kap.III, bevat een
cirkelredenering.
H.Braun und M.Koecher : Jordan - Algebren,

Springer, Berlin, 1968,






X

Het Heisenberg model voor de quantummechanica laat zich beter

generaliseren tot de quantumveldentheorie dan het Schrddingermodel,

XI

Het verdient aanbeveling na te gaan of het volgen van een anti-slipcursus
voor automobilisten, zoals die gegeven wordt b.v, door de K,N.A,C., de
kans op het krijgen van een ongeluk verkleint, Indien de uitslag van een
dergelijk onderzoek positief is, zou het volgen van anti-slipcursussen
gestimuleerd moeten worden door het geven van extra reducties op auto-
verzekeringspremies en wegenbelasting voor hen die zo'n cursus met succes

gevolgd hebben,

XII

Het is een goed idee om de allerbeste studenten in hun tweede studiejaar

in te schakelen bij het tweedejaars practicumwerk,

XIII

Inleidende colleges voor jongere jaars studenten dienen door de beste

docenten gegeven te worden,
X1V
Unesco cursussen in de wiskunde zoals die het afgelopen jaar gegeven

werden in Denemarken en Polen zijn gebaat met een uitgebreide propaganda

en een goede selectie-procedure.












