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The Geodermatophilaceae are unique model systems to study the ability to thrive on or within stones
and their proteogenomes (referring to the whole protein arsenal encoded by the genome) could
provide important insight into their adaptation mechanisms. Here we report the detailed comparative
genome analysis of Blastococcus saxobsidens (Bs), Modestobacter marinus (Mm) and Geoderma-
tophilus obscurus (Go) isolated respectively from the interior and the surface of calcarenite stones
and from desert sandy soils. The genome-scale analysis of Bs, Mm and Go illustrates how adaptation
to these niches can be achieved through various strategies including ‘molecular tinkering/
opportunism’ as shown by the high proportion of lost, duplicated or horizontally transferred genes
and ORFans. Using high-throughput discovery proteomics, the three proteomes under unstressed
conditions were analyzed, highlighting the most abundant biomarkers and the main protein factors.
Proteomic data corroborated previously demonstrated stone-related ecological distribution. For
instance, these data showed starvation-inducible, biofilm-related and DNA-protection proteins as
signatures of the microbes associated with the interior, surface and outside of stones, respectively.
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Introduction

Geodermatophilaceae are an actinobacterial family
(Normand, 2006) in the order Geodermatophiliales
(Sen et al., 2014) that comprises three genera:
Geodermatophilus, Blastococcus and Modestobacter
initially isolated from desert soils (Luedemann,
1968), sea water (Ahrens and Moll, 1970) and
Antarctic regolith (Mevs et al., 2000), respectively.
These three genera have a complex life cycle and
produce remarkably resistant enzymes such as
esterases (Essoussi et al., 2010; Jaouani et al., 2012;

Normand et al., 2014). They also have the ability to
resist adverse environmental conditions such as
ultraviolet light, ionizing radiation, desiccation and
heavy metals (Rainey et al., 2005; Gtari et al., 2012;
Montero-Calasanz et al., 2014, 2015). This resistance
to environmental hazards represents a trait of
Terrabacteria, a well-supported phylogenetic group
composed of Actinobacteria and four other major
lineages of eubacteria (Firmicutes, Cyanobacteria,
Chloroflexi and Deinococcus-Thermus) that colonized
land 3.05–2.78Ga (Tunnacliffe and Lapinski, 2003;
Battistuzzi et al., 2004; Battistuzzi and Hedges, 2009).

Surprisingly, Geodermatophilaceae are present in
a variety of biotopes including prominently rocks
(Eppard et al., 1996) and desert sandy soils
(Montero-Calasanz et al., 2012, 2013, 2013a, 2013c,
2013d, 2013e, 2013f; Liu et al., 2014). Although
considered endemic to soils, evolution of
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Geodermatophilaceae has continued in specialized
land biotopes. Indeed, soil and stone niches have
yielded a wealth of knowledge regarding the extant
distribution of Geodermatophilaceae (Gtari et al., 2012;
Normand et al., 2014), raising questions about their
evolution and the mechanisms of adaptation to harsh
environments.

After their uplift by storms, Geodermatophilaceae
have the potential to travel thousands of kilometers
in the atmosphere (Chuvochina et al., 2011).
Consequently, stone surfaces can be colonized by
these wind-borne microbes (Essoussi et al., 2012).
These surfaces are often covered with growth (called
‘patinas’, ‘varnish-like’ or ‘tintenstriches’), which
comprises complex communities of eukaryotes and
prokaryotes, recurrent among which are Actinobac-
teria (Eppard et al., 1996; Kuhlman et al., 2006)
including Geodermatophilaceae (Urzi et al., 2001).
With regard to biopitting, one hypothesis is that acid
secretion and high carbon dioxide (CO2) emissions
from combustion engines result in alternating epi-
sodes of calcareous solubilization and precipitation.
The microbial communities located in biopits have
been analyzed by microbiological and molecular
methods, and has been found to be complex, with
a recurrence of Geodermatophilaceae. To deduce
strategies for the dispersal of established biofilms
and propose restoration approaches, identification of
the components of the matrix of these biopolymers is
required (Nijland et al., 2010).

To understand how Geodermatophilaceae adapt to
stones and soil, here we present a proteogenome
analysis and detailed comparison of B. saxobsidens
(Bs) (Chouaia et al., 2012), M. marinus (Mm)
(Normand et al., 2012) and G. obscurus (Go)
(Ivanova et al., 2010). To get a close-up view of their
physiology, we analyzed the proteome content of
stationary-phase Bs, Mm and Go cells by a
liquid chromatography–tandem mass spectrometry
(MS/MS) shotgun approach and semi-quantification
by spectral counting. We focussed on the identifica-
tion of interesting proteic biomarkers of potential
physiological value. Bs, Mm and Go are the
first Geodermatophilaceae whose genomes and
proteomes have been analyzed jointly. Now, they
represent new models of choice for studies of niche
adaptation among Terrabacteria.

Materials and methods

Bioinformatics approaches
Genes were classed into Clusters of Orthologous
Groups (COG) (Tatusov et al., 2001) and were
retrieved from the Mage platform (Vallenet et al.,
2006). Metabolic pathways were analyzed using
BioCyc (Caspi et al., 2010). Identification of
duplicated, lost or horizontally transferred genes
was done using the Mage platform (phyloprofile) as
was the identification of the core and extended
genome. Clustered Regularly Interspaced Short

Palindromic Repeats were identified with the CRISPI
database http://crispi.genouest.org/ (Rousseau et al.,
2009). Genomic islands were identified with Island-
Viewer available at http://www.pathogenomics.sfu.
ca/islandviewer/query.php (Langille and Brinkman,
2009). Phylogenetic analysis was done using MEGA6
(Tamura et al., 2013) and the inferred topology was
drawn and integrated with the genomic context at
the Microbial Genomic context Viewer accessible at
http://mgcv.cmbi.ru.nl/ (Overmars et al., 2013).

Correspondence analysis was done as previously
described (Benzécri, 1973) using the R software
(R Development Core Team, 2007) on COG numbers
(obtained from the Mage platform/Genomic Tools)
and on numbers of coding DNA sequences (CDS)
containing transcription and signaling domains
(obtained from the Mage platform/Search Interpro)
as previously described (Santos et al., 2009).

Bacterial growth and proteome sample preparation
Cells of DD2 (Bs), BC501 (Mm) and DSM 43160 (Go)
were plated onto Luedemann medium (yeast extract,
malt extract, glucose, soluble starch and calcium
carbonate (CaCO3)) and incubated for 72 h at 28 °C as
described previously (Luedemann, 1968). Bacterial
cultures (15mg wet weight) were resuspended into
90 μl of lithium dodecyl sulfate β-mercaptoethanol
protein gel sample buffer (Invitrogen, Carlsbad, CA,
USA) and incubated at 99 °C for 5min as indicated
previously (Hartmann et al., 2014). Before SDS-
polyacrylamide gel electrophoresis analysis on
10% Bis-Tris NuPAGE gels (Invitrogen), the samples
were briefly centrifuged to remove large aggregates.
A volume of 20 μl of the proteome of Bs, Mm and Go
(corresponding to 160 μg of total proteins) was
loaded per well. Three independent biological
replicates were analyzed per microorganism.
Sodium dodecyl sulfate-PAGE was carried out in
1× 3-(N-morpholino) propanesulfonic acid solution
(Invitrogen) on a XCell SureLock Mini-cell (Invitro-
gen) under a constant voltage of 200 V for 5min. Gels
were stained with SimplyBlue SafeStain, a ready-to-
use Coomassie G-250 stain (Invitrogen). SeeBlue
Plus2 (Invitrogen) was used as a molecular weight
marker. Polyacrylamide gel bands (equivalent in
volume to 50 μl) comprising the entire proteomes—
one band per entire proteome—were cut and
processed for in-gel proteolysis with Trypsin
Sequencing Grade (Roche, Meylan, France) followed
by the ProteaseMax protocol (Promega, Madison, WI,
USA) as described previously (Clair et al., 2010).

Nano liquid chromatography–MS/MS analysis
Peptide digests were resolved on an Ultimate 3000
LC systerm, Dionex-LC Packings (Thermo-Scientific,
Villebon-sur-Yvette, France) before MS/MS measure-
ments were done with a LTQ-Orbitrap XL (Thermo-
Scientific) as described previously (Dedieu et al.,
2011). MS/MS spectra were processed and
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interpreted with the MASCOT 2.3.02 search engine
(Matrix Science, London, UK) with standard para-
meters as indicated previously (Hartmann and
Armengaud, 2014) against databases corresponding
to a complete list of annotated CDS from either
Bs (NCBI RefSeq: NC_016943.1), Mm (BioProject:
PRJEA167487, PRJEA82845) or Go (BioProject:
PRJNA43725, PRJNA29547). Peptide matches with
a score above their peptidic identity threshold were
filtered at Po0.05. A protein was only validated
when at least two peptides had been assigned. Using
a previously described approach (Liu et al., 2004;
Zivanovic et al., 2009), protein abundance was
evaluated by shotgun analysis using MS/MS spectral
counts. Normalized spectral count abundance factors
were calculated (Paoletti et al., 2006). The sum of all
normalized spectral count abundance factors —

100%—was calculated for each bacterium: Bs
(142.63), Mm (46.38) and Go (162.87). Accordingly,
all values in this study were separated from the locus
tags with a comma or between parentheses and
represent the normalized spectral count abundance
factor percentages, unless otherwise stipulated. The
MS proteomics data have been deposited at the
open access library of ProteomeXchange Consortium
(http://www.proteomexchange.org/) (Vizcaino et al.,
2014) with the data set identifiers PXD001519,
PXD001518 and PXD001520 for Bs, Mm and Go,
respectively.

Results and Discussion

Characteristics of proteogenomes
Life in biotopes with low trophic resources has
driven the three Geodermatophilaceae members
toward medium-sized genomes (Ivanova et al.,
2010; Chouaia et al., 2012; Normand et al., 2012)
from 4.87 to 5.32Mb (Figure 1 and Supplementary
Table S1). The three plasmidless genomes had very
high G+C% (72.95–74.1%). Under unstressed

conditions, the three proteomes were analyzed by a
high-throughput shotgun procedure (Christie-Oleza
and Armengaud, 2010). For Bs (PXD001519, 39889
MS/MS spectra, Supplementary Data S1), Mm
(PXD001518, 14729 MS/MS spectra, Supplementary
Data S2) and Go (PXD001520, 14829 MS/MS spectra,
Supplementary Data S3), 5506, 1940 and 6884 spectra
could be assigned to 553, 100 and 370 proteins,
respectively. These three data sets represent the first
proteogenome references for Geodermatophilaceae.
Figure 1 depicts the proteins detected in this study.

We have predicted 3277 genes (30% amino acid
identity) shared by the 3 genomes, which were
sorted into 7 possible and mutually exclusive Venn
groups (Supplementary Figure S1). Significant
similarity to previously reported genes of known
function allowed us to assign a putative function to
3231, 3643 and 3351 protein-coding genes in Bs,
Mm and Go, respectively. The remaining genes were
designated ‘proteins with unknown function’.
The analysed proteomes of Bs, Mm and Go indicate
the expression of four, two and three such ‘proteins
of unknown function’ (Supplementary Table S2),
among the most highly expressed proteins—55,
9 and 42 as summarized in Supplementary Figure
S2—that account for half of the total number of
assigned spectra, respectively. As will become
apparent below, some of these ‘proteins of unknown
function’ seem to have a primordial role in niche
adaptation of the host bacteria.

The three genomes have 70% of their CDS that
could be ascribed to the COG category
(Supplementary Table S3) (Tatusov et al., 2001;
Vallenet et al., 2006). Correspondance analysis
showed that the three Geodermatophilaceae
genomes are close to one another. All three, in
particular Bs and Mm, have a high proportion of
[T] (signal) and [P] (inorganic ion transport and
metabolism) categories, which is evocative of a
lifestyle in a mineral-rich biotope (Supplementary
Figure S3A). The overall distribution of the COG

Figure 1 Circular representation of the three genomes with detected proteins. From the outside are 1, the coordinates; 2, the G+C%
(ranging from 70 to 80%); 3, the horizontal gene transfer (HGT) predicted by the software RGP run on Mage (in grey); 4, the core genome or
the genes shared by the three genomes (threshold of 50% identity over 80% of the length of the shorter sequence, present in a synton); 5,
the genes specific to each genome (absent from the other two genomes, minus the ‘genes of unknown function’; and 6, the proteins
detected in this study (in red).
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profile as well as the abundance of transcription
factors and signaling molecules (Supplementary
Figures S3B and C) constitute a signature that
may be associated to lifestyle (Santos et al., 2009).
Compared with other Actinobacteria, the three
genomes contained the highest absolute numbers of
CDS containing PAS and EAL domains (Supplementary
Figure S3C).

Our proteomic results showed that the most
represented COG categories among the most highly
expressed proteins are as follows: [J] translation,
ribosomal structure and biogenesis (~33%), [C] energy
production and conversion (~22%) and [I] lipid
transport and metabolism (~9%) in Bs; [G] carbohy-
drate transport and metabolism (~33%), [E] amino
acid transport and metabolism (~22%) and [P] (~22%)
in Mm; and [J] (~33%), [C] (~26%) and [P] (~7%) in
Go. The category [P] is represented by >5% of the
most highly expressed proteins of Bs. These proteo-
mic results are a further support for the presence of
the monophyletic group composed of Bs and Go,
which has been confirmed in silico by bioinformatics
(Sen et al., 2014) as well as in vitro by microbiological
and biochemical markers (Normand et al., 2014).

‘Molecular tinkering/opportunism’strategies
Bs, Mm and Go genomes exhibit at least three
strategies related to ‘molecular tinkering/opportunism’

(Jacob, 1977; Gogarten et al., 2002; Laubichler, 2007)
(Supplementary Table S4): (i) domain duplication; (ii)
horizontal gene transfer, genes absent in two of the
analyzed genomes but present in one of a group of
more distant Actinobacteria; and (iii) rapid evolution,
to create ORFans (Daubin and Ochman, 2004; Fukuchi
and Nishikawa, 2004). Mm has 429 duplicated genes
(7.9% of the genome), whereas in Bs and Go the
number of these genes is slightly lower (representing
4.8% and 6.5%, respectively). Removal of a complex
nutrient induced a motile state in these bacteria—
motile budding rods called R-forms (Ishiguro and
Wolfe, 1970,1974). The most highly expressed protein
in Bs and Mm was flagellin synthesis, Lin
(BLASA_0851, 4.96% and MODMU_1040, 11.51%)
that has a paralog encoding a flagellar hook-associated
protein FigL (BLASA_0855 and MODMU_1044). The
same duplication event was observed in Go between
similar paralogs, a flagellin (Gobs_0985, 0.02%) and a
FigL (Gobs_0990). Rates of horizontal gene transfer
amount to 6.9%, 8.9% and 6.8% in Bs, Mm and Go,
respectively, which is consistant with hostile rock
environments where antibiosis is often an unafford-
able luxury (Friedmann and Ocampo-Friedmann,
1984). For example, our proteomic analyses indicated
the presence of a transposase in Bs (BLASA_4384,
0.01%). The number of ORFans with 7.4–10.2% of the
three genomes is much higher than the number found
for Escherichia coli (3.5%) (Daubin and Ochman,
2004), a difference that could be linked to an
unexpectedly higher rate of horizontal gene transfer
in, on the surface and outside stones than in the

promiscuous gastrointestinal tract. Our proteomic
approach allowed the identification of five, two and
six ORFans that may have important functional roles
in Bs, Mm and Go, respectively (Supplementary Table
S2). A computation of lost genes—genes present in
two genomes but absent in the third—shows that Bs,
by far, had the highest number of lost genes (515 CDS)
(Supplementary Table S4).

First-line defense strategies
Genome analyses indicate that Bs, Mm and Go
possess several genes putatively involved in carote-
noid biosynthesis (Supplementary Table S5). The Bs
orange pigment absorbs at 230–270 and at 450–
500 nm, whereas Mm and Go pigments are quite
comparable and absorb almost continuously
between 200 and 750 nm (Supplementary Figure
S4). Bs has a putative operon (BLASA_0209–0214,
crtB2, hopC, ispA, shc, hpnH, ilvC) that is absent in
Mm and Go, and this could explain its intense
orange pigment. Moreover, the expression of an
uncharacterized enzyme involved in pigment bio-
synthesis (BLASA_3306, 0.05%) was detected in Bs.

The three genomes also possess impressive arrays
of genes involved in stress relief, reactive oxygen
species (ROS, superoxide anions (O2•− ), hydrogen
peroxide (H2O2) and hydroxyl radicals (HO•)) detox-
ification and DNA protection and repair
(Supplementary Table S6). The Bs, Mm and Go
proteomes express a nickel-containing superoxide
dismutase (BLASA_3991, 0.83%; MODMU_4573,
0.57%; and Gobs_4176, 0.29%) and two catalases.
Catalase (KatE) was one of the most highly expressed
proteins in Mm (MODMU_2078, 4.64%). Its ortho-
log, Gobs_2125 (0.74%), belongs to the first 42
proteins that accounted for half of the total number
of assigned spectra to the proteome of Go. Bs also
highly expressed KatE (BLASA_3094, 0.54%). In
addition, Bs expressed a manganese-containing
catalase (KatA: BLASA_0196, 0.04%), but to a lesser
extent than Go KatE (only 2 versus 75 spectral
counts, when cumulating data from the triplicated
samples). The transformation of the non-essential
amino acid sarcosine, a source of carbon and energy
derived from the osmoprotectant betaine, into the
essential amino acid glycine generates H2O2. The
sarcosine oxidase subunits (soxB, soxD and soxA)
and carbon monoxide (CO) dehydrogenase subunit G
(coxG) genes form an operon in ROS-resistant Mm
and Go (MODMU_3072–MODMU_3075 and
Gobs_2883–Gobs_2880, respectively), and were not
detected in the ROS-sensitive Bs (Gtari et al., 2012).
Supplementary Table S7 lists other selected physio-
logical features present in Bs, Mm and Go. For
instance, in accordance with our previously pub-
lished experimental data (Gtari et al., 2012), ortho-
logs of metal tolerance determinants (Janssen et al.,
2010) were detected in the three studied genomes.

Linear density of genomic DNA double-strand
breaks inflicted per Gy per Mbp (0.002–0.004) is
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similar for diverse bacteria (Daly (2009,2011) and
references therein). Acute doses of 0.9, 6 and 9 kGy
(Gtari et al., 2012) are predicted to inflict ~ 18, ~ 128
and ~192 double-strand breaks in Bs (~4.88Mbp),
Mm (~5.33Mbp) and Go (~5.33Mbp), respectively.
Although absent in almost all actinobacterial spe-
cies, all three genomes contained a non-homologous
end joining operon, BLASA_3099–BLASA_3097
in Bs, MODMU_2074–MODMU_2076 in Mm and
Gobs_2119–Gobs_2121 in Go, (Supplementary
Figure S5). Bs possesses a supplementary putative
Ku protein (BLASA_1744) that forms another operon
with ‘proteins of unknown function’. These findings
suggest that non-homologous end joining may be a
major pathway of double-strand breaks repair in
Geodermatophilaceae.

Most abundant proteomic biomarkers and niche
signatures
Bs was isolated from deep (2 cm), from stones found
around the Mediterranean using a chisel and
hammer, to eliminate the surface layers (Urzi et al.,
2004), and it is predominant in the deeper fraction,
that is, about 2 cm below the stone surface
(Gtari et al., 2012). The proteomic analysis results
(Supplementary Figure S2) suggest that unstressed
Bs has evolved a survival strategy inside stones
based on the following: (i) heavy investment in
protein synthesis and in preventing their aggregation
(ribosomal proteins and GroEL); (ii) detection and
response to the changes of the environmental
external nutrients (UDP glucose, phosphate and so
on) concentrations (LysM, UshA and PhoU) (Buist
et al., 2008; Marzan and Shimizu, 2011);
(iii) scavenging ROS (superoxide dismutase); and
(iv) transport of oxygen (hemerythrin). The presence
of enzymes using anaerobic terminal electron accep-
tors in Bs, Mm and Go (Supplementary Table 7)
indicates that formate (HCO2

−) and nitrate (NO3
−)

anaerobic respiration may be possible.
We also discovered four highly expressed biomar-

kers (MODMU_0153, 5.83%; MODMU_0507, 5.41%;
MODMU_1130, 3.92%; and MODMU_3547, 3.17%)
of Mm, isolated from a white marble surface (Carrara,
Tuscany, Italy) (Urzi et al., 2001) and predominant in
the upper fraction (about 2mm of stone surface)
(Gtari et al., 2012; Supplementary Figure S2). Ortho-
logs of these four highly expressed biomarkers are
proteins implicated in the development of biofilms.

The outside of the stone has also been investigated
(Urzi et al., 2001; Berdoulay and Salvado, 2009;
Macedo et al., 2009). Growth on stone surfaces
means either reliance on photosynthesis or on
nutrients carried by the rain, air or through the stone
itself. Concerning operons encoding genes for photo-
synthesis reactions, Go, isolated from soil of the
Amargosa Desert (Nevada, USA) (Luedemann, 1968)
contains three (Gobs_1696–Gobs_1703, Gobs_4550–
Gobs_4544 and Gobs_4558–Gobs_4551) and Bs con-
tains two (BLASA_0681 and BLASA_2555–

BLASA_2552). Surprisingly, Mm contains only a
single NADPH-ferredoxin reductase (fprA) gene
(MODMU_0890). Two genes encoding ribulose-1,5-
bisphosphate carboxylase/oxygenasewere identified
only in Go (Gobs_1448, 0.03% and Gobs_2026),
suggesting that the strain obtains both carbon and
energy via carboxydotrophy. In addition, Go is
characterized by the presence of DNA-related
biomarkers including a highly expressed DNA-
binding histone-like protein (Gobs_0298, 1.13%)
(Supplementary Figure S2). In contrast to Mm, both
Go and Bs have many similar highly expressed
proteomic biomarkers such as a Dps-like iron-
chelating protein (Gobs_3661 and BLASA_1121) that
may limit, through the confinement of free iron, the
Fenton-derived production of HO• (Williams et al.,
2007; Confalonieri and Sommer, 2011). Yet, Bs has
more highly expressed biomarkers associated with
the production of ROS (Supplementary Figure 2)—
cytochromes, flavoproteins and so on—representing a
cellular benchmark for the proclivity of cells to resist
to stress such as ionizing radiation (Ghosal et al.
(2005) and references therein). Given this current state
of affairs, it comes as no surprise that Bs is ROS and
ionizing radiation sensitive (Gtari et al., 2012).

Rain is known to carry nitrogen compounds (Singh
and Agrawal, 2008) such as nitric acid as well as
traces of sulfur (Raybould et al., 1977). Besides
glutamine synthetase and glutamate synthase for
ammonium assimilation, the three genomes contain
a conserved operon coding for an ammonium
transporter (AmtB) and a nitrogen regulatory protein
(GlnB) (Supplementary Table S7). Air carries numer-
ous volatile organic compounds, prominent among
which is CO (Austin et al., 2001). Study of the
genomes revealed that Bs, Mm and Go have several
copies of the coxLMS operon (Supplementary Table
S7), which would help them oxidize CO. Such
multiple copies (Wu et al., 2005) are always an
indication of a strong selective pressure (Oda et al.,
2005; Lee et al., 2009). Expression of the proteins—
CO dehydrogenase subunits and acetyl-coenzyme A
synthetase—(Supplementary Table S2) correspond-
ing to some of the identified orthologous genes
(Supplementary Table S7) of the Wood–Ljungdahl
pathway has been detected under standard growth
conditions of Bs and Go, suggesting metabolic utility
of this pathway. Contrarily to CoxM and CoxL,
acetyl-coenzyme A synthetase protein was not
detected in Mm (Supplementary Table S2). Thus,
the three strains inhabit exacting biotopes, which
necessitate a rich array of transport systems, storage
components, a motility machinery and energy-
generating pathways (Figure 2). These biomarkers
have shed new light on the microniche signature for
each rock-dwelling terrabacteria.

Conclusion and perspectives
Here, the complete genome sequences of three
Geodermatophilaceae members, Bs, Mm and Go,
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with contrasted physiologies and ecological micro-
niches (Normand et al., 2014), together with the
analysis of their proteomes under unstressed condi-
tions, should help provide a solid foundation for
investigating the varied strategies to adapt to
their lifestyles. In particular, comparison of the
three genomes provided an opportunity to analyze
how Bs, Mm and Go can respond to stresses such
as ROS mainly via pigmentation and catalase
production and double-strand break through the

non-homologous end joining pathway. Moreover,
highly expressed proteomic biomarkers of Bs,
Mm and Go were depicted. The identification of
thse biomarkers have shed new light on the
physiological and biochemical traits that are unique
to each species and its ecological microniche. In
particular, the Mm exoproteome was almost as
dominant as the cellular proteome, which hinders a
deeper proteomic view (Armengaud et al., 2012).
Undoubtedly, much of the future progress in

Figure 2 Schematic view of the Geodermatophilaceae physiological determinants. Transport systems, storage components, the motility
machinery and the main energy generating pathways are represented.
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studying Bs, Mm and Go rests squarely on the
shoulders of research performed with their stressed
proteogenomes.
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