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Abstract. The spaces P with one of the following two proper-

ties are studied: every continuous function is a Baire function with

respect to any algebra ft of continuous functions such that ft pro-

jectively generates the topology, or with respect to any algebra

which distinguishes the points. The former property is equivalent

to the statement that of any pair of disjoint zero sets at least one is

Lindelöf, the latter implies that the space is Lindelöf and is implied

by analyticity. Connections with the Blackwell problem are shown.

The main results are Theorems 2 and 3 below. Note that by a func-

tion we always mean a real valued function, and by an algebra of

functions we mean an algebra of functions (with the usual "point-

wise" operations) which contains all constant functions. Unless

explicitly stated otherwise, by a space we mean a completely regular

topological space. In general we use the terminology and notation of

[l]. In §1, the results will be stated, and the proofs of results called

theorems will be given in §2.

1. The collection Baire(P) of all Baire sets in a topological space P

is the smallest <r-algebra of subsets of P such that all continuous

functions are measurable. Recall that Baire(P) is the smallest

countably additive and countably multiplicative collection of sets,

which contains all zero sets (equivalently, cozero sets) in P. A space P

locally belongs to a collection 911 of subsets of P if each point of P has

arbitrarily small neighborhoods in 3TC. We are prepared to state our

first result.

Theorem 1. A space P is Lindelöf if and only if the collection of all

Baire sets in P is the smallest countably additive and countably multi-

plicative collection 9TC of sets such that P locally belongs to 9TC.

In order to state the next result we need more notation and termi-

nology. Denote by F(P) the algebra of all functions on P. For each

MEF(P) let uM be the set of all pointwise limits of sequences in M.
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It may happen that uuMy^uM, but in any case we let sM denote the

smallest set XZ^M for which uX=X. The relation {M-^sAl} is a

topological closure operation, and the corresponding topology is

called the pointwise sequential topology on F(P). For each countable

ordinal a define

uaM = u\J [iißM | ß < a}

where u0M=M. Clearly sM = U {uaAl\ a<coi}. The elements of sM

are called the Baire functions with respect to M; the elements of

uaM are the Baire functions of class a; and the smallest a with

fEuaM is called the order of/ with respect to M. By the pointwise

sequential topology on a subset of F(P) we mean the relativization of

the sequential topology in F(P).1

We say that a family {/a} of functions on a space P projectively

generates the topology of P if the topology of P is the coarsest

topology such that each/0 is continuous.

Theorem 2. The following conditions A-F on a space P are equiv-

alent:

A. Of any pair of disjoint zero sets in P, at least one is Lindelöf.

B. Baire(P) is the smallest a-algebra 9TC of subsets of P such that P

locally belongs to SffL

C. Every embedding of P is a Baire embedding. That is, if PEQ then

each Baire set in P is a trace on P of a Baire set in Q.

D. If an algebra ß of bounded continuous functions on P projectively

generates P, then ß is dense in C(P) in the pointwise sequential topology.

E. With the assumption í'bD,m(íD C(P).

F. With the assumption in D, if ß is a lattice then every continuous

function f on P which is bounded from below is a pointwise limit of an

increasing sequence {/„} in ß (and hence, {/„} converges to f in the

compact-open topology by Dini's theorem).

Definition 1. A space P will be called almost Lindelöf if the

conditions in Theorem 2 are fulfilled.

It follows immediately from condition A that every paracompact

almost Lindelöf space is Lindelöf. If, in condition A, we replace

"Lindelöf" by "compact" we obtain Hewitt's "almost compact

spaces" [7]. (It should be remarked that Hewitt's "almost compact

spaces" are often called the "spaces with unique uniform structure,"

and the term "almost compact" is used for "íí-closed spaces.") Clearly

1 The sequential pointwise topology on XCZF(P) need not be sequential. For

example let X = M\J(f) where/SiííJlíz"—UiM. See remark in 2.3 for an example related

to Theorem 3.
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every almost compact space is almost Lindelöf. On the other hand,

an almost Lindelöf space need not be Lindelöf nor almost compact;

for example, remove one cluster point from the space of countable

ordinals. Recall that [6, Theorem 3] every embedding of P is a Z-

embedding if and only if P is either Lindelöf or almost compact.

Finally observe that condition A is equivalent to the statement that

vP is Lindelöf and vP—P is void or a singleton [6, 4.3]. It follows that

a space P is Lindelöf if and only if it is almost Lindelöf and realcom-

pact. (Compare this result with E. Hewitt's theorem [7] character-

izing the almost compact spaces as those spaces P for which ßP — P is

empty or a singleton.)

Theorem 3. If P is an analytic space then the following statement is

true:

If an algebra ft of continuous functions on P distinguishes the points

of P then ft is dense in C(P) in the sequential topology.

Definition 2. A space P is called Baire-minimal if P enjoys the

property of analytic spaces in Theorem 3.

By Theorem 3 every analytic space is Baire-minimal. The following

example shows that a Baire-minimal space need not be analytic.

Example. For any uncountable set P, and point x in P, define a

topology on P as follows: a set UEP is open if and only if either

xE U or xE U and P—U is countable. Then XEP is a Baire set in P

if and only if either xEX and X is countable, or xEX and P — X is

countable. It is easy to show that P is Baire-minimal, and we shall

prove that P is not analytic. Recall that a space Q is called analytic

[3], [4] if there exists an usco-compact (that is, upper semicontinuous

compact-valued) correspondence of the space of irrational numbers

onto Q. We shall prove more; namely that P is not the usco-compact

image of any space with a countable base for open sets. Assume that/

is an usco-compact correspondence of a second countable space T onto

P; we shall derive a contradiction. First we show that each t in T has a

neighborhood Ut such that/[i7i]C/[(£)]- Given any point t in T, let

{ Vn} be a local base { V„} at t. Uf[Vn]Cf[(t)] for no n, then there

would exist a countable set XEP—f[(t)] which would meet each

/[F„], and this would contradict the upper semicontinuity of / at /

since P — X is a neighborhood of/[FB]. Next, since T is Lindelöf,

j Ut} has a countable subcover, and hence there exists a countable

YET with/[F] =P. Finally, each compact subset of P is finite, and

hence/[Fl is countable, and this contradicts our assumption that P is

uncountable.

Let K be the set P in the above example with the compact topology
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such that x is the only cluster point of K. Evidently

Baire(P) = Baire(2C).

I do not know of an example of a Baire-minimal space which is not

Baire equivalent with an analytic space.

Obviously every Baire-minimal space is almost Lindelöf.

Theorem 4. Every Baire-minimal space is Lindelöf.

On the other hand a Lindelöf metrizable space need not be Baire-

minimal. For example, take a set X in a separable metrizable space P

such that X is not a Baire set in P. Denote by Q the set P endowed

with a topology such that X and P—X are subspaces of both P and

Q, and X is both open and closed in Q. The identity mapping of Q

onto P is continuous, but Baire(P)^ Baire(Q).

Definition 3. A measurable space is called a Blackwell space if

the (T-algebra of measurable sets is the only countably generated cr-

algebra of measurable sets which distinguishes points. A topological

space is called a Blackwell space if P is a separable metrizable space

such that (P, Baire(P)) is a Blackwell measurable space.

It should be remarked that every analytic metrizable space is a

Blackwell space, and it is not known if the converse is true. If we

assume the continuum hypothesis then every metrizable topologiza-

tion of a Blackwell space is separable. Indeed, then the <r-algebra of

all Baire sets of no nonseparable space is countably generated.

Theorem 5. Every Blackwell space is Baire-minimal. A countably

generated measurable space P is a Blackwell space if and only if each

separable metrizable topologizalion of P is a Blackwell topological space.

2. Proofs. We start with four very simple lemmas which will be

applied several times.

Lemma 1. Assume that a space P locally belongs to countably additive

and countably multiplicative collection of sets 6. If P is not Lindelöf

then there exists a countably additive and countably multiplicative collec-

tion SfllCe such that P locally belongs to 3H, and if XG2RI, then P — X
GSTl-

Proof. If "U is an open cover of P which contains no countable sub-

cover then the set îfll of all sets C in Q which are covered by a count-

able subcollection of 11 has the properties in Lemma 1.

Lemma 2. Assume that a space P locally belongs to a collection of sets

Silt. If U is a neighborhood of a Lindelöf subspace X of P then XEM

C V for some union M of a countable family in 3TC.
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Proof. Obvious.

Lemma 3. Let MEF(P), and let 9TC be the smallest a-algebra of sub-

sets of P such that every f'.(P, l3ïl)—>R,fEM, is measurable. Then every

element of s M is measurable. Furthermore, if XÇ9TC then there exists a

countable subset M'EM such that if xEX and yEX then fxv^fy for
somef in M'. (We shall say that M' distinguishes X.)

Proof. Every element of sM is measurable because the pointwise

limit of any sequence of measurable functions is measurable. To prove

the second statement observe that the collection of all "distinguish-

able" sets is a (r-algebra.

Lemma 4. Condition A in Theorem 2 is satisfied if and only if for

each continuous function f on P there exists a real number r such that

the set E{x\fx9^r} is Lindelöf.

Proof. "If" is obvious, and to prove "only if" consider the set 5

of all real numbers s such that £{x|/x<i} is Lindelöf. Observe that

P is Lindelöf if .S has no upper bound, and that if 5 has an upper

bound, then the supremum r of 5 has the property stated in Lemma 4.

2.1. Proof of Theorem 1. If P is not Lindelöf then ÎHT in Lemma

I does not contain Baire(P). Assume that P is Lindelöf, and 311 is a

countably additive and countably multiplicative collection of sets

such that P locally belongs to 3TC. It is enough to prove that every

zero set Z belongs to 311. Since Z is a G¡, by Lemma 2 the set Z is a

countable intersection of elements of 3TC and hence belongs to SIX.

2.2. Proof of Theorem 2.

2.2.1. First we shall show that each of the conditions B-F in

Theorem 2 implies condition A. Assume that condition A is not

fulfilled. Then there exist two disjoint zero sets Zi and Z2 such that

neither Zi nor Z2 is Lindelöf. Take a countably additive open cover

II of P such that neither Zi nor Z2 is contained in an element of 11;

thus 11 is uncountable. Let ft be the set of all continuous functions/

on P such that/ is constant on the complement of an element of 11,

and let ft* be the set of all bounded functions in ft. Clearly ft and ft*

are uniformly closed algebras which projectively generate the topo-

logy of P. Let K be a compactification of P such that the functions in

ft* are precisely the restrictions of continuous functions on K. Let

3IÏ be the smallest er-algebra of subsets of P such that each element

of ft* is measurable. Notice that the zero set of any function in ft*

is the intersection of a zero set in K with P. It shows that

311 = PC\ [BaireCrT)] = E{PC\X\ X E Baire(ÜT)}.
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Clearly all functions in ß are measurable with respect to 9TÍ (ß is

a sublattice of F(P)). We shall show that none of the conditions

B-F is satisfied with 9TC and ß as defined above. The crucial fact is

that: there is no X in 3TC with ZXEXEP-Z2 (whence Z^STl). This

fact follows immediately from Lemma 3. Indeed, if there were such

an X, then there would exist a countable subset S? of ß which would

distinguish M. But this would contradict the fact that all elements

of iF are constant on the complement of some member U of It. Indeed

P- U meets both Zi and Z2.

Since ZiÇJrSiïl, 911 does not contain Baire(P), and hence condition

B is not fulfilled. Next, P is not Baire embedded in K because

ZiG^TC; hence condition C is not fulfilled. To prove that condition D

is not satisfied, consider a continuous function/ on P which is 0 on

Zi and 1 on Z2. By the "crucial" fact the function/ is not measurable,

and hence, by Lemma 3, / is not a Baire function with respect to ß.

Finally, each of conditions E and F implies condition D, and hence

neither E nor F is satisfied by ß. (Recall that ß is a lattice.)

2.2.2. Evidently, condition B implies condition C as well as con-

dition D.

2.2.3. We shall prove that condition A implies condition B. As-

suming condition A, it is enough to show that every zero set Z be-

longs to 3TC. If Z is Lindelöf then ZG9TC by the argument in 2.1. If Z
is not Lindelöf then P-Z is a countable union of Lindelöf zero sets,

and hence P-ZG3TI.

2.2.4.2 It remains to show that condition A implies conditions E

and F. Assume condition A. Let ß be an algebra of bounded func-

tions on P which projectively generates the topology of P. Denote

by 03 the smallest lattice algebra containing ß. Since the smallest

uniformly closed algebra C containing ß is a lattice, we have ß C®

CC, and hence it is obvious that it is enough to prove that every

nonnegative continuous function is the pointwise limit of an increas-

ing sequence of nonnegative functions in 03.

If U is an open Lindelöf subspace of P, then there exists an increasing

sequence {g„} of nonnegative functions in ($>, which converges pointwise

to the characteristic function of U.

Proof. Since U is Lindelöf, there exists a sequence [hn\ of non-

negative functions in (B such that hn [P— U] C(0), and if xE U then

hnx>0 for some «. Put

gn = min(l, n(hi 4- • • • 4- hn)).

2 I am pleased to thank A. Hager for pointing out an error in the earlier version of

2.2.4.
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Now let/ be a nonnegative continuous function on P. First assume

that P is Lindelöf; then all cozero sets are Lindelöf, and we can pro-

ceed as follows. Given an e>0, there exists a function h which is the

sum of a series of e multiples of the characteristic functions of cozero

sets in P, such that h^f, and ||/—h\\ <e; say h = e- X) hn. By the
italicized statement above, each hn is the limit of an increasing se-

quence {gnm} of nonnegative functions in 03. Now, for e = l/k,

k = \,2, • ■ • , let fi be the maximum of all gnm, n^i, m^i, gnm cor-

responding to €= 1/k, k^i. Evidently {/¿} is an increasing sequence

of nonnegative functions in 03, and {/„} converges pointwise to /.

This shows that conditions E and F hold if P is Lindelöf. It should

be remarked that this is Theorem 1 of A. Hager in [5].

Finally assume that condition A holds. This case is reduced to the

previous one as follows. By Lemma 4 there is a real number r such

that U = E{x\fx9ér} is Lindelöf. We may assume that r = 0. Apply

the previous case of the restriction of / to U, and to the restriction

of 03 to U. We get a sequence {hn} in 03 such that {hn\ U] is an in-

creasing sequence of nonnegative functions, which converges to

/1 U. By the italicized statement above we can choose gn in 03. Put

fn=gn-hn. This concludes the proof.

2.2.5. Remark. In D and F the assumption that the functions in

ft are bounded may be deleted. Indeed, if ft is a lattice then the

proof in 2.2.4 works. If ft is not a lattice, then we can take a lattice

63 of bounded functions in uGLÍ~\C(P), and apply the "bounded" case

to get that u2aDC(P). I think that one can prove that «ftDC(P).

2.3. Proof of Theorem 3. Assume that P is an analytic space,

and ft satisfies the assumption in Theorem 3. Let Q be the topological

space projectively generated by ft. The identity mapping/ of P onto

Q is continuous, and since P is analytic, Baire(P) = Baire(Q) by

Theorem 2 in [2], or Theorem in [3]. Thus the Baire functions on P

coincide with the Baire functions on Q. Since P is analytic, P is

Lindelöf, and hence Q is Lindelöf. By Theorem 2 the algebra ft is

dense in the Baire function on Q in the sequential topology. This

completes the proof because every continuous function on P is a

Baire function on Q.

Remark. It may happen that if {/„} in ft converges to a continu-

ous function / on P, then /£ ft. For example, take a Baire set Z of

the order 2 in an analytic space Q, and let P be the space projectively

generated by the characteristic function g of Z, and all continuous

functions on Q. Put ft = C(Ç).

2.4. Proof of Theorem 4. Assume that a space P is almost

Lindelöf but not Lindelöf. We shall show that P is not Baire-minimal.
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Let Z be the collection of all zero sets in P which are not Lindelöf.

Clearly Z is a maximal filter of zero sets, and Z has the countable

intersection property. Since P is not Lindelöf, it is immediate that

Dz = 0. Choose a point a in P, and consider the set of all continuous

functions/ on P such that (fx) =f[Z] for some Z in Z. It is easy to

check that ß is a uniformly closed algebra which separates the points

of P, and if g is a continuous function on P such that the zero set of

g belongs to Z and gx 5^ 0, then (Lemma 3) g is not a Baire function

with respect to ß

2.5. Proof of Theorem 5. We shall need the following well-known

result (I do not know of any reference).

2.5.1. Proposition. Let g be a continuous mapping of a space P

onto a space Q. If P has an open base of cardinal x, then there exists a

collection ï of continuous functions on Q, which distinguishes the points

of Q, such that the cardinal of ï is at most x-

Proof. Let 11 be an infinite open base for P, and for each pair

U, F G11 choose a continuous function fur on Q which is, if possible

0 on U and 1 on V. The family {fuv} distinguishes the points of Q.

2.5.2. Assume that g is a one-to-one continuous mapping of a

Blackwell space onto a space Q. By 2.5.1 there exists a one-to-one

continuous mapping h of Q onto a separable metrizable space M. The

composite f=h o g is a one-to-one Baire measurable mapping, and

Baire(M) is countably generated. Hence / is an isomorphism, and it

follows that g is an isomorphism.

2.5.3. Assume that (P, 63) is a countably generated measurable

space which is not a Blackwell space, and take a countably generated

proper subalgebra Q3i of 03 which distinguishes points. Let \Bn\

be a generating sequence for 03 such that [B2n] generates 03i. For

each n let in be the characteristic function of Bn. Let Q be the product

of {2| nEN], where 2 is the discrete space consisting of 0 and 1, and

let Qi be the product of {21 n/2EN}. Denote by tt the projection of

Q onto <2i- Then (P, 03) is measurably embedded into Q by ix= {inx},

(P, G3i) is measurably embedded by jx — {i2nx}, and clearly j = ir o i.

Thus the topology induced by i is not Baire-minimal.

References

1. E. Cech, Topological spaces, 2nd ed., Publ. House Czech. Acad. Sei., Prague,

1965; English transi, of 1st ed., Wiley, New York, 1966. MR 35 #2254.
2. Z. Frolik, A measurable map with analytic domain and metrizable range is quotient,

Bull. Amer. Math. Soc. 76 (1970), 1112-1117.
3. ■—■—■—-, A survey of descriptive theory of sets and spaces, Czechoslovak Math. J.

20 (1970), 406-167.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



494 ZDENÉK FR0LÍK

4. Z. Frolík, A contribution to the descriptive theory of sets and spaces, Proc. Sympos.

General Topology and its Relations to Modern Analysis and Algebra (Prague, 1961),

Academic Press, New York; Publ. House Czech. Acad. Sei., Prague, 1962, pp. 157—

173. MR 26 #3002.

5. A. W. Hager, Approximation of real continuous functions on Lindelöf spaces,

Proc. Amer. Math. Soc. 22 (1969), 156-163. MR 39 #6062.
6. A. W. Hager and D. G. Johnson, A note on certain subalgebras of C{X), Canad.

J. Math. 20 (1968), 389-393. MR 36 #5697.
7. E. Hewitt, Certain generalizations of the Weierstrass approximation theorem,

Duke Math. J. 14(1947), 410-427. MR 9, 95.

Mathematics Institute of the Czechoslovak Academy of Sciences, Prague,

Czechoslovakia

State University of New York, Buffalo, New York 14266.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


