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Abstract

Background: Gene Ontology (GO) enrichment analysis remains one of the most common methods for hypothesis

generation from high throughput datasets. However, we believe that researchers strive to test other hypotheses

that fall outside of GO. Here, we developed and evaluated a tool for hypothesis generation from gene or protein

lists using ontological concepts present in manually curated text that describes those genes and proteins.

Results: As a consequence we have developed the method Statistical Tracking of Ontological Phrases (STOP) that

expands the realm of testable hypotheses in gene set enrichment analyses by integrating automated annotations

of genes to terms from over 200 biomedical ontologies. While not as precise as manually curated terms, we find

that the additional enriched concepts have value when coupled with traditional enrichment analyses using curated

terms.

Conclusion: Multiple ontologies have been developed for gene and protein annotation, by using a dataset of both

manually curated GO terms and automatically recognized concepts from curated text we can expand the realm of

hypotheses that can be discovered. The web application STOP is available at http://mooneygroup.org/stop/.

Background
High throughput experimentation such as gene expression

microarrays, next generation sequencing or proteomics

enables the interrogation of many thousands, or even mil-

lions, of data points simultaneously. Comparison between

these experiments (such as a phenotype and control)

enables identification of gene or protein sets of interest in

a hypothesis free manner. To stimulate generation of test-

able, explanatory hypotheses for experimental validation

from these sets of genes, researchers will often apply Gene

Set Enrichment Analysis (GSEA) [1] or concept enrich-

ment analysis using controlled vocabulary terms. Term

enrichment analysis, which refers to the search for ontol-

ogy terms that occur more in a given gene list when com-

pared with a background gene set, can be used to generate

new scientific hypotheses. Gene Ontology (GO) [2,3],

arguably the most commonly used ontology in basic re-

search, consists of a collection of three non-overlapping

controlled vocabularies that describe molecular functions,

biological processes and cellular components. There are

now more than 50 GO-based enrichment analysis tools

available. Examples of such functional analysis tools

are BiNGO [4] or GOEAST [5] , which solely utilize gene

ontology (GO) for their analyses. Other approaches, such

as ClueGO [6], DAVID [7] and GeneWeaver [8], incorpor-

ate larger range of sources, such as disease ontologies,

phenotype ontologies or common pathways. However, all

of them rely on predefined gene annotations and thus are

limited to biomedical domains that have curated annota-

tions. Baumgartner, et al. [9] presented an analysis that

demonstrated how manually curated annotations can

never keep pace with novel scientific discoveries, and

argued that text-mining based methods need to be

adopted to keep pace with the rising volume of literature.

For example, an incredible amount of established know-

ledge about genomes and proteomes is available through

NCBI Entrez Gene [10] and UniProt [11], but the

* Correspondence: smooney@buckinstitute.org
1Buck Institute for Research on Aging, Novato, CA, USA
4Department of Medical and Molecular Genetics, Indiana University School of

Medicine, Indianapolis, IN, USA

Full list of author information is available at the end of the article

© 2013 Wittkop et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Wittkop et al. BMC Bioinformatics 2013, 14:53

http://www.biomedcentral.com/1471-2105/14/53

http://mooneygroup.org/stop/
mailto:smooney@buckinstitute.org
http://creativecommons.org/licenses/by/2.0


concepts mentioned in the textual descriptions of genes

and proteins in these resources are not part of any statis-

tical enrichment analysis. We believe in a hybrid approach

of testing manually curated terms along with automatic-

ally recognized concepts from curated text will result in

more hypotheses and therefore be more useful to the

researcher.

Large-scale annotation of all the known genes and

expressed proteins in an organism’s genome is a complex

and arduous task. To this end, biology and medicine have

created and manage discipline-specific structured

ontologies that are suitable for gene or protein annotation.

Although these ontologies are publicly available, for in-

stance via the National Center for Biomedical Ontology

[12,13] or the EBI Ontology Lookup Service [14,15] and

provide valuable information about connections between

different biological concepts, only a small fraction of these

ontologies are used for gene and protein annotation and

therefore a relatively small amount of annotations are ac-

tually available for use in enrichment analysis methods.

The quality of results from term enrichment analysis

is naturally dependent on the quality of the annotations

underlying the analysis. Therefore term enrichment ana-

lysis should only use high quality annotations, such as

the human-curated annotations from Ingenuity Pathway

Analysis (IPA) (http://www.ingenuity.com/) or from a

highly restricted subset of GO of experimentally

validated and published annotations. However, many

genes do not have annotations of this quality, and there-

fore the results of enrichment analysis can be highly

incomplete. On the other end of the spectrum, including

automated annotations based on criteria such as computa-

tional prediction using sequence similarity would result in

a richer but less accurate set of annotations and hence less

reliable results from term enrichment analysis. In this

paper, we propose a middle ground that combines high

quality human-curated gene descriptions with automated

assignment of annotation terms based on those descrip-

tions. We use the Stanford National Center for Biomedical

Ontology (NCBO) Annotator [16], which provides anno-

tations with terms from over 200 publicly available

biomedical ontologies, to automatically annotate a gene or

protein based on the corresponding Entrez Gene or

UniProt textual description. The text description is used

as the basis on which the NCBO Annotator provides

ontological terms that could annotate the gene or protein

We find that automated annotations generated in this

manner reliably recover the known annotations already

present in the text record (such as GO terms or OMIM

[17] terms), and we find that we are able to annotate

with a wide spectrum of concepts not available in any

currently used ontology enrichment tools. Additionally,

we are able to identify GO terms that are present in

curated text that are not currently formerly annotated to

these genes or proteins, and many of these examples are

bona fide annotations. Overall, our approach is able to

annotate proteins with 524,304 terms from across 291

ontologies; and a vast majority of these terms are not

part of the GO.

In the following, we will demonstrate the advantages

of using automatic annotations that are based on manu-

ally curated textual descriptions, by extending our previ-

ous RANSUM approach [18] to enable analysis of genes

and protein concepts. We will first describe the STOP

workflow, which allows a researcher fast and easy statis-

tical analyses of gene sets using up-to-date information

of genes and proteins from the most widely used model

organisms and human. We will further demonstrate how

automatically derived annotations contain valuable infor-

mation that is not currently present in the GO, without

diminishing the value of manually curated GO enrich-

ment analysis. Therefore, we compare our annotations

against GO and highlight examples of gene-to-term

annotations that are likely to be correct but not present

in official GO annotations. Finally we describe two

use-cases: (1) proteins that are direct protein interaction

partners of the huntingtin protein and (2) known

Parkinson’s disease genes. We use these sets of proteins

to demonstrate how STOP can reveal interesting

enriched concepts that improve the understanding of

functional traits implied by gene sets.

Results
Term enrichment with automatically derived annotations

Here, we present STOP (Statistical Tracking of Ontological

Phrases), a web resource that utilizes automatic annotation

and term enrichment analyses to generate novel insights

into common traits of sets of genes. In contrast to com-

monly used tools for the task of gene set enrichment ana-

lysis, STOP does not limit itself to predefined annotations

and a few controlled vocabularies, but uses up-to-date in-

formation (curated text) about genes to map them to terms

from all 291 ontologies provided by the National Center

for Biomedical Ontology (NCBO). Results from an analysis

with STOP annotations are presented in a web interface

that allows easy navigation and identification of concepts

that summarize the input set of genes; thus helping

researchers interpret and understand experimental results

to create novel hypotheses.

The computational pipeline underlying the STOP

backend as well as the real time enrichment analysis

provided by the STOP frontend via a web interface are

explained graphically in Figure 1.

We implemented a fully automatic import process that

can be executed at very frequent intervals (currently

once a month) to always provide the latest, state-of–the

-art information about genes. This process of populating

our local database includes:
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1. Collecting all genes and proteins in the genome/

proteome of the 6 widely used model organisms Mus

musculus, Rattus norvegicus, Drosophila

melanogaster, Caenorhabditis elegans, Saccharomyces

cerevisiae and Escherichia coli and Homo sapiens via

UniProt and NCBI Entrez Gene .

2. Search, download and filtering of descriptive text for

each gene/protein using NCBI Entrez Gene and

UniProt.

3. Annotation of the genes/proteins to terms from all

ontologies currently present in the NCBO Bioportal

database, using the Annotator Web service.

STOP currently uses over 667,258,930 annotations of

226,298 genes and 200,047 proteins from 7 organism

(H. sapiens, M. musculus, R. norvegicus, D. melanogaster,

C. elegans, S. cerevisiae, and E. coli) that come from

524,304 terms across 291 ontologies. The included

ontologies can provide general information as in GO and

NCI Thesaurus [19], or can be more specific as, for

instance, in the Disease Ontology [20], Pathway Ontology

[21], or Human Phenotype Ontology [22].

STOP has been optimized for fast processing to com-

pute and display enriched terms from 291 ontologies in

a matter of seconds. The resulting term list can still be

overwhelming. Therefore, we: (i) Remove redundant in-

formation by combining terms with the same name; (ii)

Implement filtering methods that can display results

from selected ontologies, ontology categories, or terms

that match user specific key words; (iii) Identify a list of

41 highly informative ontologies that can be accessed as

“Preferred” using the ontology category filter; (iv)

Visualize the enriched terms as a sorted table or term

cloud. We further ease usage of our web interface by

utilizing all gene identifier mappings for genes and

proteins as available from NCBI Entrez Gene and Uni-

Prot respectively. To use STOP a researcher simply has

to: (1) copy + paste their list of genes or protein (delim-

ited via whitespace, comma, semicolon, tab or newline),

(2) select the species, the background set of genes and

Figure 1 Overview of the computational workflow of STOP. The left side illustrates the backend of the STOP software, i.e. the automatic

annotation pipelin: (1) The genome and proteome of all included species is retrieved from UniProt and Entrez Gene respectively and

subsequently (2) descriptions for all genes/proteins are collected from UniProt and Entrez Gene and finally (3) submitted to the NCBO annotator

web service. The information is stored in a MySQL database and can be accessed by the frontend, which is displayed here on the right side. The

real-time analysis pipeline requires a list of genes as input and calculates for each term of the 200+ ontologies whether it is enriched in the given

gene list. The results are subsequently presented as a tag cloud or in list form.
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the multiple-hypothesis correction method from drop-

down menus, and (3) press the submit button. The

STOP web interface is available at http://mooneygroup.

org/stop.

Comparing gene ontology with automatic annotations

As GO is still the standard ontology when analyzing

gene sets for their functions, we compared the official

GO annotations to those we automatically derive within

STOP for this ontology. We obtain the gold standard

GO annotations for proteins from UniProt and for genes

from Entrez gene (gene2go file). We further compared

gene-based annotations with annotations from the re-

spective species-specific databases: GOA [23] (human),

FlyBase [24] (fly), WormBase [25] (worm), RGD [26] (rat),

SGD [27] (yeast), EcoCyc [28] and MGI [29] (mouse)

obtained via http://www.geneontology.org. The results are

slightly lower in Recall and Precision, probably due to

database differences between Entrez Gene and the

species-specific sites. In this analysis we consider each

gene in our background that is also found in GO, i.e.

genes that have at least one GO term annotation. For each

such gene we calculate precision and recall and determine

the average of these values to evaluate the overall equality

between these two approaches. The precision for one spe-

cific gene is the ratio of GO terms that are annotated in

both the gold standard and our annotation to that gene

(true positives) divided by all annotations that we predict

for this gene (true positives + false positives). The average

precision for an organism is the average of all precision

for all genes in that organism. As expected we achieve

high recall values ranging from 0.96 to 1 for the different

species except E.coli. When comparing our annotations

with E.coli we see big differences, which seem to be rooted

in the limited GO annotations that are present in Entrez

Gene (our annotation source) for E. coli. The generally

high recall values are due to the fact that GO terms are

part of the text that comprises our input for the

annotation process. Missing terms are easily explained by

different versions and changes in GO. The lower precision

shows that STOP finds several novel annotations that are

currently not in GO and thus are counted as false posi-

tives in this evaluation. We find however, that along actual

false positives many of these new annotations make sense

and probably should be included in GO, see below for

some examples. For the annotation process we integrated

GO annotations from UniProt and Entrez Gene while the

comparison has been performed on the most recent ver-

sion obtained from UniProt GOA, Entrez Gene and

http://www.geneontology.org/.

The results (presented in Table 1) show that for most

genes we identify already known GO terms and add sev-

eral annotations that are not present in the manual

annotations. We found several examples where genes or

proteins have functions associated with them that are

only described in UniProt/Entrez Gene but are not yet

associated with relevant GO terms. One example is the

human protein liver carboxylesterase 1 (P23141). STOP

associates this protein with the GO term ‘cocaine meta-

bolic process’ (GO:0050783). This association is not

listed on the GO annotations website. This association

was identified from a title for a reference paper for the

protein, “Structural basis of heroin and cocaine metabol-

ism by a promiscuous human drug-processing enzyme”

[30]. Another example can be found in the C. elegans

protein (Q27539) ATP-dependent Clp protease proteo-

lytic subunit 1, mitochondrial. STOP annotated this

protein with the GO concept mitochondrial unfolded

protein response’ (GO:0034514), however this concept

was not in the GO annotations. The concept was identi-

fied from one of the references associated with this protein,

“ClpP mediates activation of a mitochondrial unfolded pro-

tein response in C. elegans” [31].

Using STOP to improve understanding of Huntington’s

disease

In order to assess the functional utility of STOP, we

selected a set of proteins from the Human Protein Refer-

ence Database (HPRD) that are known to directly inter-

act with the human Huntingtin gene (HTT) [32]. HTT

is of particular interest in neurodegeneration because it

is prone to polyglutamine expansion, the degree

of which correlates to the severity of the development of

Huntington’s disease, a devastating neurodegenerative

disease. The list of interacting proteins, which is stored

on the gene level in HPRD, consists of 59 genes

(excluding HTT) serves as a test case for STOP here

(see Additional file 1). Since the interactions are on the

protein level UniProt/SwissProt IDs were used in the

analysis, and the SwissProt Human database was used as

the background for the enrichment analyses. As an add-

itional point of comparison, the same list of proteins was

submitted to DAVID and all enriched gene ontology

(GO) annotations were retrieved using the “GO_all”

database. The analysis using DAVID returned a typical

list of enriched GO categories (Figure 2A). Among the

terms that can be associated directly with what is known

about Huntington’s disease were for example protein

complex assembly, induction of apoptosis and terms

associated with cell death. Biologically, each of these

terms describes at least some part of what little is known

about the function of HTT. However, these (and the

other terms) don’t give much information about the

gene set as a whole. If, for instance, one were to submit

this gene list not knowing how or if the genes had any

shared biological relevance, the results of the GO enrich-

ment analysis would be difficult to interpret and would

likely not contribute to the understanding of the dataset.
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When the HTT PPI gene list was analyzed using

STOP, the results were more diverse. For the pur-

poses of this test case, the results of the STOP en-

richment analysis were filtered using only terms

from the “Preferred” ontologies (see Additional file

2), which helps to refine the output to more bio-

logically useful annotations (Figure 2B). In this case,

the top 30 enriched annotations include terms simi-

lar to those in the GO analysis such as protein bind-

ing or cellular component organization. However, the

results also include more descriptive terms such as

Huntington’s Disease, huntingtin, Transferases, drug

interaction, and solute carrier family 6 (neurotrans-

mitter transporter, serotonin). Thus, the STOP ana-

lysis correctly identified this gene list as being

associated with Huntington’s disease, neuron-related

processes, and specific disease pathways (histone

deaceltylases). It is important to note that the HTT

gene was not a part of the submitted gene list in ei-

ther analysis.

Application of STOP to Parkinson’s disease

To further validate the utility of STOP, we applied it to

genes and proteins associated with Parkinson’s Disease

(PD). All proteins in UniProt that are associated with

PD were identified in the PhenoPred resource [33],

resulting in 14 human proteins (see Additional file 3).

STOP was applied on this list resulting in many

enriched terms using Benjamini-Hochberg for correc-

tion of multiple hypotheses and UniProt/SwissProt as

background (Results for the top 30 enriched categor-

ies in the preferred set of ontologies can be seen in

Figure 2C). Not surprisingly the top term was Parkin-

son’s Disease (p < 1.87 × 10-25), which was found in 20

ontologies (6 preferred ontologies). Other terms

included Basal Ganglia Diseases (9.86 × 10-21), Tremor

(2.39 × 10-22), Movement Disorders (1.50 × 10-17), Sub-

stantia Nigra (1.24 × 10-16), Brain Diseases (3.02 × 10-13),

Age (7.79 × 10-14), Dopamine (5.74 × 10-12), Neuron

(4.80 × 10-11), and many others. All terms appear to

be relevant, with possible false positives been related

Table 1 Summary of comparison between STOP and GO annotations

Species Annotation source/gold standard Recall Precision F-measure

human

Entrez Gene/Entrez Gene 0.993 0.678 0.806

Entrez Gene/GOA 0.979 0.674 0.798

UniProt/GOA 0.998 0.608 0.756

mouse

Entrez Gene/Entrez Gene 0.990 0.791 0.879

Entrez Gene/MGI 0.990 0.791 0.879

UniProt/GOA 0.999 0.746 0.854

rat

Entrez Gene/Entrez Gene 0.987 0.724 0.835

Entrez Gene/RGD 0.959 0.713 0.818

UniProt/GOA 0.999 0.736 0.847

fly

Entrez Gene/Entrez Gene 0.987 0.767 0.863

Entrez Gene/FlyBase 0.978 0.762 0.857

UniProt/GOA 0.992 0.751 0.855

worm

Entrez Gene/Entrez Gene 0.998 0.783 0.878

Entrez Gene/WormBase 0.998 0.783 0.878

UniProt/GOA 0.999 0.788 0.881

yeast

Entrez Gene/Entrez Gene 0.994 0.798 0.885

Entrez Gene/SGD 0.994 0.798 0.885

UniProt/GOA 0.998 0.630 0.773

E. coli

Entrez Gene/Entrez Gene 1.000 0.611 0.758

Entrez Gene/EcoCyc 0.340 0.354 0.347

UniProt/GOA 0.964 0.826 0.890

Annotations based on Entrez Gene descriptions are compared against the gene2go annotations from Entrez Gene and species-specific databases where the

annotations have been downloaded from http://www.geneontology.org, and STOP annotations based on UniProt descriptions are compared against GOA

annotations. Recall and Precision are calculated for each gene and subsequently averaged. The F-measure is the harmonic mean of these average Recall and

Precision values.
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Figure 2 (See legend on next page.)
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largely to other neurodegenerative diseases such as

Alzheimer Disease (1.20 × 10-19) or Spinocerebellar

Ataxia 17, (CAG)n Expansion (2.60 × 10-22). Less sig-

nificant are terms associated with pathology but are too

general to be useful such as Lab (8.59 × 10-9) or Patients

(9.88 × 10-7).

Discussion
Some ontological annotations don’t make scientific sense,

for example, human genes and proteins that are automat-

ically annotated with terms from the C. elegans Phenotype

Ontology. Given that, the philosophy of our approach was

to capture the widest possible number of term annota-

tions, in a hypothesis-free manner, regardless of the

source. Since all examination of these annotations is

through statistical enrichment, we believe that falsely dis-

covered annotations will not be statistically enriched after

multi hypothesis correction. Users, of course, are allowed

to select out any term sets in real time on the website, pre-

venting the presence of spurious terms.

Using automated annotations derived from text can,

however, lead also to false positive annotations. An ex-

ample we observed, was that results for protein sets that

were obtained from interaction data often had the terms,

“mint”, “menthol”, and “vascular plant” enriched. We

could trace this to the interaction database MINT [34]

which was part of the descriptive text of all proteins,

that had an interaction stored in that database. As a con-

sequence we exclude common database names from the

gene descriptions. On the other hand, unrelated terms

can have a true meaning that can only be detected with

automated text-based methods. In an analysis of a set of

genes that are involved in Parkinson’s disease, we

observed the term “Australia” as enriched (using Entrez

Gene, p < 3.03 × 10-8). Originally assuming this to be a

false positive we identified the source as a research

group in Australia that is leading in Parkinson’s research

due to a highly cited manuscript with Australia men-

tioned in the title. Although not biologically relevant,

this example shows that automated annotations are cap-

able of detecting relations that would otherwise remain

undetected.

Due to the import process, the STOP application com-

pletely depends on the ontologies that are made available

through and the annotator web service that is provided by

NCBO. However, the NCBO constantly expands their

database of available ontologies and adds mapping infor-

mation between terms of different ontologies. STOP takes

advantage of this growing resource by regularly re-

annotating (about once a month) the list of genes with

up-to-date gene descriptions.

Interestingly, we found that in many cases proteins

would be annotated with GO terms that were not found

in the gold standard GO annotation database from the

GO consortium website. We pursued this and found

that these annotations were often correct. While this is

out of the purview of the STOP method, it suggests that

curators would do well to identify term text and fold

them into their own annotations.

Conclusion
We have constructed a tool that substantially broadens

the hypotheses that can be generated with enrichment

analysis using automatically created annotations. We find

that these annotations are able to identify existing known

concepts in the text. Users can download our species spe-

cific annotation datasets and perform enrichment analysis

on our website with a list of gene and protein IDs.

Enriched and depleted terms can be filtered by ontology

or ontology type. Furthermore, annotations can be down-

loaded into a spreadsheet for later use. In the end, STOP

enables experimental research projects to identify hypoth-

eses for gene and protein sets using a concept space

that is far larger than GO or OMIM, thereby improving

their ability move high throughput experimentation to

validation.

Methods
Automated annotation pipeline

In order to build the necessary components to perform

enrichment analysis, the following was performed. First, a

list of the genes and proteins for each genome and prote-

ome was compiled using Entrez Gene and UniProt. Using

a web service, the text descriptions for each gene or pro-

tein were collected. This text was then used as input into

the NCBO Automated Annotator, where ontological con-

cepts were annotated upon that text. This is then repeated

for each list of genes and proteins for each species,

(See figure on previous page.)

Figure 2 Top 30 enriched terms for DAVID and STOP analysis of Htt interacting proteins and STOP analysis of Parkinson’s genes. Fifty-

nine genes from the HPRD database known to interact with the Human Huntingin (HTT) gene were analyzed using STOP and DAVID (GO). 14

proteins known to be involved in Parkinson’s disease were analyzed with STOP. (A) The list of HTT interacting proteins was submitted to DAVID,

and enrichment analysis carried out with GO_all using SwissProt Human as the background. The top 30 annotations are shown. (B) The same

proteins were also submitted to STOP with the same background, and the results were limited to annotations from the preferred ontologies. (C)

The Parkinson’s related proteins were similarly analyzed with STOP; again limited to annotations from the preferred ontologies. The top 30

categories are shown along with their significance. Significance is defined as the –log(Benjamini-Hochberg corrected p-values). For reference,

p = 0.01 is equivalent to 2.
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including human, mouse, fly, nematode worm, rat, yeast

and E. coli. Detailed description of these steps are below.

1.Collect whole genome/proteome gene/protein lists

The first step is to identify all genes/proteins in the

genome/proteome of all species. The genes in a

genome are determined using the Entrez Gene

database and the proteome is similarly determined by

UniProt using all proteins that contain the “whole

proteome” keyword. We provide subsets of the

genomes/proteomes as predefined background for

the statistical analysis: (1) all Entrez Gene genes, (2)

only RefSeq reviewed/validated genes, and (3) only

protein coding genes as gene backgrounds and (1)

UniProt/Swissprot and (2) UniProt/Tremble as

protein backgrounds. However, we annotate all

genes/proteins in the genomes/proteomes as

described in the subsequent steps.

2.Collect descriptive text for each gene/protein

There are several publicly available databases that

provide information about genes and proteins. The

text descriptions for genes are downloaded from the

FTP site of the NCBI Entrez Gene database and the

text descriptions for proteins are downloaded from

the UniProt database. The Entrez Gene text is

downloaded as binary file and converted into XML

format The descriptive text for proteins is obtained

in TXT format from UniProt. We extract valuable

information from both resources while removing

unnecessary informations such as author names

that could lead to false positive annotations. For

Entrez Gene the descriptive text includes a gene

summary, short descriptive texts from GeneRIF

and known annotations and interactions. For

UniProt the text for each protein has a summary

that describes the proteins’ function, a list of

publication titles that are associated with a protein

and already known annotations and keywords. We

store the type of text (e.g. gene summary, GeneRIF, or

publication title) and the text itself to being able

to add evidence to obtained annotations in future

releases of STOP.

3.Annotate concepts upon text

All text describing genes and proteins is read by the

NCBO Automated annotator. The NCBO annotator

uses a library of terms and their synonyms from over

200 biomedical ontologies. It applies the string

matching algorithm MGrep on our input text and

finds all exact matches of available term names or

known synonyms thereof in the submitted text. It

filters known stopwords such as “the”, “and”, “is” etc.

and each annotation is propagated to the root, i.e. if

a text is annotated to a term it is automatically

annotated to all its parents following the “is_a”

relationship in the respective ontology. The available

parameters of the NCBO Annotator are specified in

Additional file 4 list of available ontologies which we

can annotate to, are listed in Additional files 2. Note,

Figure 3 The STOP website showing results in a bar graph. On the left the navigation interface with previously performed jobs is shown and

on the right the enriched categories for the Huntingtin primary interactors that are present in our list of preferred networks are displayed.
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that although the NCBO provides mapping between

terms across ontologies, we decided to leave out this

option to allow for a more independent annotation of

each ontology.Since each input text is associated with

a gene/protein we obtain annotations for genes/

proteins from the annotator. Subsequently, we simply

remove redundant annotations and store each

annotation in a local database which then can be

accessed by our web frontend and analysis backend.

An example of this workflow is shown in Figure 1.

Computing enrichment analysis

We apply the most widely used hypergeometric test to

identify concepts that are overrepresented with respect to a

background set of genes. A user may choose to provide

such a set, or use one of our predefined background sets

for genes ((1) Entrez Gene, (2) RefSeq reviewed/validated,

of (3) protein-coding) or proteins (UniProt/Swissprot or

UniProt/Tremble). All analyses are done separately for each

ontology, i.e. multiple hypothesis correction is done on an

individual ontology basis and only those terms with at least

one input gene annotated to it are analyzed and contribute

to the multiple hypothesis corrections. Let in the following

n denote the number of genes in our study and m the num-

ber of genes in the background with at least one annotation

in the respective ontology, i.e. genes that have no annota-

tion in that ontology are ignored. Further let nt and mt be

the number of genes annotated to a term in the study set

and the background respectively. The p-value p(t) repre-

senting the likelihood that a term t has annotations to at

least as many genes as we observe in our list of genes is cal-

culated using the one-tailed version of Fisher’s exact test

[35], also known as hypergeometric test:

p tð Þ ¼
X

min mt ;nð Þ

k¼n

mt

k

� �

m�mt

n� k

� �

m
n

� �

In order to correct for multiple hypotheses, a user

may choose between the three most commonly used

methods Bonferroni [36], Bonferroni-Holm [37], and

Benjamini-Hochberg [38]. STOP applies this correction

per individual ontology to guarantee consistent results

that are independent of the user’s choice of ontologies.

A term is reported as enriched if the adjusted p-value is

below a significance threshold of 0.05. STOP reports

only terms that have a significant corrected p-value and

at least 3 genes annotated to it.

Implementation

The STOP website was constructed using DRUPAL and

requires a user to submit an email address or create an

account. All annotations are stored locally in a MySQL

database and the enrichment analysis back-end as well as

the import process have been implemented in JAVA. A job

usually finishes in under a minute (Figure 3).

Additional files

Additional file 1: List of proteins from the Human Protein

Reference Database (HPRD) that are known to directly interact with the

human Huntingtin gene (HTT).

Additional file 2: List of all ontologies that are available for the

NCBO annotator web service. The table lists all ontologies that are

available for the NCBO annotator. Ontologies of our “preferred” category

are highlighted in red.

Additional file 3: List of proteins associated with Parkinson’s

Disease (PD). All proteins in UniProt that are associated with PD were

identified in the PhenoPred resource.

Additional file 4: List of all parameters for the NCBO annotator and

the values that were used in STOP.
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