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Stopping times and Markov programming

J. Wessels

Eindhoven

O. Introduction.

In this paper we consider finite state Markov decision processes with finite

decision spaces for each state. The optimality criterion will be total ex

pected discounted reward over an infinite time horizon. For these problems

a great variety of optimization procedures has been developed. We divide

them in two classes:

policy improvement procedures and

policy improvement-value determination procedures.

For procedures of the first class the main part of each iteration step is a

policy improvement procedure ([IJ, [2J, [3J, [9J). For procedures of the

second class each iteration step contains a policy improvement part and a

part in which the values for the new strategy are estimated or computed

([4J, [5J, [6J, [7J, [8J, [3J). As a matter of fact it is possible to ex

pand any procedure of the first class to a procedure of the second class.

For different procedures this has been proved in [3J. A general approach

will be presented in a forthcoming paper.

In this paper a unifying approach will be given for all known policy im

provement procedures. At the same time a number of new policy improvement

procedures is generated. It is proved that, in a way, our generating prin

ciple is exhaustive.

We use stopping times for the generation of policy improvement procedures.

Actually the choice of a stopping time (or equivalently a go ahead set) will

determine a procedure. We will present sufficient and necessary conditions

for the stopping time which guarantee the convergence of the procedure (non

zero stopping times) and which guarantee that the procedure only requires

the use of stationary Markov or memoryless decision rules (stationary second

order Markov or transition memoryless stopping times).

The main tool in this paper consists of the theory of monotone contraction

mappings, which has been used intensively in the past in this type of prob

lems ([10J, [IIJ).
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I. Stopping times and contraction in stochastic processes.

We consider a stochastic process in a finite state space S := {I, ••• ,N}

'"and in discrete time (n = 0,1,2, ••• ). S is the set of allowed paths.

Defini tion 1.1.

'"a. The function, on S with integer values between 0 and'" (bounds included)

1S called a stopping time if and only if

+() B S'" . h Sn+l, n = x , W1t Be.

'"
b. A nonempty subset A of U Sk is called a go ahead set, if and only if

k=O
'"

(a,S) € A ~ a € A for all a,S € U Sk.
k=O

(SO only contains a null-tuple which concatenates to a with any a;

our definitions imply that any go ahead set contains this null-tuple).

n
SkNotations. - A = U (0 ~ n ~ ",).

n k=O

the i-th n (n ;:: 1) is denoted by [aJ. 1;- component of a € S
1-

- if a € Sn, k is defined to be n;
a

n
- hence a € S (n;:: 1) may be written as ([aJO,[aJ l ,· .. ,[aJk -I);

a
- hence k = k + kQ if y = (a,S);y a ..,

- A(i) = {a € A [aJ
O

= i if k
a

;:: I}.

There is a one-to-one correspondence between stopping times and go ahead

sets:

'"
A = U

n=O
{a € Sn I ¥ '" ,(a,S) ;:: n} •

S€S

The correspondence between stopping times and go ahead sets may be represented

by:

a€A, (a,R.) i A, R. € S ~ ,(a,R.,sl,s2"") = ka

(R.) i A, R. € S ~ ,(R.,sl,s2"") = 0 •
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We will apply the concepts of stopping time and go ahead set at will,

always with this correspondence in mind.

Definition 1.2~ A stopping time T (or its go ahead set A) is said to be
co

nonzero if and only if T(a) ~ I for all a E S , or (equivalently) SeA.

The only nonzero stopping time which is an entrytime (memoryless) is

T ::: co (A = A ).co

Examples of nonzero stopping times.

I. 3. ~ defined by : 1\ (i) = U
n=O

{a € Sn I [aJ. = i,
J

l.1.A (I~n~co)
n

1.2. AH defined by ~(i) =SO u {(i)} u {(i,a) I
co

i-I
a € U "\(j)};

j=1

j = O, ••• ,n-I, if n ~ I}

1.4. ~ with E a subset of S, defined by:
co

~= U
n=2 °[ a J. € E, j = I, ••• , n- I} u SuS

J

(L v)(i)
T

We now suppose that a reward structure has been given: at each time instant

n a reward is earned. This reward q(a) depends on the history until that

time: a € Sn+l. So the reward structure is a function q on Aco ' q is supposed

to be bounded and (without loss of generality) to be zero on SO. Rewards are

discounted with discountfactor S (0 < S < I). We further denote the state of

the stochastic process at time n by the random variable x and reward at
n

time n by the random variable q • The probability of path a € Sn is denoted
n

by pea). P(ali) denotes the probability of a given X o = L All such conditional

probabilities are supposed to be defined properly. Defined on the process, the

stopping time is a random variable.

Definition 1.3. A is a go ahead set, T its corresponding stopping time.

The operator LA (or L
T

) on RN is defined by:

T-I k
= E( I S qk + STV(X

T
) I Xo = i)

k=O

(where E denotes expectation), or equivalently:
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k -I
P(ali)S a q(a) + L

aEA(i)
R.ES

(a,R.)'A(i)

k
P(a,R.Ii)S av(t).

Theorem 1.1. (, is a stopping time).

a. L ~s a monotone mapping: v ~ w .. L v ~ L w', , , '
b. L is strictly contracting with respect to supnorm in R

N
if and only if,

, is nonzero;

c. the contraction radius P, (or PA) lies for nonzero, between 0 and S

(bounds included):

P = max E(S'lx = i);
, . S 0

I.E

d. PA $ PB if A and B go ahead sets with A ~ B, or P, $ Po if , ~ o.

Proof. The proof follows straightforward.

A natural question arises after the observation that strictly contracting

mappings on lR
N possess a unique fixed point: which point is mapped on i t

self by L if, is nonzero?,
Lenuna 1.1. If the stochastic process {x \n=O,I, ••• }, the nonzero stopping

n
time " and the reward function q satisfy

then L possesses the unique fixed point LA 0 (where 0 denotes the null-
, N 00

vector in lR ).

Proof. Since L possesses a unique fixed point if , is nonzero, we only have,
to verify whether:

L,LA 0 = LA 0, where LA O(i)
00 00 <Xl

Using
,-I

L v(i) =E( L Skqk\xo=i) +.L P(,<oo,x.,.=j!xo=i)E(S'lxo=i,,<oo,x.,.=j)v(j)
'k=O JES L L

the proof follows straightforward.
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Theorem 1.2. Suppose:

I) the stopping time t ~s nonzero,

2) the random variables t and qt+1 are conditionally independent (condition:

x =~, t < 00, X = j) for all 1 E N, i,j E S,o t

i, t < 00, x
t

= j) = E(q1 I xo = j) for all tEN, i,j E S,

then LA 0 is the unique fixed point of Lt'
00

t < 00, X = j) =
t

E(st X o = i, t < 00, X = j)E(qtH X o = ~, t < 00, X = j) =
t t

E(St I xo = ~, T < 00, X = j)E(q1 I x = j)
T 0

The statement is now implied by the foregoing lemma.

Corollary 1.2. If {x I n = O,I,2, ••• } is a homogeneous Markov chain and
n

q(a) r([aJk -1) for ka ~ 1, then LA 0 is the unique fixed point for L
Tex •• 00

with T a nonzero stopp~ng t~me.

Stopping times and contraction in Markov decision processes.

From this section on we will treat Markov decision processes with state

space S as described below.

Definition 2.1.
00

Sk with values in a given set K- a decision pule D is a function on

V, the set of memoryless decision

(stationary Markov) if

U
k=l

nonempty);

be memory less
00

Sk.,D(a) = D([aJ k -1) for each a E U
a k=1

- the set of decision rules is denoted by

(here supposed to be finite and

- the decision rule D is said to

rules by M;
00

- the sequence {Dn}n=1 of decision rules is said to converge to D E V, if
00

and only if for each a E U
k=l

Sk holds: lim D (a) = D(a).
nn+oo

Lemma 2.1. V is compact in the topology induced by the limit concept in V.
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Proof. The proof proceeds exactly as in [12J: the topology induced by the

limit concepts of componentwise convergence is the same as the product

topology in the countably infinite topological product of the sets of all

maps of Sn into K (n = 1,2, ••• ) (see e.g. Kelley [13J). Hence the compact

ness of V follows by Tychonov's theorem.

We suppose that each decision rule D determines a probability law for the

stochastic process {x In=O,I, ••• } in the following way:
n

P( 'n!')_p( '1,)D(o.,R,)for"'EA "n SD o.,J,x. ~ - D o.,J ~ PjR, "" 00' ~,J,x. E ,

k
here P'R,

k J
PjR, ~ 0,

(j,R, E S, k E K) are supposed to be given numbers satisfying:

I P~R, = I,
R,ES J

k
A visit to state i with a decision k gives the reward r .•

~

Under these conditions a decision rule determines a stochastic process on S

with the reward function q defined by:

(a. E A , R, E S).
00

Since we wish to consider such processes for different decisions rules D,

we use D as a subscript or a superscript: PD(o.), L~, ED(S'!xO=i), etc.

D}
Lemma 2.2. If DI and D2 coincide on A: LA

• Lemma 2.3. L~V is a continuous function of D ("v fixed).

From the foregoing section (theorem 1.1), it follows that LD is monotone and,
(if, is nonzero) strictly contracting with contraction radius:

The following theorem gives an assertion about the fixed point.

Theorem 2. I.

- If D is memoryless, then L
D

has the fixed point L~O for all nonzero ';

- if D is not memoryless, then there exists a situation ({p~"rk(,)}) such
~J ~

that L
D

and L
D

possess different fixed points for certain 'I and '2.
'I T 2
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D(t) for any
D

possesses the fixed point LAOO with DO(a,t) :=
00

- D not memoryless implies:

1 and ~ respectively.
DNow: L
'I

a E A , t E S;
00

Proof.

- If D ~s rnemoryless, then D(a,t) = D(a). Hence the process {x In~O} then
n

becomes a Markov chain with rewards only depending on the current state.

Corollary 1.2 now produces the result.

# K > I. 'I and '2 may be chosen identical to

L
D

possesses the fixed point L
D °

'2 Aoo

It is not difficult to find P~j'S and r~i) 's, such that the two fixed

p~ints are different: r(~) = 0kD(i) for all i E S, k E K, then

(LA~O)(i) = (1-8)-1, while (L~ O)(i) < (1-8)-1 for at least one i E S, if
00

D(j)
Pjt > ° for all j,t E S.

Example 2.1. For AR we get:

If D mernoryless: D
P~

= 8 .l:s..1-8q with q D(i)
:= min p.. •

i H

Lemma 2.4. (, is an arbitrary stopping time).
Il. N DO LDv
~ For any v E R , there exists a decision rule DO' such that L, v ~ ,

(componentwise) for all D.

DO
Notation. The vector L v of the foregoing lemma, will be denoted by,

max L
D

v , U v, max LADv , UAv.
D' , D

• A set of optimization procedures.

The operator U serves for some specific choices of T to construct opti,
mization procedures, which aim actually at finding UAoo0' In the set-up of

this paper the question now arises how generally it is true that U induces
T

a procedure.
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Theorem 3. I .

The operator U RN . strictly contracting, if and only if T is nonzero;a. on ~s
T Db. the contraction radius v of U satisfies: v = max PT;T T T

fix~dc, for all nonzero T the operators U posses the point UA 0;
T

<Xl

Proof. D
I

DZa. Suppose L v = U v L w = U w.
T T ' T T

DZ DZ
U v - Uw

D
I

D
IL v- L w ~ ~ L v- L w

T T T T T T

This implies (as in theorem 1.1):

DI DZ D
lIu v-U wll ~ IIv-wllmax{p ,P }~ Ilv-wllmax P •

T T T T D T

implies the strict contractness property

T is not nonzero, is not strictly con-

of the last maximum is a consequence of lemma Z.4 (withThe existence

r~ := 0).
~

Hence v ~ max pD, which already
T D T

of U for nonzero T. That U , if
T T

tracting follows easily form the fact that any such T possesses an i E S

with (U v)(i) = v(i).
T

b. Take v(i) = V > 0, wei) = 0 (all i E S), then:

Choose V > 0, such that

= v{m;x[t(L~O)(i)+ED(ST IXo=i)]

I D
~I LAO II < t: f or all D (e: > 0).

- max t(L~O) (i)} •
D

Then II U v - U w II ;:: V{ -t: + max max ED(S T IxO=i) - d.
T T D i

D
Hence v ;:: max PT'

T D

c. Suppose A is nonzero, hence UA posses a unique fixed point.

Consider UAUA O.
00

Its i-th component is equal to:
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max [ I
D aEA(i)

k
I PD(a,£li)S a •

(a ,£)EB

k -I
S y

DI (y) ]
PD (yl£)r([ J )} =

1 Y k -1
y

= max [ I
D,D I aEA(i)

k +k -1
say

(D ,D 1)
= max(LA a)(i) =

D,D
I

00

max(L~ a)(i) ,
D 00

where (D,D I ) denotes the decision rule defined by: (D,DI)(a) = D(a), if

a E A, (D,DI)(a,y) = DI(y), if a € A, (a,[yJ O) i A and B contains the

elements (a,y) with a € A(i), y E A
oo

' (a,[yJ
a

) i A, ~ ESC A
oo

•

The last equality holds since the class of decision rules {(D,D I )} contains

M and

max L
D

a = max L
D

a (e.g. [6J, [IOJ, [12]).A AD 00 DEM 00

Examples 3. I •
k

~ k (0);v~ = 8 (l ~

3.2. v~ = S;

3.3. v~

In principle this theorem makes it possible to construct an infinite number

of procedures for finding UAoo0' namely choose a nonzero stopping time T,

choose a starting guess va € RN, and define:

v = U v (n = I 2 )n T n-l • •••• •

Then vn converges to uAooo.
Regrettably the computation of U v may be equally cumbersome as the comput

T

ation of UA 0. So the following problem for investigation is the character-
00
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ization of the nonzero stopping times which allow easy computation of UTv.

The two theorems in the sequel of this section provide the main step for

such a characterization.

Definition 3.1. A stopping time T (and its corresponding go ahead set A) is
2

said to be transition memoryLess, if and only if there is a subset T of S

and a subset So of S, such that:

T(a) = 0 ~ [aJ O € So '

Lemma 3.1. Memoryless stopping times are transition memoryless.

Theorem 3.2. If T is a transition memoryless stopping time:

U
T

= max LD

D€M T

Proof. (LDv)(i) =
T

v(i) if i € So '

D(i) + s I p~~i)v(j)+ S I p~~i) (LDijV)(j) +
rei) j€T(i) 1J jtT(i) 1J T

jtso

+ s I p~~i) (LDijv)(j) if it SO.
jtT(i) 1J T1
j /0 So

Here: T(i) = {j € S I (i,j) € T},

D.. is a decision rule with D.. (a) = D(i,a) if [aJO = j,
1J 1J

TI is the transition memoryless stopping time with the same T as T,

but with an empty SO.

It is possible to define a new Markov decision process with essentially the

same decision rules in such a way that LDv is exactly the vector of total
T

expected discounted rewards. Hence for this new Markov decision process at-

tention may be restricted to memoryless strategies (e.g. [6J, [IOJ, [12J),

which implies the same for the original problem. This new Markov decision

process is defined in the following way: S, the new set of states, consists

of So and two representations of S: S* = {s* I s E S} and S* = {s* I s € S}.

So some states of S are three times represented in S and others two times.
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For the S u So we define: k 1,
k (l-S)v(s) (k E: K).states s E: p-- = res) =

* ss

* * we define: k k if (s,sI) i (k E: K),For the states s E S P * * = pss T
s sl 1

k k if (s,sI) E T (k E K) ,P * = pss
s sI* 1

k k (k E K).r = r
(s*) (s)

Transition memoryless stopping times are the only stopping times, for which

restriction to memoryless decision rules is always allowed:

Theorem 3.3. Suppose the stopping time, for the state set S is not transition

memoryless, then there exists a Markov decision process with state set'S (i.e.

there exists a set K, and numbers {p~.},{rk(.)}) such that for this Markov
~J ~

decision process

U ;. max LD
, DEM"

Remark. In fact, max L
D may not be defined.

DEM '

Proof. Representing, by its go ahead set A, its not being transition memory

less implies the existence of a state i and two paths a,Y such that

B = {j I (a,i,j) EA} ;. {j I (y,i,j) EA} = C, while (a,i), (y,i) EA.

This implies that in determining UA the following forms have to be maximized

with respect to k and t respectively:

r
k
(;) + s 2

... jiB
P~.v(j) + l3
~J

P~.(U v)(j) ,
~J '1

rt(i) + l3 2 p7.v(j) + l3 L p:.(u v)(j) ,
jiC ~J jEC ~J [2

where '1(0) = ,(a,i,o) and '2(0) = ,(y,i,o).

By investigating different possibilities for the relation between Band C

examples can be constructed for which the maximizing k and t in (*) and (**)

are different.

Conclusion. It will be clear that the existing policy improvement procedures

[1], [8J follows directly from our unifying approach by choosing the corre

spondin~ sLopping time. While the policy improvement procedure introduced by

Reets [2J can be achieved by a slight extension of the set of allowed stopping

times.
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