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DSP architectures typicaly provide indirect addressing modes with autoincrement and decrement. In addition,
indexing mode is generally not available, and there are usualy few, if any, general-purpose registers. Hence, it
is necessary to use address registers and perform address arithmetic to access automatic variables. Subsuming
the address arithmetic into autoincrement and decrement modes improves the size of the generated code. In this
article we present a formulation of the problem of optimal storage assignment such that explicit instructions
for address arithmetic are minimized. We prove that for the case of a single address register the decision
problem is NP-complete, even for a single basic block. We then generalize the problem to multiple address
registers. For both cases heuristic algorithms are given, and experimental results are presented.
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1. INTRODUCTION

Microprocessors such as microcontrollers and fixed-point digital signal processors (DSPs)
are increasingly being embedded into many electronic products. In fact, the use of
microprocessors in embedded systems outnumbers the use of processors in both the PC
and the workstation market combined. Two trends are becoming clear in the design
of embedded systems. First, considerations for cost, power, and reliability are forcing
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designers into taking the next step: incorporating all the electronics—microprocessor,
progran ROM and RAM, and application-specific circuit components—into a single
integrated circuit. Second, the amount of software incorporated into embedded systems
is growing larger and more complex.

The first trend elevates code density to a new level of importance because program
code resides in on-chip ROM, the size of which translates directly into silicon area and
cost. Moreover, designers often devote a significant amount of time to reduce code size so
that the code will fit into available ROM, as exceeding on-chip ROM size could require
expensive redesign of the entire IC [Gansde 1992, p. 18] and even of the whole system.
The second trend—increasing software and system complexity—mandates the use of
high-level languages (HLLS) in order to decrease development costs and time-to-market.
However, current compilers for microcontrollers and fixed-point DSPs generate code that
leaves much room for improvement [Zivojnovic et al. 1994]—thus programming in an
HLL can incur penalties on code size and performance.

While optimizing compilers have proved effective for general-purpose processors,
the irregular data-paths and small number of registers found in embedded processors,
especidly fixed-point DSPs, remain a challenge to compilers. The direct application of
conventional code optimization methods (e.g., Aho et a. [1986]) has thus far been unable
to generate code that efficiently uses the features of fixed-point DSP architectures.

We believe that generating the best code for embedded processors will require not
only traditional optimization techniques, but also new techniques that take advantage of
specia architectural features and that decrease code size. This article presents one of
our efforts at developing such techniques: a data lay-out algorithm that decreases code
size.

Many architectures (e.g., the VAX, Tl TMS320C25, most embedded controllers) pro-
vide indirect addressing modes with autoincrement/autodecrement arithmetic. These fea
tures alow for efficient sequential access of memory and increase code density, be-
cause they subsume address arithmetic instructions and result in shorter instructions in
variable-length instruction architectures. In particular, DSPs and embedded controllers
are designed assuming software that runs on them would make heavy use of autoincre-
ment/autodecrement addressing. In many cases, the set of available addressing modes
in DSPs and controllers does not include a mode for indexing with a constant offset.
Therefore, it is necessary to allocate a register and perform address arithmetic to access
variables. Subsuming the address arithmetic into autoincrement/autodecrement modes
improves both the size and performance of the generated code.

The placement of variables in storage has a significant impact on the effectiveness of
subsumption. Our compiler delays storage alocation of variables, moving it from the
front-end to the code generation step that selects addressing modes, thereby increasing
opportunities to use efficient autoincrement/autodecrement modes. We formulate this
delayed storage allocation as the offset assignment problem. Although some modern DSP
architectures permit increments and decrements of values other than one (e.g., Motorola
DSP56000), it is costly to use this feature if the modifier value varies frequently. This
is because extra instructions are required to set the modifier value, which is typicaly
stored in a register rather than encoded in the instruction word. (This feature is usually
for traversing arrays with strides greater than one.) Therefore, we will focus on unit
increments and decrements.

We first consider a simpler problem that we call simple offset assignment (SOA). A
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solution to the SOA problem assigns optimal frame offsets to variables of a procedure,
assuming that the target machine has a single indexing register with only the indirect,
autoincrement, and autodecrement addressing modes. For the SOA problem, we represent
a procedure by its sequence of variable accesses, and we summarize the access patterns
by a weighted undirected graph called an access graph.

Bartley [1992] was the first to address the SOA problem and presented an approach
based on finding a maximum-weight Hamiltonian path on the access graph. However,
several aspects of his formulation and implementation can be improved. He considered
complete graphs which usualy contain much information unnecessary for the construc-
tion of an optimal solution to the original assignment problem. Also, his procedures for
selecting an edge of the Hamiltonian path and detecting whether a cycle is created by
a selection are inefficient, of O(|V|). As a result, his algorithm runs in O(|V|® + |L|)
time, where |V| is the number of variables, and |L| is the number of variable accesses.

In this article we provide a more formal treatment of the offset assignment problem.
We show that the SOA problem is equivalent to a path-covering problem of the access
graph and that the decision problem for SOA is NP-complete. We then present an
O(|E| log |E|+|L|) agorithm that produces empirically near-optimal solutions, where |E|
is the number of edges in the access graph. Our extensive experimental results on larger
examples (Section 6) indicate that access graphs are generally quite sparse and, therefore,
that our algorithm has a great advantage over Bartley’s. There are several similarities
between our approach and Bartley’s—both are based on access graphs, and both use
a greedy strategy in selecting edges in the graph. However, instead of considering
complete graphs, we retain only those edges with nonzero weights. This allows for an
O(1) procedure for testing whether selecting an edge causes a cycle, which is essential
to reducing the overall complexity of the heuristic.

We aso extend SOA to the general offset assignment problem (GOA) that handles
multiple index registers. We show how the heuristic used for SOA is used to efficiently
solve GOA. Since the SOA heuristic is used as a core procedurefor GOA, thereductionin
complexity from O(|V|®) to O(|E|log |E|) is significant. Although we emphasize code
size, our formulation of the offset assignment problem aso lends itself naturally to
application-specific performance optimization in the presence of trace information from
actual applications.

2. PROCESSOR MODEL AND NOTATIONS

For the purpose of exposition, we use a simple processor model that reflects the ad-
dressing capabilities of most DSPs. The model is an accumulator-based machine. Each
operation involves the accumulator and, if any, another operand from the memory. Mem-
ory access can occur only indirectly viaa set of address registers, ARO through AR(k—1).
Furthermore, if an instruction uses ARi for indirect addressing, then in the same instruc-
tion ARi can be optionally postincremented or postdecremented by 1 at no extra cost. If
an address register does not point to the desired location, it may be changed by adding
or subtracting a constant, using the instructions ADAR and SBAR. Also, to initiaize an
address register, the LDAR instruction is used. Since LDAR involves the address of a
variable, its cost is typicaly higher than either ADAR or SBAR. Thus if the contents
of an address register are known, ADAR and SBAR are preferred. We use * ( ARi)
*(ARi) +, and * ( ARi) - to denote indirect addressing through ARi, indirect addressing
with postincrement, and indirect addressing with postdecrement, respectively.
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LDAR ARO,&a
c=a+h: LOAD ’E(AR(g)+
_ . ADD *(ARO)+
f=d+ ed" STOR *(ARO)+
a=a+da, LOAD *(ARO)+
c=d+a; ADD *(ARO)+
d=d+f+a; STOR *(ARO0)

SBAR ARO0,5
(@) LOAD *(ARO)
ADAR ARO,3 ;
ADD *(ARO)
SBAR ARO,3
STOR *(ARO)
ADAR ARO,3
LOAD *(ARO)
SBAR ARO,3 ;a
ADD *(ARO)
ADAR ARO,2 c
STOR *(ARO)+  :d
LOAD *(ARO)
ADAR ARO,2 i f
ADD *(ARO)
SBAR ARO0,5 ;a
ADD *(ARO)
ADAR ARO,3 . d
STOR *(ARO)

(b) ©

"D QOT D

v QoW

Q
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Fig. 1. (8 Code sequence; (b) offset assignment; (c) assembly code.

3. SIMPLE OFFSET ASSIGNMENT

In this section we assume that only one address register is used to address al variables.
We describe the optimization problem of assigning offsets to variables in a frame so as
to obtain the most compact code. This implies that we have to minimize the number of
instructions whose sole function is setting ARO to point to appropriate locations in the
frame, i.e,, ADAR and SBAR.

3.1 Example

As an example illustrating the offset assignment problem, consider the C program in
Figure 1(a). Assume that the offset assignment to the various variables is as shown
in Figure 1(b). The assembly code for the C program is shown in Figure 1(c). In the
assembly code, the comment following each instruction indicates which variable ARO
points to, after the instruction is executed. The instructions ADAR and SBAR are used
to change ARO to point to the frame location accessed in the next instruction.
Assume that ARO initially points to variable a. The value of a is loaded in the
accumulator, and ARO is postincremented in the first LOAD instruction so that it now
pointsto b. In the second ADD instruction, the valuesin a and b are summed and stored
in the accumulator; ARO is again postincremented. Next, using the instruction STOR the
contents of the accumulator are stored in the location corresponding to variable c. When
the assembly instructions corresponding to a=a + d are to be executed, we have to load
a into the accumulator, but ARO now pointsto f . Therefore, we have to subtract 5 from
the contents of ARO using an explicit instruction SBAR ARO, 5. In total, nine SBAR
and ADAR instructions are required to execute the code of Figure 1(a), given the offset
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c=a+b: LDAR A(RO,&)a
_ . LOAD *(ARO
f=d+ ed', ADAR ARO,3
a=a+a ADD *(ARO)-
c=d+a; STOR *(ARO0)-
d=d+f+a; LOAD *(ARO)
SBAR ARO,3
(a) ADD *(ARO)+
STOR *(ARQ)+
LOAD *(ARO)+
ADD *(ARO)-
STOR *(ARO)+
LOAD *(ARO)-
ADD *(ARO)
ADAR ARO,2
STOR *(AR0)-
LOAD *(ARO)
SBAR ARO,2
ADD *(ARO)+
ADD *(ARO)+
STOR *(ARO)

(b) ©

acs o

RSP ETY

)

ARQO —»

o|—*|lo|lalo|T

an =

Fig. 2. (8 Code sequence; (b) better offset assignment; (c) assembly code.

assignment of Figure 1(b).

Now consider the offset assignment of Figure 2(b) for the same C code. Assume as
before that the ARO register points to variable a initialy. This assignment leads to a
short assembly code sequence of Figure 2(c). Only four SBAR and ADAR instructions
are required to execute the code of Figure 2(a).

We define the cost of an assignment to be the number of SBAR and ADAR instructions
required. (When using a single address register, the number of LDAR instructions is a
constant and, therefore, may be ignored. For multiple address registers, some LDAR
instructions will be needed for every additional address register introduced; this cost is
included in the setup cost described in Section 4.)

3.2 Assumptions in SOA

The simple offset assignment (SOA) problem involves assigning an offset to each of
the local variables to minimize the number of instructions required to perform address
arithmetic in a basic block under the following assumptions:

—Every data object has a size of one word.

—A single address register ARO is used to address al variables.
—One-to-one mapping of variables to locations.

—The basic block has a fixed evaluation order (schedule).

3.3 Approach to the Problem

Our approach to solving the SOA problem is to formulate it as a well-defined com-
binatorial problem of graph covering, called maximum-weight path covering (MWPC).
From a basic block we derive a graph, called an access graph, that summarizes the
relative benefits of assigning each pair of variables to adjacent locations. By solving the
MWPC problem, we can construct an assignment with minimum cost. We then show
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abcdefadadacdfad
(a)

11

(b)
Fig. 3. (8 Access seguence; (b) access graph.

how to reduce an instance of the Hamiltonian path problem into an instance of SOA,
demonstrating that a fast exact algorithm for SOA islikely to elude us (unless, of course,
P=NP). At the end of this section, we present a heuristic algorithm for SOA/MWPC.

3.4 Access Sequence and Access Graph

Given a C code sequence that represents a basic block, we can uniquely define an
access sequence for the block. For an operation z = x op vy, the access sequence is Xy z
The access sequence for an ordered set of operations is simply the concatenated access
sequences for each operation in the appropriate order. The access sequence for the basic
block of Figure 2(a) is shown in Figure 3(a).

With the notion of the access sequence, it is easily seen that the cost of an assignment
is equal to the number of adjacent accesses of variables that are not assigned to adjacent
locations. For instance, four address arithmetic instructions are required for the offset
assignment in Figure 2, since the following two-symbol substrings of the access sequence
refer to variables assigned to nonadjacent locations. ab, de, ac, and df.

The access graph G(V, E) is derived from an access sequence, as follows. Each node
v € V in the graph corresponds to a unique variable. An edge e(u,v) € E exists with
weight w(e) if variables u and v are adjacent to each other w(e) times in the access
sequence. Note that it makes no difference whether u is before or after v, since we can
autoincrement or autodecrement ARO during any load, store, or arithmetic instruction.
The access graph for the basic block of Figure 2(a) is shown in Figure 3(b).

Thus, in term of the access graph, the cost of an assignment is equal to the sum of
the weights of al edges that do not connect variables assigned to adjacent locations.
For the example in Figure 2, the edges (a, b), (a,c), (d,e), and (d,f ) are such edges,
and these edges have a total weight of 4.

3.5 SOA and Maximum Weight Path Covering

Definition 3.5.1. A path P in G is an alternating sequence of nodes and edges [vi,
€1, V2, €, ..., én_1, Vim|, Where g = (v;,viy1) € E, and no v; appears more than once
on the path.
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Fig. 4. (@ A digoint path cover with a cost of 6; (b) an implied assignment with a cost of 4.

Definition 3.5.2. Two paths are said to be digoint if they do not share any nodes.

Definition 3.5.3. A digoint path cover (henceforth cover) of a weighted graph G is
a subgraph C(V,E’) of G such that:

—For every node v in C, deg(v) < 2;
—There are no cyclesin C.

Note that the edges in C form a set of digoint paths (some of which may contain no
edges), hence the name.

Definition 3.5.4. The weight of a graph G is the sum of the weights of the edges in
G. The cost of a cover C of G is the sum of the weights of the edges in G but not in
C:

cost(C) = weight(G) — weight(C).

Definition 3.5.5. An offset assignment A is said to be implied by a cover C if edge
e(u,v) € C implies variables u and v are adjacent in A.

Definition 3.5.6 (MWPC). Given an access graph G, find a cover C with maximum
weight.

Note that a cover with maximum weight is also one with minimum cost. We now show
that solving the MWPC problem is equivalent to solving the simple offset assignment
problem.

LEMMA 3.5.7. Given a cover C of G, the cost of every offset assignment implied by
C is less than or equal to the cost of the cover.

PrROOF. Let A be any assignment implied by C. As seen in Section 3.4, the cost
of the assignment is equal to the sum of the weights of all edges (u,v) such that
|A(u) — A(v)| > 1, where A(u) denotes the offset of variable u under assignment A. By
Definition 3.5.5, these edges are a subset of edgesin G but not in C. (There may well
exist nodes u and v such that |[A(u) — A(v)| = 1, but (u,v) is not in C.) Thus the cost
of this assignment is at most equal to that of C. [

Figure 4 gives an example of a cover and an implied assignment with cost less than
that of the cover. The edge (a,f ) is not in the cover; but it does connect two variables
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Cr—
1 t@ 1
Fig. 5. Covering an access graph.

assigned to adjacent locations. Thus, the cost of the cover is 6, whereas the cost of this
particular implied assignment is 4. Comparing with the cover in Figure 5, it is evident
that this cover is not optimal.

LEMMA 3.5.8. Given any offset assignment A and an access graph G, there exists a
digoint path cover C which implies A and which has the same cost as A.

PrROOF. Given an assignment A, we construct a cover C as follows: for each pair of
nodes (u, v) such that A(u) = A(v) + 1, we pick the edge (u, V), if it existsin G, to be
included in C. C is a digoint path cover because no node in C has a degree greater
than 2 (a variable can have at most two neighbors), and there are no cycles (we are
not considering memory wraparound). Furthermore, C implies A by construction. The
edges in G but not in C are exactly those which connect two nodes with nonadjacent
assignments, and thus the cost of C is exactly equa to that of A. O

THEOREM 3.5.9. Every offset assignment implied by an optimal cover is optimal.

PrOOF. Let C be an optimal cover with cost ¢. Suppose there is an assignment (not
necessarily implied by C) with cost ¢’ < c. Since an offset assignment implies the
existence of a digoint path cover with the same cost (Lemma 3.5.8), there is a digoint
path cover with cost ¢’ which is less than c. This contradicts our assumption that C is an
optimal cover. Hence, no assignment has a cost strictly less than ¢, and all assignments
implied by C have cost ¢ (Lemma 3.5.7). [

Theorem 3.5.9 alows us to arrive at an optimal simple offset assignment by solving
the corresponding MWPC problem. Intuitively, an edge denotes the number of times two
variables are accessed immediately one after another and hence the number of address
arithmetic instructions necessary if these two variables are not assigned to adjacent
locations. Therefore, by selecting a cover with the maximum weight we minimize the
number of address arithmetic instructions required.

Consider the access graph of Figure 5. The dark edges beginning from variablee and
ending at variable b form a maximum-weight path cover (using a single path). This path
corresponds to the offset assignment of Figure 2(b). The unselected edges in Figure 5
have a weight of 4. This means that the number of instructions required to explicitly
manipulate ARO is 4. This is indeed true as seen in Figure 2(c).

Our approach to solving the SOA problem is in essence to reduce it to the MWPC
problem, solve the latter, and then construct a solution to the former. It is trivial to prove
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that the MWPC problem is NP-complete. This, however, does not mean that SOA is
itself an NP-complete problem, since we might have reduced a problem in complexity
class P to one in NPC. Just as one had to prove that the register alocation problem
is as hard as the coloring problem to which it is usually reduced [Chaitin et al. 1981],
we need to show that the SOA problem is indeed an NP-hard problem. We will do so
by constructing an access sequence from an instance of the (unweighted) Hamiltonian
path problem, such that optimally solving the offset assignment problem on the access
sequence will yield a decision to the Hamiltonian path problem.

LEMMA 3.5.10. Given an undirected graph G, there exists an access sequence such
that the corresponding access graph G’ is isomorphic to G, and each edge of G’ has
a weight of 2.

PROOF. Select any node r in G as the root node, and perform a depth-first search
on G. During the depth-first search each edge (u,Vv) is traversed exactly twice, once
forward and once backward. Consider the sequence T in which the nodes are visited
(including backtracks). This sequence is an access sequence that gives rise to an access
graph that is isomorphic to G. In addition, since each edge (u,V) is traversed twice,
nodes u and v are adjacent to each other in T exactly twice as well. [

THEOREM 3.5.11. Given an access sequence T and an integer k, the problem of
deciding whether there exists an assignment for T with cost less than or equal to k is
NP-hard.

PrOOF. We prove this by reduction from the Hamiltonian path problem. Let G(V, E)
be an undirected graph. We obtain an access sequence T as in Lemma 3.5.10, with
access graph G’ isomorphic to G. Each edge of G’ has a weight of 2. The weight of any
cover of G’ isat most 2- (|V| — 1), since every edge has the same weight of 2 and since
a cover can have at most (|V| — 1) edges. This means the cost of any cover is at least
2-(JE| —|V|+1). Now let k=2 (|E| — |V| + 1), and suppose there is an assignment
A for T whose cost is less than or equal to k. By Lemma 3.5.8 there is a cover C that
has the same cost as A. This implies that the cost of C is exactly 2- (|E| — |V| + 1)
and, in turn, that C has (]V| — 1) edges. On the other hand, if C has (|V| — 1) edges,
it must be a Hamiltonian path.

Conversely, if there does not exist an assignment A with cost less than or equal to
k, then by Lemma 3.5.7 there does not exist a cover with cost equal to k. This means
every cover has fewer than (|V|— 1) edges and therefore G has no Hamiltonian path. O

In light of this theorem, we will need to develop efficient heuristic algorithms to
solve SOA and MWPC for large problems. For small problems, a branch-and-bound
procedure is feasible.

3.6 A Heuristic Algorithm for SOA

We describe a heuristic agorithm for MWPC that is similar to Kruskal’s maximum
spanning tree algorithm [Aho et a. 1974]. The agorithm is greedy in that at each step
the edge with the largest weight is selected that does not yield a cycle and does not
increase the degree of a node to more than two. The heuristic algorithm is shown in
Figure 6.

With careful implementation, we can obtain a running time of O(|E| log |E| + |L|) for
the heuristic procedure described in Section 3.6, where |E| is the number of edges in
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1 Solve-SOA(L)

2 {

3 /* L = access sequence for basic block */

4 G(V,E) «— Access-Graph(L);

5 F «— sorted list of edges in E in descending order of weight;
6 CVE) :V «V,E —{}

7 while ( |[E'| < [V|—1 and F not empty ) {

8 choose e «— first edge in F;

9

F—F—{e}s
10 if ((e does not cause any node in V' to have degree > 2) and
1 (e does not cause a cycle in C))
12 add e to E/;
13 else
14 discard €
15 }
16 /* Construct an assignment from E' */
17 return Construct-Assignment(E’);
18 }

Fig. 6. Heuristic agorithm for SOA.

the access graph, and |L| is the length of the access sequence. Constructing the access
sequence requires O(|L|) time, and O(|E|log|E|) is due to the need to sort the edges in
descending order of weight. The main loop of the algorithm (lines 7—15) runs in O(|E|)
time, provided that the test on lines 10-11 takes O(1) time.

Testing whether an edge causes a vertex to have degree greater than 2 is trivia: we
simply keep for each vertex a counter that is incremented whenever an incident edge is
selected. Testing for cyclesin O(1) can be accomplished as follows. At any iteration of
the main loop, the cover C consists of a digoint set of paths. We represent a path by
a path element consisting of two pointers that point to the end nodes of the path. The
two end nodes of a path, on the other hand, have back-pointers to the path element.
Consider the selection of an edge (u,v). If u and v are each an end node of a path,
testing whether selecting (u, v) creates a cycle amounts to testing whether they belong
to the same path. If, on the other hand, u (or v) is not an end node of a path, then the
test for the degree of u (or v) would fail in the first place. When an edge passes both
tests and is selected, two paths are joined to form a new one, and a new path element
is created accordingly.

As an example of applying the heuristic algorithm consider the access graph of Fig-
ure 3(c). We first pick edges (a,d), (a,f), (c,d). We reject (a,b) and (a,c) because
each causes a cycle. Next, we pick (b,c). We reject (d,e) and (d,f ) and finaly pick
(f ,e). This results in the selection of the dark path of Figure 5 which is an optimal
offset assignment.

4. GENERAL OFFSET ASSIGNMENT PROBLEM

We describe a generaization of the offset assignment problem to the case where there
are k address registers, ARO through AR(k — 1).
In this generalization, we make the following additional assumptions:

(1) Thereis a fixed setup cost of introducing an additional address register. This setup

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 3, May 1996



Storage Assignment to Decrease Code Size . 245

abdceabcdbdecdcbabcdbc
4/b\4

adeaddedad bcbcbccbbcbc

cost=0

(b) (c)

Fig. 7. (@ Access sequence and graph; (b) access subsequence and graph generated by {a,d,e}; (c)
access subsequence and graph generated by {b,c}.

cost reflects the cost associated with initialization upon entry to the procedure and
reinitialization after return from a callee.

(2) Each address register is used to point to a digoint subset of variables.

Definition 4.1. Let L be the access sequence of the basic block, and V be the set of
variables in L. The access subsequence generated by W C V is the subsequence of L
consisting of variables in W.

Definition 4.2 (GOA). Given an access sequence L, the set of variables V, and the
number of address registers k, find a partition of V, N = {P1, Py, ..., Pm}, where m <k,
such that the total cost of the optimal SOA of the corresponding access subsequences
plus the setup costs for using m registers is minimum.

4.1 Example of GOA

Consider the access sequence and graph shown in Figure 7(a). The optimal cover is
also shown, with a cost of 6. Now consider allocating a second address register for
the variables b and c¢. The access subsequences and graphs induced by this partition
are shown in Figures 7(b) and (c). Assuming a setup cost of 2, the cost of using two
address registers on this partition is 3. In this case, there is an advantage in introducing
a second address register.
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1 Solve-GOA(L, k)

2 {

3 /* L = access sequence of basic block */
4 /* Kk = number of address registers */

5 H — Solve-SOA(L);

6 if (k==1)

7 return {H};

8 P — Select-Variables(L);

9 L; « Subseq(L, P);

10 L, « Subseq(L,L — P);

11 Hy — S)IVe-SOA(Ll),

12 H, — Solve-SOA(L>);

13 if (setup-cost + cost(H1) + cost(H,) > cost(H))
14 return {H};

15 dse

16 return {Hi} U Solve-GOA(Lz, k — 1);
17 }

Fig. 8. Heuristic agorithm for GOA.

4.2 A Heuristic Algorithm for GOA

Clearly, an exact solution to this problem is too expensive to compute. Figure 8 gives
a heuristic algorithm for solving GOA. Subseq(L, P) denotes the access subsequence of
L generated by P. Our heuristic is to build up the partition blocks incrementally by
repeatedly selecting a subset of nodes as a new partition block.

The function Solve-GOA returns a collection of digjoint ordered sets of variables
which forms a partition of the set of al variables. The order of each subset gives an
offset assignment. Given an access sequence L, Solve-GOA first computes the SOA
of L. If there is only one address register, the solution is ssimply the SOA. Otherwise,
Solve-GOA calls Select-Variables to choose a subset of the variables in L and solves
SOA on the derived subsequences L, and L. If the cost of this split along with the setup
cost is more expensive than that of H, there is no benefit in introducing the new partition
block, and the current solution H is returned. Otherwise, it is advantageous to introduce
a new address register for this subset of variables, and Solve-GOA is recursively called
for the remaining variables.

The procedure Select-Variables selects a subset of variables for which a new partition
block may be created. It is important to note that on line 13 of the algorithm in Figure 8
we are making the assumption that, if allocating a new address register for the subset L,
returned by Select-Variables does not reduce the cost, then further partitioning will not
improve either. In other words, we assume that if there is a “good” subset of variables,
Select-Variables will find it at the first opportunity.

To develop good heuristics for this procedure, we make the following observations:

(1) If an access subsequence consists of two variables, then the cost for this access
subsequence is just the setup cost. No switching cost is incurred. It is also possible
to select more variables (typically between two and six); provided the graph for the
access subsequence is very sparse, the cost will be kept low.

(2) If a node in an access graph has more than two edges, the associated minimum
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penalty for retaining the node in the graph is the sum of the weights on all edges
except the two with the largest weights. Hence, if a variable has a high penalty,
then it may be beneficial to move it to another partition block. This is analogous to
allocating registers for variables that are relatively busy to allow for faster access.

A simple heuristic for Select-Variablesis to choose a small subset of variables with the
largest penalty and allocate a new address register for this subset. Our first experiments
were based on selecting a fixed number p of variables for every iteration. Although
the computational requirement for this heuristic is small, it is not always clear what p
should be. As our experimental results in Section 6 show, the “best” p varies among
examples. We may also try more aggressive strategies by varying p between iterations,
i.e., to choose a different number of variables for each call to Select-Variables. This will
require much more computation, because accurate estimation of the effect of partitioning
requires several callsto Solve-SOA. We are currently implementing and evaluating these
strategies. Our initial results of GOA aready show encouraging improvements.

5. OFFSET ASSIGNMENT FOR A PROCEDURE

Asthe offset assignment for one basic block affects the other, we must tackle the problem
for entire procedures. It is relatively straightforward to extend the formulation to take
into account the presence of control-flow. Because our formulation of GOA breaks down
the problem into several instances of SOA, in this section we will, for the sake of clarity,
focus on using only one address register, ARO.

Asin the basic SOA formulation, we wish to capture the patternsin which the variables
are accessed throughout the procedure by counting the number of times each pair of
variablesis accessed consecutively. Let V be the set of variables the address register may
point to, and let first(n) and last(n) denote the first variable and last variable accessed in
block n. In addition, let count(n) and count(f) denote the expected execution frequency
of basic block n and control-flow edge f. (If code size is our only objective, then we let
count(n) = count(f) = 1 for al n and f.) We begin by building the access graph for
each basic block n, with the edges properly weighted by the execution count count(n).
These are merged to form the access graph G for the entire procedure. Then, for each
control-flow edge f = (n,m) (m a successor of n), we increase the weight of the edge
(last(n),first(m)) (in G) by count(f), or create such an edge with weight count(f) if
it does not already exist.

This access graph G is then covered by using either the heuristic described in Sec-
tions 3.6 or a branch-and-bound procedure. Once a solution is found, we will determine
the contents of the address register (AR) at the exit of each basic block and will place
autoincrement, autodecrement, address-arithmetic instructions (ADAR and SBAR), and
address-register initialization instructions (LDAR) at the appropriate locations so that the
number of instructions is minimized.

For example, consider the fragment of a control-flow graph shown in Figure 9. Suppose
in the final assignment the variables appear in this order: j i x. We may, at the end of
both basic blocks L3 and L6, perform postincrement after accessing j , so that, on exit
of either, ARO points to i . Thus, on entering L1, ARO points to the desired variable.
In addition, due to the postincrement in L6, on entering L5 ARO points to a known
location, and we can use the ADAR AROQ, 1 instruction at the beginning of L5 to set it
to point to x, instead of LDAR. Since LDAR typically has a higher cost than ADAR or
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first: i

Fig. 9. Fragment of a control-flow graph.

SBAR, it is preferable that upon entering a basic block that the contents of the address
register are known, as in this example. A detailed description of placing appropriate
addressing modes and instructions can be found in Liao [1996].

6. EXPERIMENTS AND RESULTS

We have implemented the heuristic algorithms of Sections 3 and 4 and a branch-and-
bound procedure in order to evaluate the heuristic SOA agorithm. All the implementa-
tions handle not only basic blocks, but entire procedures, with the formulation described
in Section 5. Our initial goa is to minimize static code size; hence, we weigh each
basic block equally.

Table | exhibits a summary of the examples we tested for offset assignment. The first
five examples, ChenDCT through Jrev, are core routines from a JPEG-MPEG imple-
mentation. The next eight, LoadGIF through 332Dither, are graphics routines from the
xVv program. Following them are procedures from the GNU gzi p program: GenBitlen
through UnLZW. InitDES and UFCDolt are two procedures in the GNU implementa-
tion of the DES encryption algorithm. Finally, MD5c and DecQuan were taken from an
implementation of the RSA cryptosystem.

The column labeled |V| shows the number of variables, including compiler-generated
temporaries, in the procedure. The next column, |E|, gives the number of edges in the
initial access graph. It is easily seen that the access graphs are very sparse. As we
have indicated previoudly, this sparsity is favorable to both our heuristic and branch-
and-bound procedures. The column labeled “LB” shows the number of instructions in
the generated code excluding those that manipulate the address registers (i.e., LDAR,
SBRK, and ADRK). The next columns show the number of instructions when variables
are assigned to locations based on order of declaration, and the ratio of this number to
that shown in “LB,” which aso forms the basis for the ratios in the tables to follow.

The number of instructions in “LB” serves as a lower bound against which we can
evaluate our results. However, this lower bound is not very tight, since it is impossible
to completely eliminate all such instructions under the assumption that address registers
will be used to address variables. Therefore, the ratios shown in the tables to follow
are on the conservative side—the actual lower bounds may be somewhat higher.

Table 11 shows the experimental results of simple offset assignment using the greedy
heuristic and using a branch-and-bound procedure. CPU times are measured in seconds
on a SparcStation 20. On the average, the greedy heuristic reduces the number of
instructions by 5% (with respect to the lower bound), or approximately 20% of address-
arithmetic instructions. Note that for all examples the difference between the results
between the heuristic and the branch-and-bound procedure are very close.

Table 11 shows the experimental results for general offset assignment with six address
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Table I. Summary of Examples

Procedure V| |E| LB Decl Ord

Inst Inst [ Ratio
ChenDCT 24 63 561 718 | 1.280
IChenDCT 31| 8 579 790 | 1.364

LeeDCT 26 82 616 836 | 1.357
ILeeDCT 48 | 131 686 974 | 1420
Jrev 29 | 141 3293 4524 | 1.374

LoadGIF 126 | 150 1597 1797 | 1125
AutoCrop 23 53 506 585 | 1.156
AutoCrop24 || 128 | 290 1719 2113 | 1.229

SmoothX 27 | 120 621 795 | 1.280
SmoothY 60 | 152 763 979 | 1.283
SmoothXY 50 | 102 513 671 | 1.308

Dither 97 | 219 1345 1712 | 1.273

332Dither 62 | 143 823 1057 | 1.284
GenBitLen 18 45 344 420 | 1.221
HuftBuild 39 92 702 896 | 1.276

InflateC 36 | 62 623 779 | 1250
InflateD 81 7 819 93 | 1176
InflateS 15| 19 241 284 | 1178
LongMatch 35 66 454 532 | 1.172
ScanTree 16| 33 191 223 | 1168
UnLZW 34| 68 771 909 | 1179
InitDES 38 | 63 888 [| 1005 | 1.132
UFCDolt 18| 52 280 386 | 1.379
MD5c 10 | 19 ]| 2366 || 2643 | 1.117
DecQuan 73 | 129 790 %1 | 1216
[ Cumulative | — [ — ] 22091 [[ 27552 | 1.247 |

registers (k = 6 in Figure 8), compared against the ratios based on the branch-and-bound
SOA. We use the greedy SOA heuristic for the function Solve-SOA, because the heuristic
performs very well in practice. As in previous tables, the ratios shown in the column
“GOA Ratio” are based on the ssimple lower bound. We have also experimented with
varying number of variables (p), between two and six, selected in the procedure Select-
Variables of Figure 8; the best numbers are shown in the column “Sel.” The CPU times
given are the total times for trying different values of p. Also, athough six address
registers were allocated, not all of them were used, for the setup costs may outweigh
the benefits when too many address registers are used. The number of address registers
that are actually used is shown in the column “Reg.” On the average, using multiple
address registers further reduces the number of instructions by 9.1%, or another 46% of
the address-arithmetic instructions that SOA could not eliminate. Since the lower bound
is obviously loose, the results are in fact closer to the optimal than shown in the tables.

7. SUMMARY AND ONGOING WORK

The optimization techniques described in this article are incorporated into our framework
for developing compilers for embedded systems [Araujo et a. 1995]. A diagram showing
the stages of the compiler is shown in Figure 10.
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Table 1. Results of SOA—Heuristic vs. Branch-and-Bound

Procedure LB Decl Ord Greedy SOA B&B SOA
Inst Ratio Inst | Ratio | CPU Inst | Ratio | CPU
ChenDCT 561 1.280 689 | 1.228 | 05s 688 | 1226 | 0.7s
IChenDCT 579 1.364 753 | 1.300 | 05s 750 | 1295 | 0.7s
LeeDCT 616 1357 787 | 1278 | 06s 784 | 1273 | 09s
ILeeDCT 686 1.420 907 | 1322 | 07s 905 | 1319 | 18s
Jrev 3293 1374 4302 | 1.306 | 2.8s || 4285 | 1.301 | 3.9s
LoadGIF 1597 1125 1727 | 1081 | 25s || 1727 | 1.081 | 54s
AutoCrop 506 1156 571 | 1128 | 0.8s 571 | 1128 | 09s
AutoCrop24 || 1719 1229 2050 | 1192 | 30s || 2049 [ 1.192 | 23.9s
SmoothX 621 1.280 753 | 1213 | 07s 752 | 1211 | 18s
SmoothY 763 1.283 929 | 1218 | 08s 929 | 1218 | 3.0s
SmoothXY 513 1.308 626 | 1.220 | 0.7s 626 | 1220 | 15s
Dither 1345 1273 1658 | 1233 | 2.0s || 1650 | 1227 | 6.9s
332Dither 823 1284 1014 | 1232 | 12s || 1006 | 1222 | 28s
GenBitLen 344 1221 405 | 1177 | 14s 403 | 1172 | 0.4s
HuftBuild 702 1.276 848 | 1.208 | 0.9s 844 [ 1202 | 1.3s
InflateC 623 1.250 740 | 1188 | 0.8s 736 | 1181 | 09s
InflateD 819 1176 938 | 1145 | 11s 935 | 1142 | 15s
InflateS 241 1178 266 | 1.104 | 03s 266 | 1104 | 03s
LongMatch 454 1172 523 | 1152 | 05s 521 | 1148 | 08s
ScanTree 191 1.168 223 | 1168 | 0.2s 223 | 1168 | 03s
UnLZW 771 1179 872 [ 1131 | 0.9s 872 [ 1131 | 11s
InitDES 838 1132 970 | 1.092 | 0.8s 970 | 1.092 | 1.0s
UFCDolt 280 1379 354 | 1.264 | 0.3s 354 | 1.264 | 0.4s
MD5c 2366 1117 2620 | 1107 | 1.2s || 2620 | 1107 | 1.2s
DecQuan 790 1216 944 ] 1195 | 13s 94 | 1195 | 34s
[ Cumulative ]| 22001 [ 1.247 ][ 26469 | 1198 | — ]| 26410 [ 1196 | — |

We use SUIF [Wilson et al. 1994] as our front-end. M achine-independent optimizations
such as global common-subexpression elimination is carried out in SUIF. The SUIF
intermediate form is then translated into another intermediate form called TWIF, which
is parametrized according to the machine description. It is on this intermediate form
that instruction scheduling, offset assignment, and register allocation are performed,
aong with machine-specific dataflow analyses and related optimizations. (At the time
of this writing we have only implemented the offset assignment procedure and the final
code generation pass. Scheduling and register alocation are problems we are currently
investigating and will be implemented in the near future.) Object code is then finaly
obtained through the final phase of code generation and peephole optimization. Code
compression on object code [Fraser et al. 1984; Liao 1996] proves to be effective in
further increasing the code density.

Code generation for irregular data-paths and machines with severely restricted instruc-
tion sets, such as those used in DSP and embedded microprocessors, is a problem that
has received relatively little attention to date. Previous work [Ellis 1985; Fisher 1981,
Goossens et al. 1986; Rimey 1989] on VLIW machines, microcode generation, and
application-specific instruction processors has covered the topic of irregular data paths,
but restricted addressing, and code density has never been their primary concern. Liem
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Table 11l. Results of GOA Using Six Address Registers

Procedure LB B&B SOA GOA
Inst Ratio Inst [ Ratio | Reg [ Sl | CPU
ChenDCT 561 1.226 598 | 1.066 6 2 4.0s
IChenDCT 579 1.295 606 | 1.047 6 2 4.6s
LeeDCT 616 1.273 699 | 1.134 5 4 5.0s
ILeeDCT 686 1.319 756 | 1.102 6 4 7.1s
Jrev 3293 1.301 3510 | 1.066 6 2 30.7s
LoadGIF 1597 1.081 1716 | 1.075 5 3 21.6s
AutoCrop 506 1.128 571 | 1.128 1 — 4.5s
AutoCrop24 1719 1.192 2016 | 1.172 5 3 33.1s
SmoothX 621 1211 698 | 1.124 5 3 7.2s
SmoothY 763 1.218 866 | 1.135 6 2 10.0s
SmoothXY 513 1.220 589 | 1.148 3 3 7.5s
Dither 1345 1.227 1560 | 1.160 4 5 18.3s
332Dither 823 1.222 931 | 1.131 5 3 12.5s
GenBitLen 344 1.172 387 | 1.125 4 4 3.0s
HuftBuild 702 1.202 787 | 1121 5 2 9.2s
InflateC 623 1.181 719 | 1154 2 4 5.1s
InflateD 819 1.142 893 | 1.090 4 2 9.8s
InflateS 241 1.104 266 | 1.104 1 — 4.3s
LongMatch 454 1.148 498 | 1.097 6 3 6.0s
ScanTree 191 1.168 213 | 1.115 5 2 3.1s
unLzw 771 1.131 857 | 1.112 3 4 7.3s
InitDES 888 1.092 957 | 1.078 5 4 6.2s
UFCDolt 280 1.264 317 | 1.132 5 2 2.7s
MD5c 2366 1.107 2468 | 1.043 2 2 6.1s
DecQuan 790 1.195 931 | 1.178 2 5 8.5s

Cumulative ]| 22091

1196 [ 24409 [ 1105 — [ — ] — ]

et al. [1994] presented techniques for generating compact code; however, the benchmark
programs were quite small, and it is not shown how their techniques perform on larger,
more redlistic programs.

With the increasing use of embedded systems, code generation for them has become
very important. In this article we presented algorithms that are able to exploit the
addressing mode features of most DSP architectures. Our initial resultsindicate that these
algorithms can obtain substantial improvements in code size beyond those provided by
conventional code generation techniques. We believe that this problem bears the same
importance for this class of processors as register allocation for general-purpose RISC
architectures.

There are several interesting problems that need further investigation. In the procedure
Solve-GOA, we have focused on a particular scheme for building up the partition of
variables, namely, allocating a new address register in each iteration. There may be
other methods of determining the best partition given a number of available registers.
In addition, the procedure Select-Variables may be refined to take more parameters into
consideration. We can also extend the offset assignment problems to take into account
other characteristics of variable accesses than merely those summarized by the access
graph. For instance, it is not uncommon to find variables with digoint lifetimes. We
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Fig. 10. A framework for developing compilers for embedded systems.

can reduce data memory requirements if we assign the same location to two variables
with digoint lifetimes. In the context of simple offset assignment, however, the sharing
of locations means collapsing two or more vertices into one vertex in the access graph.
This may lead to vertices with too many incident edges, most of which cannot be
selected; hence, merging variables with digoint lifetimes may be detrimental to the goal
of improving code size and performance we set out to achieve in this article. On the
other hand, if we allocate an additional address register, as in general offset assignment,
we may be able to circumvent this problem provided the access graph for the subset of
variables addressed by this register is sufficiently sparse. Because the number of address
registersis limited, it is not always possible to allow for merging of variables. Therefore,
a more thorough analysis of variable accesses is needed. The tile tree [Callahan and
Koblenz 1991] offers a natural and powerful way of analyzing and summarizing variable
usage and has been successfully applied to the traditional register alocation problem.
By effectively using the information derived from tile tree analysis, we can best utilize
the data memory while keeping the program small and efficient. This is an important
problem that merits further study.
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