
ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

Storage Coding for Wear Leveling in Flash Memories

Anxiao (Andrew) Jiang*
Jehoshua Bruck! Paul H. Siegell

Robert Mateescut
Alexander Vardyl

Eitan Yaakobil
Jack K. Wolf+

*Department of Computer Science
Texas A&M University

College Station, TX 77843, U.S.A.
ajiang@cs. tamu. edu

t California Institute of Technology
1200 E California Blvd., Mail Code 136-93

Pasadena, CA 91125, U.S.A.
{mateescu, bruck}@paradise. caltech. edu

+Electrical and Computer Engineering
University of California, San Diego

La Jolla, CA 92093, U.S.A.
{eyaakobi,psiegel,avardy,jwolj}@ucsd.edu

Abstract-NAND flash memories are currently the most widely
used flash memories. In a NAND flash memory, although a cell
block consists of many pages, to rewrite one page, the whole
block needs to be erased and reprogrammed. Block erasures
determine the longevity and efficiency of flash memories. So when
data is frequently reorganized, which can be characterized as a
data movement process, how to minimize block erasures becomes
an important challenge. In this paper, we show that coding
can significantly reduce block erasures for data movement, and
present several optimal or nearly optimal algorithms. While the
sorting-based non-coding schemes require O(n log n) erasures to
move data among n blocks, coding-based schemes use only O(n)
erasures and also optimize the utilization of storage space.

I. INTRODUCTION

Flash memories have become the most widely used non­
volatile electronic memories. They have two basic types:
NAND and NOR flash memories [6]. Between them, NAND
flash is currently used much more often due to its higher data
density. In a NAND flash, floating-gate cells are organized as
blocks. Each block is further partitioned into multiple pages,
and every read or write operation accesses a page as a unit.
Typically, a page has 2 to 4KB of data, and 64 pages form
a block [6]. The flash memory has a unique block erasure
property: although every page can be written individually,
to rewrite a page (namely, to change its content), the whole
block must be erased and then reprogrammed. Every block can
endure 104

rv 105 erasures, after which the flash memory may
break down. Block erasures also reduce the quality of cells
and the general efficiency. So it is critical to minimize block
erasures. For this reason, numerous wear leveling techniques
have been used to balance the erasures of blocks [6].

In a flash memory, data often needs to be moved. For
example, files can have their segments scattered due to mod­
ifications, and need to be reassembled later. Files of similar
statistics may also need to be grouped for easier information
access. To facilitate data movement, a flash translation layer
(FTL) is usually used in flash file systems to map logical data
pages to physical pages [6]. How to minimize block erasures
during the data movement process remains a main challenge.

In this paper, we show that coding techniques can sig­
nificantly reduce block erasures for data movement. Besides
erasures, we also consider coding complexity and the extra
storage space needed for data movement. We show that
without coding, at least two empty blocks are needed to
facilitate data movement, and present a sorting-based solution

that uses a (n log n) block erasures for moving data among n
blocks. With coding, only one empty auxiliary block is needed,
and we present a very efficient algorithm based on coding
over GF(2) that uses only 2n erasures. We further present a
coding-based algorithm using at most 2n - 1 erasures, which
is worst-case optimal. Although minimizing erasures for every
instance is NP hard, both algorithms that use coding achieve
an approximate ratio of two with respect to an optimal solution
that minimizes the number of block erasures.

There have been multiple recent works on coding for flash
memories, including codes for efficient rewriting [5] [7] [11],
error-correcting codes [4], and rank modulation for reliable
cell programming [8] [10]. This paper is the first work on
storage coding at the page level instead of the cell level, and
the topic itself is also distinct from all previous works.

Due to limited space, we skip some details in this paper.
Interested readers are referred to [9] for the full analysis.

II. TERMS AND CONCEPTS

Definition 1 (DATA MOVEMENT PROBLEM) There are n
blocks storing data in the flash memory, where every block
has m pages. The blocks are denoted by BI, ... , Bn , and the m
pages in block Bi are denoted by Pi,l, ... , Pi,m fori == I, ... , n.
Let ai], j) and (3(i, j) be two functions:

a(i,j): {l, ,n} x {l, ,m} -+ {l, ,n};
(3(i,j): {l, ,n} x {l, ,m} -+ {l, ,m}.

The data in page Pi,j is denoted by Di,j and needs to be moved
into page Pa(i,j),{3(i,j), for (i, j) E {I, ... , n} x {I, ... , m}.
(Clearly, the functions ai], j) and {3 (i, j) together have to form
a permutation for the mn pages. To avoid trivial cases, we
assume that every block has at least one page whose data needs
to be moved to another block.)

A number of empty blocks, called auxiliary blocks, can be
used in the data movement process, and they need to be erased
in the end. The objective is to minimize the total number of
block erasures in the data movement process.

The challenge is that a block must be erased before any of
its pages is modified. Let us first define some terms. There
are two useful graph representations for the data movement
problem: the transition graph and a bipartite graph. In the
transition graph G == (V, E), IVI == n vertices represent the
n data blocks BI, ... , Bn . If y pages of data need to be moved

978-1-4244-4313-0/09/$25.00 ©2009 IEEE 1229

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 16, 2009 at 18:17 from IEEE Xplore. Restrictions apply.

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

Fig. 1. Data movement with n = 6, m 3. (a) The permutation
table. The numbers with coordinates (i, j) are «i], j), [3(i, j). For example,
(cx(I,I),[3(I,I)) = (3,3), and (cx(I,2),[3(I,2)) = (2,1). (b) Transition
graph. (c) The bipartite graph representation. The n thick edges are a perfect
matching (a block-permutation set). (d) After removing a perfect matching
from the bipartite graph. Here for i = I, ... , n, vertex i represents block Bi .

from Bi to Bj, then there are y directed edges from Bi to Bj in
G. G is a regular directed graph with m outgoing edges and m
incoming edges for every vertex. In the bipartite graph H ==
(VI U V2, E'), VI and V2 each has n vertices that represent
the n blocks. If y pages of data are moved from Bi to Bj, there
are y directed edges from vertex B. E VI to vertex Bj E V2.
The two graphs are equivalent but are used in different proofs.

Algorithm 5 (BUBBLE-SORT-BASED DATA MOVEMENT)

For i == I, ... , n - 1
For j == i + 1, ... , n

Copy Bi into Bo and Bj into Bb;Erase Bi and Bj;
Fork == 1,m

Let Di1,h and Di2,j2 be the two pages of data in Bo
and Bb, respectively, that belong to the k-th block­
permutation data set. Let Pi,j3 be the unique page in
B, such that some data of the k-th block-permutation
data set needs to be moved into it.
If a(i2, j2) == i (which implies f3(i2, j2) == j3 and
a(il, jl) i= i), copy Di2,j2 into Pi,j3; otherwise, copy
».; into Pi,j3.

Write into Bj the m pages ofdata in Bo and Bb but not
in e; Erase Bo and Bb.

In the above algorithm, for every block-permutation data
set, its data is not only sorted in parallel with other block­
permutation data sets, but is also always dispersed in n blocks
(with every block holding one page of its data). The algorithm
uses O(n2) erasures. If instead of bubble sorting, we use
more efficient sorting networks such as the Batcher sorting
network [2] or the AKS network [1], the number of erasures
can be further reduced to O(nlog2n) and O(nlogn), re­
spectively. For simplicity we skip the details.

B. Storage Coding with One Auxiliary Block

In Algorithm 5, the only function of the auxiliary blocks Bo
and Bb is to store the data in the data blocks Bi, Bj when the
data in Bi, Bj is being swapped. We now show how coding

to a block-permutation set. If we remove those edges, we get
a bipartite graph of degree m - 1 for every vertex. (See Fig. 1
(c), (d).) Similarly, we can find another perfect matching and
further reduce the graph to regular degree m - 2. In this way,
we partition the nm edges into m block-permutation sets. •

A perfect matching can be found using the Ford-Fulkerson
Algorithm [3] for computing maximum flow in time O(n2m).

So we can partition the nm pages into m block-permutation
sets in time O(n2m2) .

III. CODING FOR MINIMIZING AUXILIARY BLOCKS

In this paper, we focus on the scenario where as few
auxiliary blocks as possible are used in the data movement
process. In this section, we show that coding techniques can
minimize the number of auxiliary blocks. Afterwards, we will
study how to use coding to minimize block erasures.

A. Data Movement without Coding

When coding is not used, data is directly copied from page
to page. It can be shown that in the worst case, more than one
auxiliary block is needed for data movement. (Please see [9]
for a detailed analysis.) We now show that two auxiliary blocks
are sufficient. The next algorithm operates in a way similar to
bubble sort. And it sorts the data of the m block-permutation
data sets in parallel. The two auxiliary blocks are denoted by
Bo and Bb.

(a) i=l
,-----.-------,--,--------r-,------~

j=l

2

Theorem 4 The nm pages can be partitioned into m block­
permutation sets. Therefore, the nm pages of data can be
partitioned into m block-permutation data sets.

Proof' The data movement problem can be represented
by the bipartite graph, where every edge represents a page
whose data needs to be moved into another block. (See Fig. 1
(c) for an example.) For i == I, ... , n, any i vertices in the top
layer have im outgoing edges and therefore are connected to
at least i vertices in the bottom layer. So by Hall's theorem for
matching in bipartite graphs [3], the bipartite graph has a per­
fect matching. The edges of the perfect matching correspond

Example 3 The data movement problem in Fig. 1 exemplifies
the construction of the transition and bipartite graphs. The
nm == 18 pages can be partitioned into three block-permutation

sets: {PI,I, P2,2, P3,2,P4,2, PS,3, P6,1}, {PI,2, P2,l, P3,3,
P4,3, PS,2, P6,2}, {PI,3, P2,3, P3,1,P4,I, PS,I, P6,3}. The block
permutation sets can be further decomposed into six semi-

cycles: (PS,3, PI,I, P3,2,P6,1), (P2,2, P4,2); (PS,2, P3,3, PI,2,
P2,l, P4,3, P6,2); (PI,3), (P2,3, P3,I,P4,1), (PS,I, P6,3).

(c) 1

Definition 2 (BLOCK-PERMUTATION SET AND SEMI­

CYCLE) A set oi n pages {PI,h,P2,j2' ... ,Pn,jn} is a block-
permutation set if {a(l,jl),a(2,j2), ... ,a(n,jn)} ==
{I, 2, ... , n}. If {PI,h' P2,j2' ... , Pn,jn} is a block­
permutation set, then the data they originally store -
{DI,h' D2,j2' . . . , Dn,jn} - is called a block-permutation
data set.

Let Z E {1,2, ... , n}. An ordered set of pages

(Pio,jo' Pi1,h' . . . , Piz-1,jZ-l) is a semi-cycle if for k
0, 1, ... , Z - 1, a(ik, jk) == ik+l mod z·

1230

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 16, 2009 at 18:17 from IEEE Xplore. Restrictions apply.

can help reduce the number of auxiliary blocks to one, which
is clearly optimal. Let Bo denote the only auxiliary block, and
let PO,l, PO,2, ... , PO,m denote its pages. For k == 1, ... , m,
statically store in page PO,k the bit-wise exclusive-OR of the
n pages of data in the k-th block-permutation data set. We
make one change in Algorithm 5: when the data in Bi, Bj is
being swapped, instead of erasing them together, we first erase
Bi and write data into Bi' then erase Bj and write data into Bj.
This is feasible because Bo always provides enough redundant
data. The number of block erasures is of the same order as
before.

IV. EFFICIENT STORAGE CODING OVER GF(2)

In this section, we present a data movement algorithm that
uses only one auxiliary block and 2n erasures. The algorithm
uses coding over GF(2) and is very efficient.

For convenience, let us assume for now that every block
has only one page. The results will be naturally extended
to the general case. Let Bo denote the auxiliary block, and
let Po denote its page. For i == 1, ... , n, let Pi denote the
page in Bi' and let D, denote the data originally in Pi. Let
a : {I, ... , n} ~ {I, ... , n} be the permutation such that
Di needs to be moved into Pex(i). Let a-I be the inverse
permutation of a. Say that the n pages can be partitioned
into t semi-cycles, denoted by CI, ... , Ct. Every semi-cycle Ci
(1 ::; i ::; t) has a special page called tail, defined as follows:
if Pj is the tail of Ci, then for every other page Pk E Ci, j > k.

We use "EB" to represent the bit-wise exclusive-OR of data.
The following algorithm consists of two passes: the forward
pass and the backward pass. It uses 2n erasures. Note that in
the algorithm below, whenever some data is to be written into
a page, that data can be efficiently computed from the existing
data in the flash memory blocks. The detail will be clear later.
Also note that \j 1 ::; i ::; n, Dex-I (i) is the data that needs to
be moved into the block that originally contains Di.

Algorithm 6 (GF(2)-CODING-BASED DATA MOVEMENT)

FORWARD PASS:

For i == I, 2, ... , n do:
IfPi is not the tail ofits semi-cycle, write D, EB Dex-I (i)
into Pi-I; otherwise, write D, into Pi-I. Then, erase Bi;

BACKWARD PASS:

For i == n, n - 1, ... , 1 do:
Write Dex-l(i) into Pi· Erase Bi-l·

Example 7 Figure 2 gives an example of the execution
of Algorithm 6 with n 8 and t 2. Here
(a(l), a(2), ... , a(8)) (3,6,8, 1,2,5,4,7).
(Consequently, (a-l (1), a-I (2), ... , a-I (8))
(4,5, 1,7,6,2,8,3).) The two semi-cycles are
(PI, P3,Ps, P7,P4) and (P2, P6,Ps). In Figure 2, each
row is a step of Algorithm 6. The numbers are the data in
the blocks. (For convenience, we use i to denote data Di in
the figure.) The rightmost column describes the computation
performed for this step, where bi denotes the data in Pi then.

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

Operation

forward pass
1 2 3 4 5 6 7 8 £51 E9 £54

lE94 2 3 4 S 6 7 8 £52 E9 £55
lE94 2E9S 3 4 S 6 7 8 £53 E9 £50 E9 £54
lE94 2E9S 3E91 4 S 6 7 8 £54 E9 £57
lE94 2E9S 3E91 4E97 S 6 7 8 £55 E9 £56
lE94 2E9S 3E91 4E97 SE96 6 7 8 copy £56
lE94 2E9S 3E91 4E97 SE96 6 7 8 £57 E9 £58
lE94 2E9S 3E91 4E97 SE96 6 7E98 8 copy £58
lE94 2E9S 3E91 4E97 SE96 6 7 E9 8 8

backward pass
lE94 2E9S 3E91 4E97 SE96 6 7 E9 8 8 £57 E9 £56 E9 £53 E9 £50 E9 £52
lE94 2E9S 3E91 4E97 SE96 6 7 E9 8 3 £56 E9 £53 E9 £50 E9 £52 E9 £58
lE94 2E9S 3E91 4E97 SE96 6 8 3 £55 E9 £54 E9 £51
lE94 2E9S 3E91 4E97 SE96 2 8 3 £54 E9 £51 E9 £56
lE94 2E9S 3E91 4E97 6 2 8 3 £53 E9 £50 E9 £52 E9 £58
lE94 2E9S 3E91 7 6 2 8 3 £52 E9 £58
lE94 2E9S 1 7 6 2 8 3 £51 E9 £56
lE94 S 1 7 6 2 8 3 £50 E9 £53

4 5 1 7 6 2 8 3

Fig. 2. Example execution of Algorithm 6.

The correctness of Algorithm 6 depends on whether the data
written into a page can always be derived from the existing
data in the flash memory blocks. Theorem 8 shows this is true.

Theorem 8. When Algorithm 6 is running, at any moment,
\j 1 ::; i ::; n, if the data D i is not in the n + 1 blocks
Bo, Bl, ... , Bn, then there must exist a set of data {Di EB
Dh' Dh EB Dj2, Dj2 EB Dj3,· .. , Dh_l EB Dk, Dk} that all exist
in the n + 1 blocks. Therefore, D, can be easily obtained by
computing the bit-wise exclusive-OR of the data in the set.

Proof" Consider a semi-cycle c, (1 ::; i ::; t). Denote its
pages by Pil, Pi2, ... , Pix. Without loss of generality (WLOG),
assume a(i j) == ij+l for j == 1,2, ... , x-I, and a(i x) == il .

Now imagine a directed cycle 5 as follows: "5 has x vertices,
representing the data Dil, Di2, , Dix; there is a directed edge
from Di. to Di '+1 for j == 1, , x-I, and a directed edge
from D:x to Dil ." Let every directed edge in 5 represent
the bit-wise exclusive-OR of the data represented by its two
endpoint vertices.

Consider the forward pass in the algorithm. In this pass,
every time some data represented by a vertex in 5 is erased,
the data represented by the directed edge entering that vertex
already exists. So for every vertex in 5 whose data has been
erased, there is a directed path in 5 entering it with this
property: "the data represented by the edges in this path, as
well as the data represented by the starting vertex of the path,
all exist in the blocks." This is the same condition stated in
the theorem. The backward pass can be analyzed similarly.
(Please see [9] for details). So the conclusion holds. •

Algorithm 6 can be easily extended to the case where a
block has m 2: 1 pages. Use the algorithm to process the m
block-permutation data sets in parallel, in the same way as
Algorithm 5. Specifically, for i == I, ... , nand j == 1, ... , m,
let Pi,k(i,j) denote the unique page in B, such that some data
in the j-th block-permutation data set needs to be moved into
Pi,k(i,j). In the algorithm, every time Bi is erased, write the

1231

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 16, 2009 at 18:17 from IEEE Xplore. Restrictions apply.

data related to the j-th block-permutation data set into Pi,k(i,j)'
Since every block-permutation set occupies exactly one page
in each block, there will be no conflict in writing.

V. STORAGE CODING WITH MINIMIZED ERASURES

In this section, we present an algorithm that uses at most
2n - 1 erasures, which is worst-case optimal. We further show
that minimizing erasures for every instance is NP hard, but our
algorithm provides a 2-approximation.

A. Optimal Solution with Canonical Labelling

The n blocks can be labelled by BI , , Bn in n! different
ways. Let y be an integer in {O, 1, , n - 2}. We call a
labelling of blocks that satisfies the following constraint a
canonical labelling with parameter y: "\j i E {y + I, Y+
2,n - 2} and j E {i + 2,i + 3, ... ,n}, no data in
Bj needs to be moved into Bi." Trivially, any labelling is
a canonical labelling with parameter n - 2. However, it is
difficult to find a canonical labelling that minimizes y.

We now present a data-movement algorithm for blocks
that have a canonical labelling with parameter y. It uses one
auxiliary block Bo, and uses n + y + 1 ::; 2n - 1 erasures. For
convenience, let us again assume that every block contains
only one page, and let Pi,Di, a, a-I be as defined in the
previous section. Let r denote the number of bits in a page. 1

The algorithm can be naturally generalized for the general
case, where every block has m 2: 1 pages, in the same way
introduced in the previous section.

Algorithm 9 (DATA MOVEMENT WITH LINEAR CODING)

This algorithm is for blocks thathave a canonical labellingwith
parametery E {O,1, ... , n - 2}. LetYI, Y2, . . . , Yn be distinct
non-zero elements in the field GF(2') .

STEP 1: Fori == 0, 1, ... , y do: Erase Bi (for i == 0 there is
no need to erase Bo), and write into Pi the data Lk=1 yiDk.

STEP 2: For i == Y + I, Y + 2, ... , n do: Erase Bi, and write
into Pi the data Da - 1(i)'

STEP 3: Fori == y, Y - I, ... , 1 do: Erase Bi, and write into
the page Pi the data Da - l (i) '

Theorem 10 Algorithm 9 is correct and uses n + y + 1 ::;
2n - 1 erasures. (Note that the algorithm assumes that the
blocks have a canonical labellingwith parameter y.)

Proof' We show that each time a block Bi is erased it
is possible to generate all n data pages using the current data
written in the other n pages. Denote by bi, 0 ::; i ::; n, the
current data written in each page, which is a linear combina­
tion of the n data pages. The linear combination written in
each page can be represented by a matrix multiplication

H· (DI,D2, . . . ,Dn)T == (bo, ... ,bi-I,bi+I'" .,bn)T.

The matrix H defines the linear combination of data pages
written in each page. Consider the first step when the block

1When r is greater than what is needed by Algorithm 9 (which is nearly
always true in practice), we can partition each page into bit strings of an
appropriate length, and apply the algorithm to the strings in parallel.

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

Bi is erased. The data written in Ph, for 0 ::; h ::; i-I, is
s, == Lk=1 Y~Dk, and the data written in Ph, for i + 1 <h <
n, is bh == Dh. The matrix representation of this problem is

1 1 1 0 1
bo

Yl Y2 Yn O 2
yi Y~ y~ 0 3 bi-l

bi+l
i-I i-I i-I

°n-lYl Y2 ... Y n
O(n-i)xi In- i On bn

where O(n-i) xi is the zero matrix of size (n - i) x i, and
In - i is the unit matrix of size (n - i) x (n - i). Since this
matrix is invertible it is possible to generate all data pages
and in particular the required data that has to be written in
Pi. Similarly, it is possible to show for the two other steps
that the matrix, representing the linear combination of pages
after erasing each block, is invertible. For the sake of space
we omit the full proof and it appears in [9]. •

Theorem 11 Assume r is sufficiently large. Let y E

{O,1, ... , n - 2}. There is a data-movement solution using
n + y + 1 erasures if and only if there is a canonical block
labellingwith parameter y.

Proof' First, assume that there is a data-movement solu­
tion using n + y + 1 erasures. Since every block (including the
auxiliary block) is erased at least once, there are at least n - y
blocks that are erased only once in the solution. Pick n - y
blocks erased only once and label them as By+I, By+2,' .. , Bn
this way: "in the solution, when y + 1 < i < j < n, Bi
is erased before Bj'" Label the other y blocks as BI, . . . , By
arbitrarily. Let us use contradiction to prove that no data in Bj

needs to be moved into Bi, where i 2: y + 1, j 2: i + 2.
Assume some data in Bj needs to be moved into Bi . After

Bi is erased, that data must be written into Bi because Bi is
erased only once. When the solution erases Bi+1 (which is
before erasing Bj), the data mentioned above exists in both
Bi and Bj' However, note that at the end of the solution all
nm pages are located in their designated location. But, it is
impossible to generate them using only nm - 1 data pages, so
there is a contradiction. Therefore, we have found a canonical
labelling with parameter y. The other direction of the proof
comes from the existence of Algorithm 9. •

We can easily make Algorithm 9 use 2n - 1 erasures by
using y == n - 2 and an arbitrary block labelling. 2n - 1
erasures are also necessary in the worst case. To see that,
consider the case where every block has some data that needs
to be moved into every other block, where a canonical labelling
must have y == n - 2. So Algorithm 9 is worst-case optimal.

B. Optimization for All Instances

A specific instance of the data movement problem may
require less than 2n - 1 erasures. So it is interesting to find
an algorithm that minimizes the number of erasures for every
instance. The following theorem shows that this is NP hard.

1232

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 16, 2009 at 18:17 from IEEE Xplore. Restrictions apply.

(a) u

J
1\

Fig. 3. NP hardness ofthe data movement problem. (a) Asimple undirected
graph Go. (b) The corresponding regular directed graph G'. Here every edge
between two different vertices has arrows onboth sides, representing the two
directed edges of opposite directions between those two vertices. There is a
symbol x i beside every directed loop, representing i parallel loops of that
vertex.

Theorem 12. For the data movement problem, it is NP hard to
minimize the number oferasures for every given instance.

Proof It has been shown in Theorem 11 and its proof
that minimizing the number of erasures is as hard as finding
a canonical block labelling with a minimized parameter y. So
we just need to show that finding a canonical labelling with
minimized y is NP hard. We prove it by a reduction from the
NP hard MAXIMUM INDEPENDENT SET problem.

Let Go == (Va, Eo) be any simple undirected graph. Let
d(v) denote the degree of vertex v E Va and let ~ ==
maxVEVod(v) denote the maximum degree of Go. We build
a regular directed graph G' == (VI U V2 U V3, E') as follows.
Let IVai == IV11 == IV21 == IV31. For all v E Va, there are
three corresponding vertices VI E VI, V2 E V2, V3 E V3. If
there is an undirected edge between u, v E Va in Go, then
there are two directed edges of opposite directions between u,
and v j for i == 1,2,3 and j == 1,2,3. For all v E Va, there are
also two directed edges of opposite directions between VI, V2
and between V2,V3. Add some loops to the vertices in G'
to make all vertices have the same out-degree and in-degree
3~ + 2. See Fig. 3 for an example.

The graph G' naturally corresponds to a data movement
problem with n == 31 Va I and m == 3~ + 2, where G' is its
transition graph. (The transition graph is defined in Section II.)
Finding a canonical block labelling with minimized parameter
y for this data movement problem is equivalent to finding
t == n - y vertices - with the value of t maximized - in G',

such that for i == I, 2, ... , t - 2 and j == i + 2, i + 3, ... , t,
there is no directed edge from aj to ai. We call such a set
of t vertices - with t maximized - the MAXIMUM SEMI­
INDEPENDENT SET of G'. For all v E Va, let N(v) denote
the neighbors of v in Go.

CLAIM 1: "There is a maximum semi-independent set of
G' where \;j v E Va, either all three corresponding vertices
VI E VI, V2 E V2, V3 E V3 are in the set, or none of them is
in the set. What is more, if VI, V2,V3 are in the set, then no
vertex in {WI,W2, W31w E N(V)} is in the set."

To prove CLAIM 1, let (al,a2, ... ,at) denote a maximum
semi-independent set (MSS) of G'. (Note that the order of the
vertices in the set matters.) Consider two cases:

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

Case 1: One of {VI, V2,V3} is in the MSS of G'. WLOG,
say it is VI. At most two vertices - say band c - in
{WI,W2, W31w E N(V)} can be in the MSS, because oth­
erwise due to the bi-directional edges between them and VI,
there would be no way to place them in the MSS. Let us
remove b, c from the MSS and add V2,V3 right after VI in the
MSS. It is simple to see that we get another MSS.

Case 2: Two of {VI, V2,V3} are in the MSS of G'. WLOG,
say they are VI and V2. At most one vertex - say b - in
{WI,W2, w31w E N(V)} can be in the MSS, for a similar
reason as Case 1. In the MSS, let us remove b, move V2 right
behind VI, and add V3 right behind V2. Again, we get an MSS.

So in this way, we can easily convert any MSS into an MSS
satisfying the conditions in CLAIM 1. So CLAIM 1 is true.

CLAIM 2: "A set of vertices {w(I), w(2), ... , w(k)} is
a maximum independent set of Go if and only if the set
of vertices (w(1)1,w(1)2,w(1)3,W(2)l, W(2)2, W(2)3, ... ,
W(k)l, W(k)2, W(k)3) is an MSS of G'." It is simple to see
that this is a consequence of CLAIM 1.

So given a canonical labelling with minimized parameter y
for the data movement problem with G' as the transition graph,
in polynomial time we can convert it into an MSS of G', from
that into an MSS of G' satisfying the conditions of CLAIM 1,
and finally into a maximum independent set of G. So it is NP
hard to find a canonical labelling with minimized parameter
y. So minimizing the number of erasures is NP hard. •

Since every algorithm uses at least n + 1 erasures, and
Algorithm 9 can easily achieve 2n - 1 erasures (by setting
y == n - 2), the algorithm is a 2-approximation.

ACKNOWLEDGMENT

This work was supported in part by the NSF CAREER
Award CCF-0747415, NSF grant ECCS-0802107, Caltech Lee
Center for Advanced Networking, and the Center for Magnetic
Recording Research at University of California, San Diego.

REFERENCES

[1] M. Ajtai, 1. Koml6s and E. Szemeredi, "An O(n log n) sorting network,"
in Proc. ACM Symposium on Theory of Computing, pp. 1-9, 1983.

[2] K.E. Batcher, "Sorting networks and their applications," in Proceedings
of the AFIPS Spring Joint Computer Conference, pp. 307-314, 1968.

[3] B. Bollobas, Modern Graph Theory, Chapter 3, Springer, 2002.
[4] Y. Cassuto, M. Schwartz, V. Bohossian and J. Bruck, "Codes for multi­

level flash memories: Correcting asymmetric limited-magnitude errors,"
Proc. IEEE Int. Symp. Information Theory (ISIT), 2007, p. 1176-1180.

[5] H. Finucane, Z. Liu and M. Mitzenmacher, "Designing floating codes for
expected performance," Proc. 46th Annual Allerton Conference, 2008.

[6] E. Gal and S. Toledo, "Algorithms and data structures for flash memories,"
inACM Computing Surveys, vol. 37, no. 2, pp. 138-163, June 2005.

[7] A. Jiang, V. Bohossian and J. Bruck, "Floating codes for joint infor­
mation storage in write asymmetric memories," Proc. IEEE Int. Symp.
Information Theory (ISIT), 2007, pp. 1166-1170.

[8] A. Jiang, R. Mateescu, M. Schwartz and 1. Bruck, "Rank modulation for
flash memories," Proc. IEEE Int. Symp. Information Theory (ISIT), 2008,
pp. 1731-1735.

[9] A. Jiang, R. Mateescu, E. Yaakobi, 1. Bruck, P. H. Siegel, A. Vardy and
1. K. Wolf, "Storage coding for wear leveling inflash memories," Caltech
Tech. Rep., online: http://www.paradise.caltech.edu/etr.html.

[10] A. Jiang, M. Schwartz and J. Bruck, "Error-correcting codes for rank
modulation," Proc. IEEE Int. Symp. Information Theory (ISIT), 2008, pp.
1736-1740.

[11] E. Yaakobi, A. Vardy, P. H. Siegel and J. K. Wolf, "Multidimensional
flash codes," Proc. 46th Annual Allerton Conference, 2008.

1233

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 16, 2009 at 18:17 from IEEE Xplore. Restrictions apply.

