N1本5 清華大学

Tsinghua University

Seoul National University

Storage-less and converter-less maximum power tracking of photovoltaic cells for a nonvolatile microprocessor

Cong Wang, Naehyuck Chang, Y. Kim, S. Park, Yongpan Liu, Hyung Gyu Lee, R. Luo, H. Yang 2014/1/22

Outline

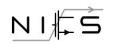
- Background
 - Energy harvesting for IoT applications
 - Maximum power point tracking (MPPT) of a photovoltaic module
 - Conventional system architecture and problems
- Storage-less and converter-less MPPT
 - With a nonvolatile microprocessor
- System evaluation
- Conclusion

Developing IoT applications

- Internet of things (IoT) on the way
 - Structural health monitoring
 - Smart agriculture
 - Smart transportation
 - Etc...

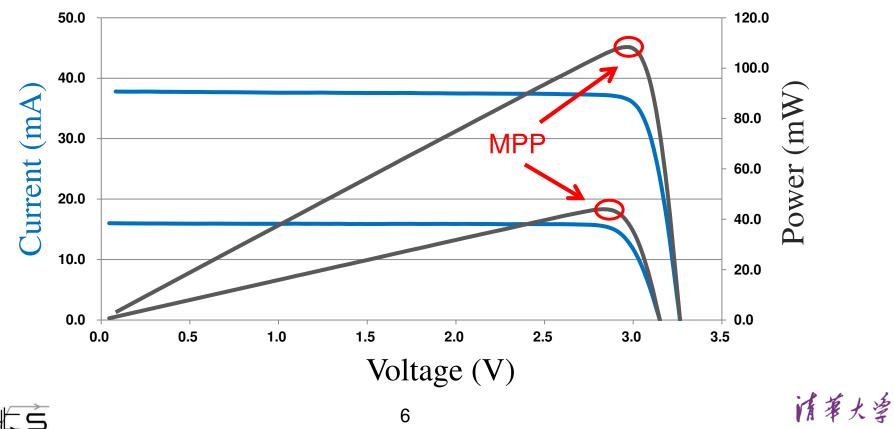
Energy & maintenance is a big problem

- Battery powered devices
 - Most widely used
 - Limited capacity
 - Need regular maintenance
 - Volume/weight overheads
 - Potential high cost

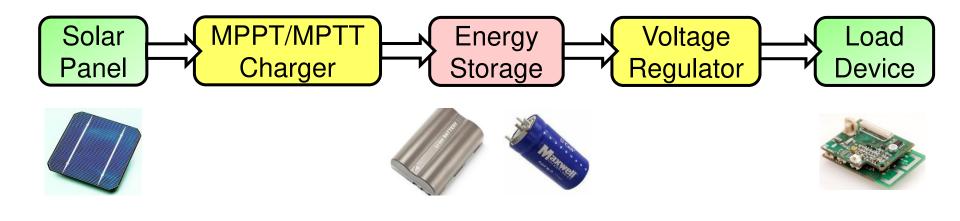


Energy harvesting

• Power density estimates of different sources

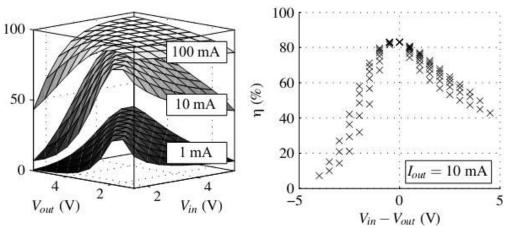

Energy Source Harvested Power				
Vibration/Motion				
Human	4 µW/cm ²			
Industry	100 µW/cm ²			
Temperature Difference				
Human	25 µW/cm ²			
Industry	1-10 mW/cm ²			
Light				
Indoor	10 µW/cm ²			
Outdoor	10 mW/cm ²			
RF				
GSM	0.1 µW/cm ²			
WiFi	0.001 µW/cm ²			

Source: Texas Instruments White Paper - ULP meets energy harvesting: A gamechanging combination for design engineers


Harvesting solar energy

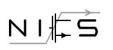
- Maximum Power Point Tracking (MPPT)
 - Try to extract as much power as possible from the solar panel

Traditional system architecture


- Solar energy is first charged to a energy storage device (supercapacitor/battery)
- Stored energy is then retrieved and delivered to the load device

Problems in traditional architecture

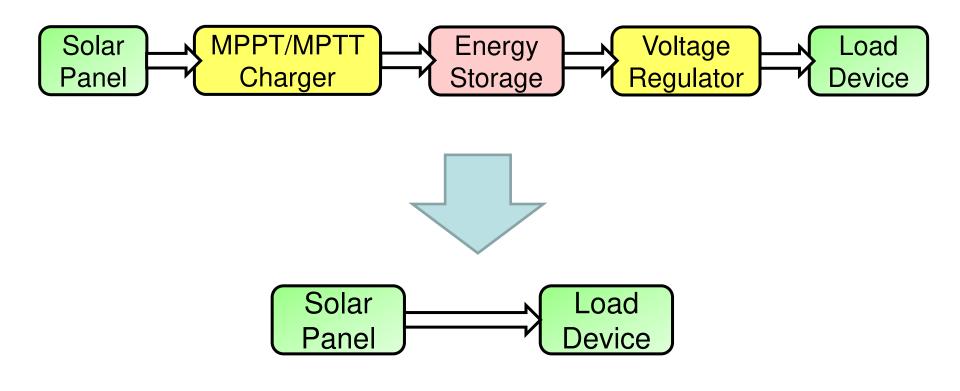
- 2 stage power converters
 - Expensive
 - Significant conversion loss



- Energy storage
 - Higher cost
 - Weight/volume overhead
 - Limited work cycles
 (Rechargeable battery)
 - Leakage (Supercapacitor)

Source: Y. Kim, N. Chang, Y. Wang, M. Pedram - Maximum power transfer tracking for a photovoltaic-supercapacitor energy system

Is there an alternate **cheap** and **efficient** way to utilize solar energy?



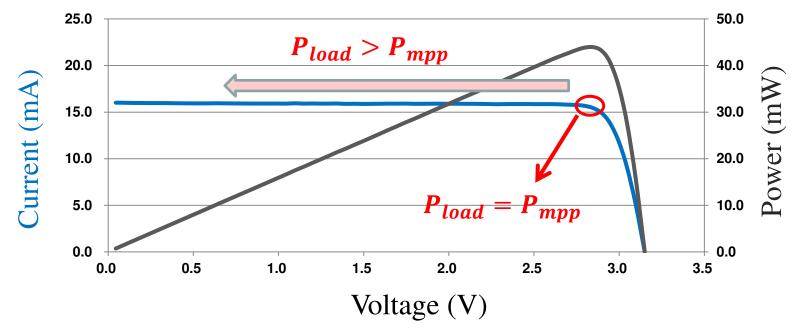
Outline

- Background
 - Energy harvesting for IoT applications
 - Maximum power point tracking (MPPT) of a photovoltaic module
 - Conventional system architecture and problems
- Storage-less and converter-less MPPT
 - With a nonvolatile microprocessor
- System evaluation
- Conclusion

NI

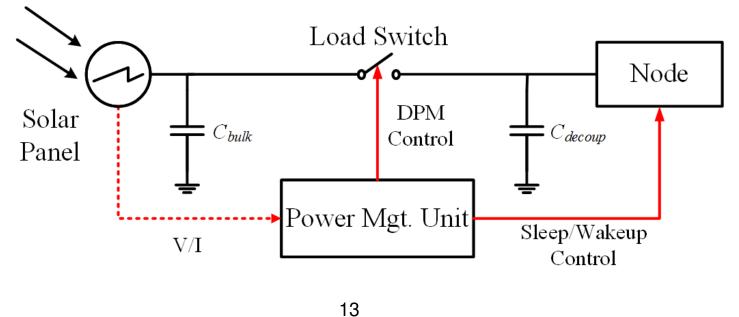
Storage-less and Converter-less

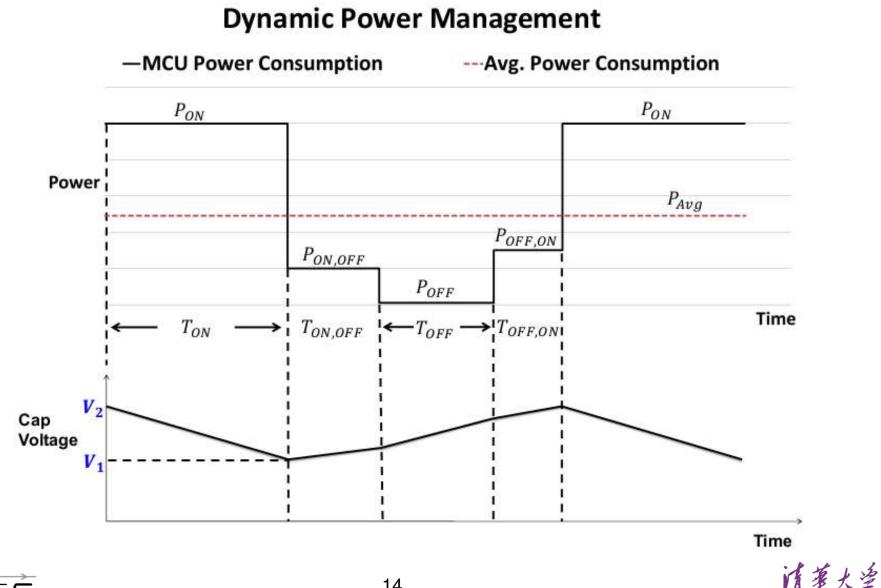
Advantages


- Storage-less
 - No long-term energy storage (battery or super-capacitor)
 - Maintenance free
 - Volume, weight and cost reduction
- Converter-less
 - Higher power transfer efficiency
 - Lower cost

Does it work?

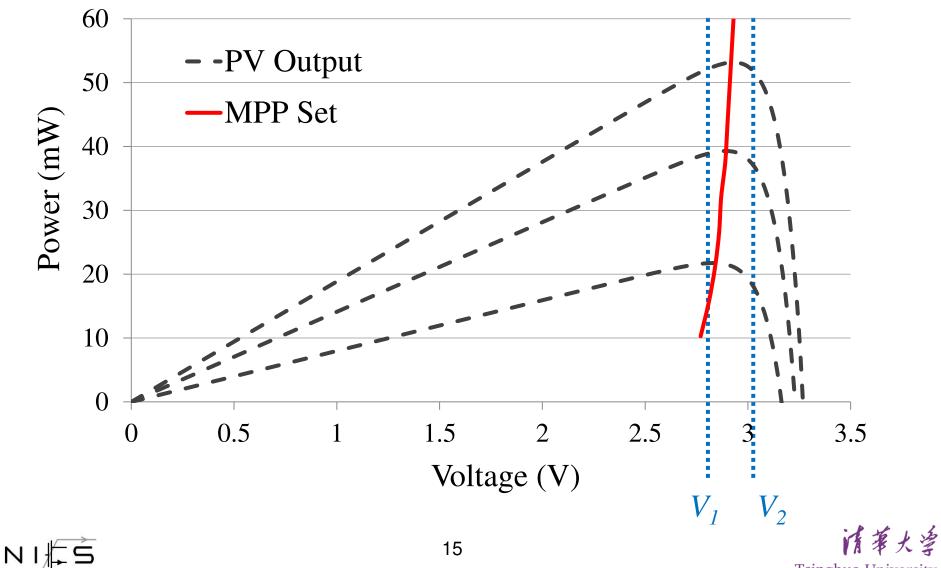
• How to ensure the functionality?


- How to perform MPPT?
 - How to match P_{load} with the varying P_{solar}



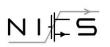
Proposed solution

- Connect the PV to the load via a load switch
- Adjust average load current by Dynamic Power Management(DPM)
- Match the average load current with the MPP current of the solar panel

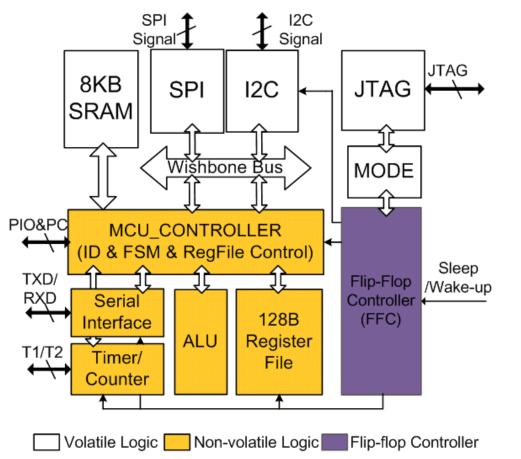

MPPT achieved by fine-grained DPM

Tsinghua University

NI


MPPT achieved by fine-grained DPM

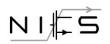
Need for a nonvolatile microprocessor


- Transition overheads are NOT negligible
 - Especially when transitions are frequent ($C_{bulk} \sim 1 \mu F$, $T_{DPM} \sim$ several ms)
 - Smaller time overhead, more time for task execution
 - Smaller energy overhead, more energy for task execution
- Transition overheads are significant for conventional microprocessor
 - Typical time overhead
 - Several *ms*
 - Typical energy overhead
 - 20 mA if write to a Flash

THU1010N nonvolatile microprocessor

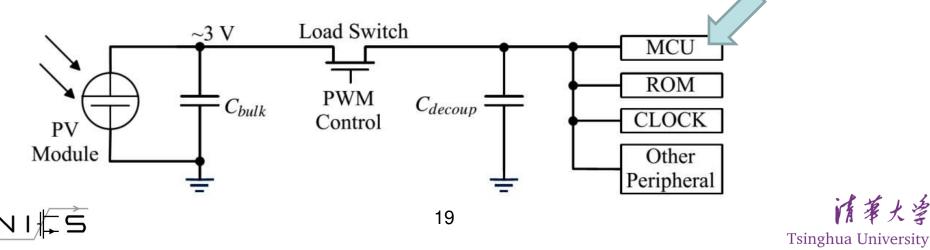
17

- Based on standard 8051 micro-controller
 - Fully replace original Flip-Flop with Nonvolatile FeFF
 - Flip-flip Controller
 - Peripherals for embedded applications and online debug


Transition overheads comparison

• NV processor is faster in state transitions

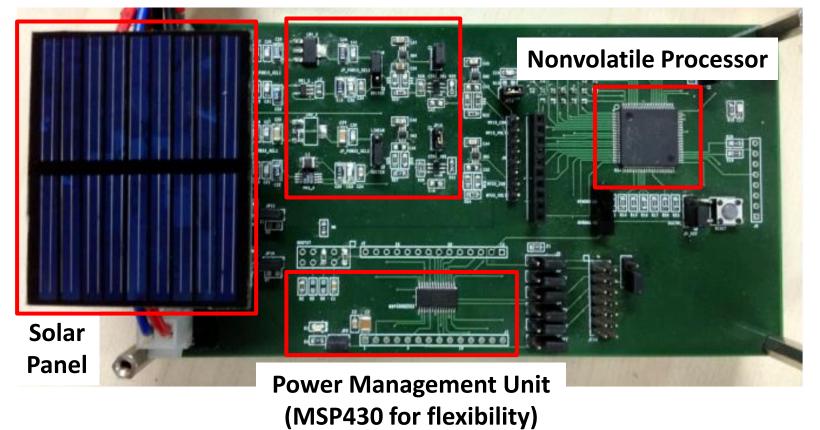
	THU1010N	TI-MSP430 with Flash [1]	TI-MSP430 with FRAM [2]		
Backup time	8us	6ms	212us		
Recovery time	3us	3ms	310us		


• Less energy overhead in state transitions for NV processor

	THU1010N	TI-MSP430 with Flash [1]	Ratio		
Backup energy	23.1nJ	445uJ	19000		
Recovery energy	8.1nJ	0.6uJ	74		

Storage-less and Converter-less MPPT

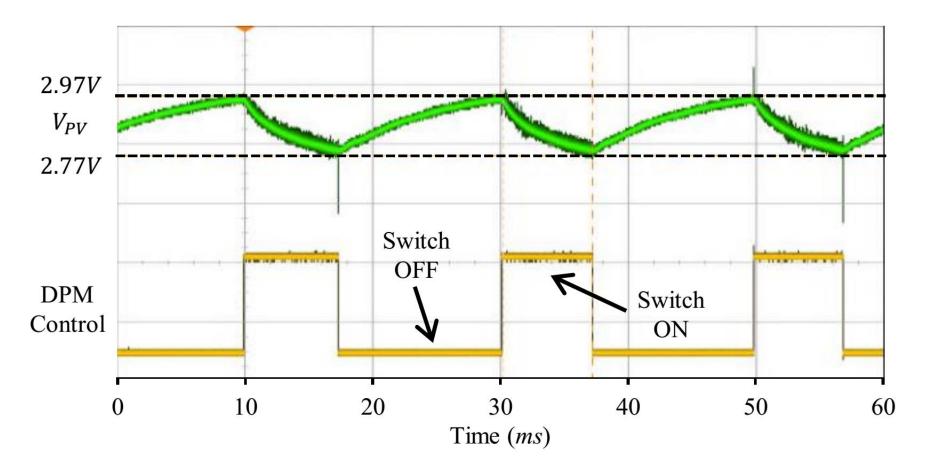
- MPPT
 - Achieved by Dynamic Power Management (DPM)
 - DPM is fine-grained power gating of the node
 - A buck capacitor is used as energy buffer and extend the time constant
- Nonvolatile microprocessor
 - Minimize transition overheads to improve system Nonvolatile efficiency


Outline

- Background
 - Energy harvesting for IoT applications
 - Maximum power point tracking (MPPT) of a photovoltaic module
 - Conventional system architecture and problems
- Storage-less and converter-less MPPT
 - With a nonvolatile microprocessor
- System evaluation
- Conclusion

Evaluation board

Buck Capacitor & Load Switch



NI

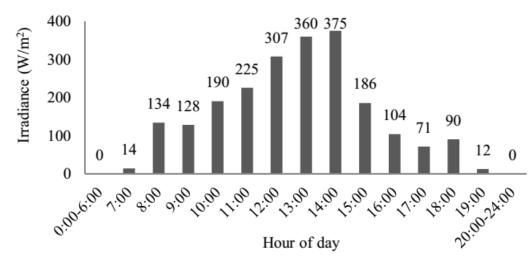
Evaluation board

Captured waveform

NIS

清莱大学

Efficiency evaluation


• Simulation Setup


-
$$P_{ON} = 25mW$$
, $P_{mpp} = 14.7mW@200W/m^2$

23

-
$$C_{bulk} = 4.7 \mu F$$
, $C_{decoup} = 20 nF$

- $[V_1, V_2] = [2.75V, 2.90V]$
- Assume $P_{ON} = P_{ON,OFF} = P_{OFF,ON}$
- Transition Time Overhead
 - $T_{ON,OFF} = 8\mu s$, $T_{OFF,ON} = 3\mu s$ (Proposed system with NVMCU)
 - $T_{ON,OFF} = 0.3ms$, $T_{OFF,ON} = 0.2ms$ (Proposed system with conv. MCU)
- Omit the power consumption of the power management unit

Efficiency evaluation

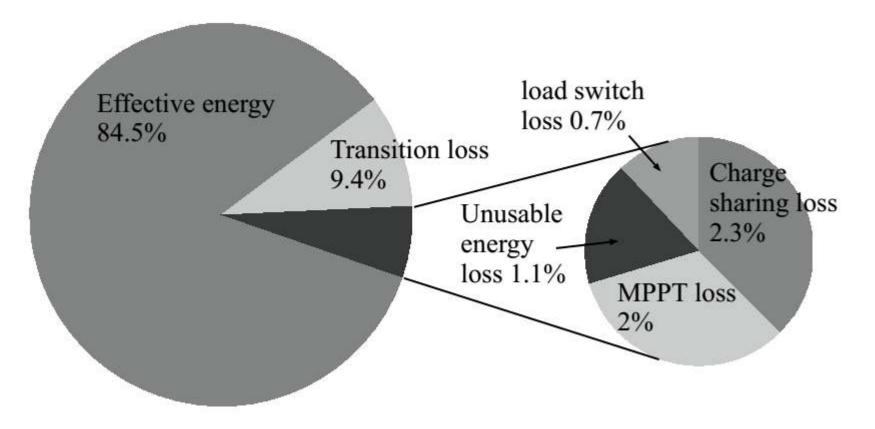
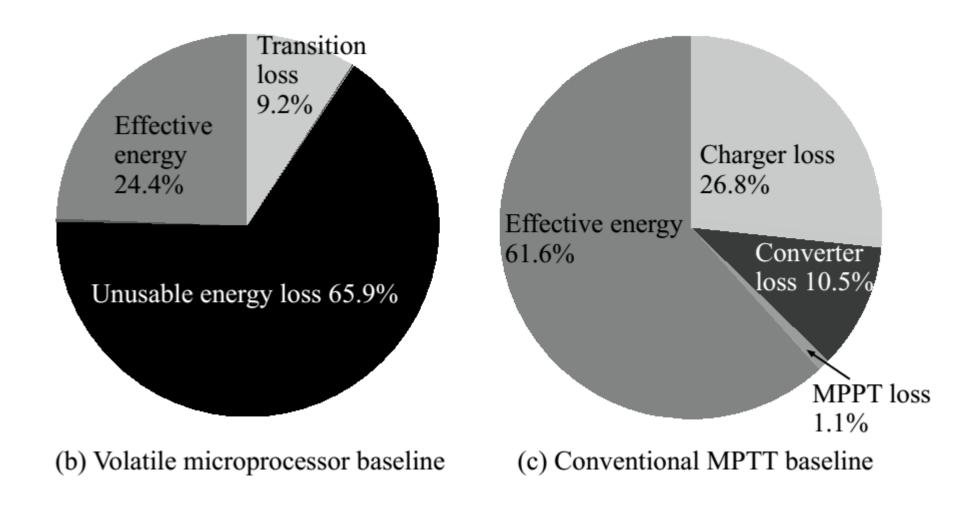

Common DPM statistics			Proposed System			Volatile Microprocessor Baseline				
Time	V_{mpp} (V)	T _{dpm} (µs)	D_{dpm}	E_{mpp} (J)	Work	E_{task} (J)	η _{sys} (%)	Work	E _{task} (J)	η _{sys} (%)
7:00	2.50	N/A	N/A	4.83	No	0	0	No	0	0
8:00	2.73	218	31.6%	50.14	Yes	36.38	72.6	No	0	0
9:00	2.72	224	30.0%	47.81	Yes	34.30	71.7	No	0	0
10:00	2.76	191	46.9%	71.95	Yes	57.07	79.3	No	0	0
11:00	2.78	195	56.5%	85.69	Yes	71.25	83.1	No	0	0
12:00	2.80	301	79.7%	118.14	Yes	108.37	91.7	No	0	0
13:00	2.82	1100	95.1%	139.27	Yes	135.39	97.2	Yes	65.74	47.2
14:00	2.82	1360	99.6%	145.27	Yes	143.72	98.9	Yes	138.34	95.2
15:00	2.76	192	45.8%	70.38	Yes	55.51	78.9	No	0	0
16:00	2.70	260	23.6%	38.57	Yes	26.27	68.1	No	0	0
17:00	2.67	369	14.8%	25.98	Yes	15.90	61.2	No	0	0
18:00	2.69	294	19.9%	33.21	Yes	21.78	65.6	No	0	0
19:00	2.50	N/A	N/A	4.11	No	0	0	No	0	0
	Ove	rall		835.34		705.94	84.5		204.08	24.4

TABLE IV DYNAMIC POWER MANAGEMENT RESULTS.

NI

清華大学


Efficiency of the proposed system

• Efficiency up to 95.4% if $C_{bulk} = 47 \mu F$

NI

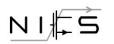
Efficiency of conventional system

NI

清莱大学

Emerging application

- JUNE -- a wearable bracelet with UV sensor
- Sun protection advice
 - SPF, sunglasses
 - Wear a hat



Conclusion

- Storage-less and Converter-less MPPT
 - Provides a very efficient way to power electronic devices with solar panels
 - Low cost and maintenance-free
 - Demonstrates a promising application for nonvolatile microprocessors
- Extension
 - Combine with traditional system(2 coverters + supercap) to achieve higher efficiency and better QoS simultaneously

Thank You

