
Storage Optimization for Large-Scale Distributed Stream Processing Systems

Kirsten Hildrum1, Fred Douglis1, Joel L. Wolf1, Philip Yu1, Lisa Fleischer2, Akshay Katta3

1IBM T.J. Watson Research Center 2Dartmouth College 3Amazon Corporation

Abstract

We consider storage in an extremely large-scale distrib-
uted computer system designed for stream processing ap-
plications. In such systems, incoming data and intermedi-
ate results may need to be stored to enable future analyses.
The quantity of such data would dominate even the largest
storage system. Thus, a mechanism is needed to keep the
most useful data. One recently introduced approach is to
employ retention value functions, which effectively assign
each data object a value that changes over time [5]. Stor-
age space is then reclaimed automatically by deleting data
of lowest current value. In such large systems, there will
naturally be multiple file systems available, each with dif-
ferent properties. Choosing the right file system for a given
incoming data stream presents a challenge. In this paper
we provide a novel and effective scheme for optimizing the
placement of data within a distributed storage subsystem
employing retention value functions. The goal is to keep the
data of highest overall value, while simultaneously balanc-
ing the read load to the file system.
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1 Introduction

Distributed computer systems designed specifically to
handle very large-scale data stream processing applications
are in their infancy. Several early examples augment rela-
tional databases with streaming operations [9, 10, 14, 4].
These systems all process voluminous rates of incoming
data streams by performing relational operations (such as
database joins) over the incoming data.

The authors have been involved in an ambitious project
known as System S [7] to build the prototype of a highly
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Figure 1. Storage subsystem overview.

scalable distributed computer system to handle complex ap-
plications involving enormous quantities of streaming data.
We expect the system to consist of tens of thousands of
processing nodes, to be able to concurrently support hun-
dreds of thousands of incoming and “derived” streams, and
to have a storage subsystem with a capacity of multiple
petabytes. Even at these sizes, we expect all key resources
of the system to be fully utilized nearly all of the time. In
particular, the storage subsystem will be always virtually
full, because of the enormous data arrival rate [5].

In this paper we focus on the distributed storage sub-
system, introducing a novel and very effective optimization
scheme for such an environment. The storage subsystem of
System S is pictured conceptually in Figure 1. Streams are
processed by interconnected applications on a distributed
set of processing nodes. These processing nodes are inter-
connected via a network, and also connected, via a separate
storage network, to a collection of individual file systems.
We refer to these file systems colloquially as vats.

Storing streaming data presents a challenge that is quali-
tatively different from that of conventional systems, because
of the huge quantities of primal and derived data that need to
be written to disk. The storage subsystem of a conventional
computer system is typically configured with sufficient ca-
pacity to handle the data. Deletion of data is typically done
manually. But in the System S streaming environment mas-
sive amounts of data are being written out constantly. As
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new data arrives, an equivalent amount of old data must be
deleted. Since the deletion operations will happen at great
rates, they must also be done automatically.

Easy solutions to the automatic deletion of data might
involve First In, First Out (FIFO) or Least Recently Used
(LRU) schemes. In System S we have adopted a more
sophisticated approach, originally outlined by Douglis, et
al. [5]. This approach treats data differently based on its
current importance to the overall system, while clustering
data that are anticipated to be deleted together. The data
clustering is a performance optimization to avoid the over-
head of many file operations on small files and is not ger-
mane to this discussion. Here, we motivate why managing
objects by value is useful in systems of this scale and em-
phasize the difficulty in maximizing the system-wide value
of data when individual decisions about data placement and
retention are made in isolation across multiple vats. The
focus of this paper is, in fact, the formulation and solution
of precisely this optimization problem via a scheme which
considers all of the file systems simultaneously. The need
to support time varying values of data is what makes our
scenario distinct from those solved by systems such as Min-
erva [6].

We start with some examples of valuation. As a first ex-
ample, the transcripts of audio and video streams might be
worth storing for longer periods of time than the actual mul-
timedia streams, because they are so much more compact.
But newer streams and transcripts are consistently more rel-
evant, and therefore more valuable, than older ones. As an-
other example, derived data from incoming streams may be
stored longer than the original streams. For instance, if a
process does topic determination of usenet articles or blog
posts, the list of topics may be kept much longer than the
blog posts or articles themselves.

Many applications would want to use historical data, i.e.,
data stored before those applications started, and so the sys-
tem has to store more data than possible. Consider as an
example a stream processing system focused on the finan-
cial health of companies. It would likely consider both the
current stock price and the prices in the past. It might keep
quarterly reports, conference calls, news articles, weather
information, and video news reports. Now suppose that af-
ter the collapse of Enron, a user runs an application to look
for warning signs of its collapse. In this case, much of the
data would have arrived long before the actual query, and
even that particular application would have looked at only
a small segment of the stored data. Likewise, a user might
use historical data to look for warning signs of the collapse
of Internet companies, and then perhaps compare this data
to that of current companies.

In these queries, the decision to store and label the data
would be made with an anticipation of what information
may be generally useful, but without knowing the specific

applications which might be involved.
The approach taken in System S is to define for each data

object to be written to disk a function describing its pro-
jected value over time. This retention value function will
typically be non-increasing, with a range from 0 to 100.
The storage subsystem will then delete the data with the
lowest current retention function values as space is needed.
(Observe that this design results in a relative rather than
absolute notion of value: the retention function value at a
given time does not guarantee the amount of time the data
object has left before being deleted.)

The overhead associated with such a deletion scheme is
manageable, at least as long as the number of such func-
tions is not too large. The retention value functions are de-
fined at a much coarser level than that of the data objects
themselves. We assume that each data object belongs to a
retention class, and that all data objects in this class have re-
tention values determined by the same retention value func-
tion. Thus retention classes are the atomic unit on which
retention value functions are defined. Different data objects
within a retention class can have varying ages, and there-
fore have different values at any given time. Occasionally it
may be useful to modify a particular retention value func-
tion, or to remove certain data objects from a retention class
and add them to another, thus changing the retention value
functions for those objects. Storage class retention function
assignments and data object retention value function mod-
ifications are the responsibility of analytics, which work in
conjunction with the applications themselves. (One cannot
expect the applications themselves to make these decisions
without some form of centralized control, because they have
a naturally parochial perspective.) The design of such sys-
tem analytics is in any case orthogonal to the present paper.

Different vats will typically have different properties,
and not all retention classes will be suitable for all vats.
There are many possible reasons for this. The retention
classes might have specific availability, performance, secu-
rity and/or network locality requirements. The vats them-
selves may or may not match these. Or the vats may be
reserved for specific types of data, such as DB2.

On an individual vat, space is essentially fluid, and delet-
ing existing data frees up space for a comparable amount of
new data. As a practical implementation we approximate
this concept via a waterline. The waterline is defined for
a given vat and time: data whose value is below this wa-
terline will be deleted. Data whose value is at or above this
waterline will be retained. The waterline rises and falls over
time, depending on the amount and nature of the new data
that has been added to the vat.

Coping with Distribution The notion of waterlines takes
on a much different character when there are multiple vats.
Absent some sort of global optimization strategy, it is likely



that the waterlines of the various vats will drift and become
quite different over time. But notice that this causes by de-
finition the deletion of higher valued data than would be
removed in a scenario with one global vat with a single
waterline. What the system should do is approximate, as
closely as possible, the case of a single vat, even though not
all data is allowed to go to all vats. So it would be ideal if
the waterlines of the various vats were as close as possible
to identical. But we must also balance the read load to the
vats. Some of the incoming data may be predictably “hot”
while other incoming data is predictably “cold”. The hot
data must be placed on the vats that have sufficient capacity
to serve the read requests.

Most applications have a choice of vats. Our goal is to
ensure, with minimal communication, that the assignment
decisions are good for the system as a whole. Periodically,
the optimizer will gather information about the data being
written and the state of the storage system, and then instruct
the applications to revise their vat assignments.

The question of how to do this has the flavor of a tradi-
tional file assignment problem (FAP). (An excellent survey
is given by Dowdy and Foster [3].) The large majority of
FAPs have had the goal of trying to balance load across the
storage subsystem. Balancing waterlines instead presents a
different challenge. These FAPs have generally made deci-
sions about initial data placement and periodic data move-
ment. Proper initial placement is relatively more critical in a
system such as System S. That is because data movement is
less useful from a cost/benefit analysis perspective in such a
system: first of all, data may only be read a few times before
being deleted, so the overhead of movement is high relative
to its expected utility. Secondly, movement of data is simply
more expensive in a distributed storage system. So we are
forced to make very careful initial placement decisions, and
treat data movement as expensive (and consequently lim-
ited), or even as prohibited. Fortunately, as will be seen,
our scheme behaves nearly as well when data movement is
not allowed at all.

Formally, the objective of our optimization scheme is
to minimize the total value of all data deleted, subject to
reasonable and practical constraints. Minimizing the total
value of the deleted data is equivalent to maximizing the to-
tal value of the data retained. This goal is achieved by mak-
ing optimal decisions about where to write newly created
data, and also how to move data around within the storage
subsystem, provided such movement is within the limits al-
lowed.

We next focus on the constraints of the problem. The first
constraint corresponds to a key rationale for the vats them-
selves: different vats will typically have different properties,
and not all retention classes will be suitable for all vats.
For example, vats may have different availability proper-
ties (e.g., RAID level), performance properties (e.g., access

latency), security properties, different physical locations,
qualitative properties (e.g., some vats might be reserved for
DB2 data). Each retention class may have specific require-
ments with respect to these properties, and thus be allowed
only on a subset of the vats. The optimization scheme must
allocate newly created data only to a vat which is acceptable
(that is, it meets all of the requirements). The optimization
scheme may move existing data only from one acceptable
vat to another acceptable vat. Second, the scheme must
obey various constraints describing (at either a local or a
global level) the maximum amount of such movement. Fi-
nally, it must ensure than no vat gets too many requests for
reads. (This constraint is analogous to the load balancing
objective of traditional FAPs.)

We believe that the optimization scheme described in this
paper is the first of its kind. It is being integrated into Sys-
tem S, and it requires minimal centralized control and di-
rection. It is epoch-based, which means that it wakes up
at the beginning of each epoch, gathers data, computes and
implements a new solution, and then sleeps until the end of
the epoch. The exact length of an epoch is not crucial, and
one could imagine trying to optimize this length as well. We
do, however, expect to use epochs of roughly a half hour. In
practice the time to do the optimization is on the order of a
minute.

The rest of this paper is organized as follows. Section 2
describes the mathematical formulation of our optimization
problem, as well as the proposed solution. It also outlines
several alternative implementations. Section 3 describes
some additional approaches of a simpler nature, and com-
pares all of the approaches using simulation experiments.
These experiments show our scheme to be both effective
and practical. In Section 4, we draw conclusions and out-
line future work.

2 Problem Formulation

Consider a finite collection of M retention classes de-
noted by r ∈ {1, ...,M}. These retention classes can corre-
spond to existing data on disk, to new data being written to
disk, or to both. We also have a finite collection of N vats
denoted by v ∈ {1, ..., N}. For ease of notation we also
employ a vat 0 corresponding to new data, not yet assigned
to an “actual” vat.

For simplicity we will first introduce the problem with-
out load balancing. Then we will describe a formulation
that addresses read capacities.

We also define the following constants:

• Zr,v is the amount (in bytes) of retention class r data
in vat v. In particular, Zr,0 is the amount of new data
in retention class r.

• Cv is the capacity (in bytes) of vat v.



• Ar,v is 1 if retention class r is allowed in vat v, and 0
otherwise. The M x (N + 1) matrix A is called the
acceptability matrix.

• cv,v′ is the (per byte) cost of moving data from vat v to
vat v′, v, v′ ∈ {1, ..., N}; naturally, cv,v = 0.

• kv,v′ is the maximum amount of data (in bytes) that
can be moved in one epoch from vat v to vat v′, v, v′ ∈
{1, ..., N}.

• K is the maximum amount of data (in bytes) that can
be moved between all vats in the system in one epoch.

For simplicity, we make the assumption in what follows
that all vats are full. This will be nearly true, as indicated,
almost all of the time. Very simple changes are required to
deal with vats that are not completely full.

In order to formulate the optimization problem, we de-
fine a function Vr,v for each r ∈ {1, ...,M} and v ∈
{0, ..., N}. Specifically, Vr,v(x) is the cumulative amount
of value lost when x bytes are deleted from retention class
r in vat v. (When v = 0 it will represent new data that is
deleted immediately, and thus never stored.) These Vr,v(x)
depend on the age of the retention class r data in vat v and
the shape of the data’s retention curve. The independent
(x-axis) variable of Vr,v will represent the amount of data
(in bytes) from retention class r which will be deleted from
vat v to accommodate new or existing data entering the vat.
The dependent (y-axis) variable of Vr,v will represent the
cumulative value of the data deleted. Because deletion re-
moves data of smallest value first, we start by ordering the
data in terms of increasing value per byte for each retention
class r and vat v. This gives rise to a (preliminary) func-
tion Wr,v defined as the value Wr,v(w) of the (last) object
removed if a total of w bytes are deleted. Assuming the val-
ues are discrete (integers, say, from 0 to 100), Wr,v is a step
function with one step for each different value of data in the
vat. (See Figure 2a.) Then the function Vr,v is the integral
of this function between 0 and w: Vr,v(w) =

∫ w

0
Wr,v . Be-

cause of the nature of Wr,v , the function Vr,v is an increas-
ing and piecewise linear convex function of w as shown in
Figure 2b.

We will formulate our optimization problem as a linear
program (LP). The intuition for this LP comes from a flow
graph, which is not shown due to space restrictions. In cer-
tain special cases the problem will actually be solvable via
network flow techniques. See for example, Bertsimas and
Tsitsiklis [2] and Ahuja, et al. [1], respectively.

We now define two types of decision variables:

• yr,v,v′ is the amount of data from retention class r ∈
{1, ...,M} that will be moved from vat v ∈ {0, ..., N}
to vat v′ ∈ {1, ..., N}. Note that yr,v,v is the amount
of data in retention class r that remains in vat v.
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Figure 2. The functions Wr,v and Vr,v

• wr,v is the amount of new or existing data from reten-
tion class r ∈ {1, ...,M} that will be deleted from vat
v ∈ {0, ..., N}.

We are now ready to describe two alternative optimiza-
tion problems. The first of these does not deal with load
balancing. The second does.

Optimization formulation without load balancing The
optimization problem formulation, which we call LP1, is as
follows:

min

(∑
r,v

Vr,v(wr,v) +
∑

v

∑
v′

cv,v′
∑

r

yr,v,v′

)
(1)

subject to

wr,v +
∑

v′:Ar,v′=1

yr,v,v′ = Zr,v ∀(r, v) (2)

∑
r:Ar,v=Ar,v′=1

∑
v′

yr,v′,v = Cv ∀v (3)

∑
r:Ar,v=1

yr,v,v′ ≤ kv,v′ ∀v �= 0, v′ �= v (4)

∑
r,v �=0,v′

yr,v,v′ ≤ K (5)

wr,v, yr,v,v′ ≥ 0 ∀r, v, v′ (6)

The objective function 1 includes summands for the
value of deleted data and for the cost of moving data from
vat to vat. By scaling the cost coefficient cv,v′ we can easily
vary the importance of one relative to the other. Equations 2
and 3 are ”flow conservation” constraints. Inequalities 4
are the local movement constraints, and inequality 5 is the
global movement constraint. Constraints 4 and 5 turn the
optimization problem into an LP rather than a network flow
problem. Inequality 6 is the non-negativity constraint.

There are a couple of relevant special cases, both of
which are network flow problems. First, if the movement is
unrestricted and has no cost, all data in the system is treated
as new data, reducing the number of variables. Second, if no
movement can occur, the problem is a matter of placement
and not data migration.



Optimization formulation with load balancing Finally,
we enhance the previous formulation to address load bal-
ancing. Load balancing is a common goal in traditional
FAPs. In our environment it must be balanced against our
prime goal of balancing the waterlines.

• For r ∈ {1, ...,M}, dr is the expected read access rate
for data in retention class r.

• For v ∈ {1, ..., N}, Dv is the maximum read access
rate threshold for vat v.

Beyond the threshold Dv , the performance decreases
sharply. Effectively, this is the knee of the performance
curve. There are many alternative techniques, both empir-
ical and theoretical, for determining Dv . A discussion of
these issues appears in [13]. The choice is orthogonal to the
current paper, as are the forecasting techniques required to
obtain the values dr.

Recall the formulation of the previous subsection. It
would be ideal if, after the assignment of new data and the
movement of existing data, we could meet this load bal-
ancing goal perfectly. For example, we might wish to have∑

r,v′ yr,v′,vdr/Dv identical for all vats v. This will not
generally happen by accident; it will not even necessarily
be possible. We will revise the formulation to attempt to
come closer to this load balancing goal. We explored two
different approaches and present one here.

The approach involves modifying the LP formulation.
We will need one more variable, γ, which represents the
read load of the vat as a fraction of its read capacity.

We now revise the objective function of the previous for-
mulation as follows.

min α

(∑
r,v

Vr,v(wr,v) +
∑

v

∑
v′

cv,v′
∑

r

yr,v,v′

)
+(1−α)γ

(7)
Here α is a constant between 0 and 1, and the objec-

tive function is now a weighted average of the old objective
function and γ.

We also add new access density constraints.

∑
r,v′

yr,v′,vdr ≤ γDv ∀v (8)

γ ≥ 0 (9)

Inequality 8 bounds the factor by which we will miss
our load balancing goals by γ, and inequality 9 is the non-
negativity constraint. But the objective function in 7 at-
tempts to minimize γ. This mathematical setup means that
γ is the relative load of the vat with the highest relative load.
We call this new optimization problem LP1-alpha. The ob-
jective function can be weighted towards either the original

or new objective. If α = 1, then the load balancing goal
becomes irrelevant. If α = 0 the problem has the flavor of
a traditional FAP.

3 Simulation Experiments and Results

In this section we describe the results of our simulation
experiments. First, we investigate the impact of employ-
ing estimates of incoming data rates (instead of the exact
values) as we would naturally have to do in practice. We
discover that there is virtually no loss in performance by
using reasonable estimates. Second, we consider the im-
pact of data movement. If movement is completely free,
data can be migrated from one vat to another at will. This
yields an upper bound on the benefits of such data migra-
tion. Conversely, if migration has infinite cost, movement
is not allowed at all.This is a lower bound on the benefits of
migration. We observe that the differences in performance
(in terms of waterline differentials and skewed read loads)
between the no movement and free movement cases are not
significant in these simulations. The conclusion is that al-
lowing data movement is for all practical purposes unnec-
essary. Finally, we compare our LP-based algorithms with
some natural heuristics for this storage management prob-
lem.

Setup We simulate the effect of the various algorithms on
a storage system with 200 retention classes and 20 vats. We
choose this number because it represents the likely scale of
a large stream processing system. Recall that the 20 vats
each represent individual file systems, not individual disks.
Furthermore, there is a natural limit to the number of reten-
tion classes that can be used. Assigning a particular piece of
data to even one of fifty retention classes would be difficult;
two hundred is an overestimate.

In each step, approximately 1.75% of the total storage
capacity in the system arrives, displacing an equal percent-
age of the data currently in the system. (This choice means
that the system achieves stability after a reasonable number
of iterations.) The amount of data arriving in each retention
class is normally distributed around a mean fixed for each
run. The standard deviation is set equal to the mean.

To model the distribution of data arrival means and num-
ber of acceptable vats, we use Zipf [15] and Zipf-like [12]
distributions. These distributions are commonly used to
model file sizes and access patterns, and are generally
thought to represent the real world well. Specifically, we
use a Zipf-like distribution with parameter θaccept, so that
the number of acceptable vats for the ith retention class is
proportional to i1−θaccept . If θaccept = 1 the number of ac-
ceptable vats is identical for the various retention classes. It
θaccept = 0 the distribution is pure Zipf. To vary the skew
in the data arrival rates amongst the retention classes, we



use a parameter θarrive, so that the amount of data in the
ith highest retention class is proportional to i1−θarrive .

For the graphs shown in this paper, both θarrive and
θaccept are 0.5, so both distributions are moderately skewed.
We also produce graphs with θarrive = θaccept = 1, but
space limitations precluded presenting both sets of graphs.
Thus, we only present the more realistic skew case here.
The uniform graphs are qualitatively similar, but the differ-
ences between schemes are usually a bit smaller.

We chose retention value functions with roughly three
phases. In the first phase, the value is high but declin-
ing slowly; in the second, the value is declining quickly;
and in the third, the value is low and declining slowly.
The value of an object that is t time units old is given by
v(t) = c ∗ (− arctan((t − p)/a) + π/2) where p, a, and
c are parameters fixed for a given retention class. The pa-
rameter p describes how long the value remains steady, a
describes how sharply it declines in value, and c is a con-
stant used to set the initial value. We use two values of a
and three values of p, which might reasonably correspond
to one, two and seven days. (We also ran experiments with
other choices of retention functions, and the results were
qualitatively similar.) The function Vr,v(wr,v) can be com-
puted from v(t) knowing the amount of bytes at age t each
retention class r in vat v.

The graphs that follow were generated by a simulator
written in java, with linear programs solutions via CLP [11],
part of the COIN [8] project. In the simulation runs, each al-
gorithm is given the same incoming data at every iteration.
However, because different algorithms make different dele-
tion decisions, the set of data in the vats at a given time may
be different among the various algorithms. In all the simu-
lation experiments, the setup starts with an “empty” storage
system. During the start up phase the vats are filling, and the
waterline differences become very high because some vats
fill before others. The graphs in this paper typically start
when the vats have filled, at approximately iteration 200.

To measure effectiveness at balancing waterlines, we
graph the difference between the waterline of the vat with
the smallest waterline and the waterline of the vat with the
largest waterline. The bigger the difference, the larger the
quantity of data that should be kept that is in fact deleted
because of the random vat choice.

To ensure that the heavily accessed streams are well-
distributed, we use a metric we call the relative load. We
assume each vat has a maximum acceptable number of ac-
cesses, Dv , corresponding to the ”knee” of the response
time curve. The relative load is the maximum over all vats
of the total accesses to that vat divided by Dv . The relative
load is the same as γ of LP1-alpha. Thus, if the relative
load of a configuration is 0.8, then the most heavily loaded
vat is using 80% of its capacity.

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1

W
at

er
lin

e 
di

ffe
re

nc
e

alpha

No skew
Skew

(a) Waterline Difference, both

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2
 2.1

 0  0.2  0.4  0.6  0.8  1

R
el

at
iv

e 
lo

ad

alpha

LP1-nomove
LP-free

(b) Relative Load, skew

Figure 3. Affect of trade off factor α

Balancing the objectives In this subsection, we compare
ways of incorporating balancing between the waterline and
access density of objectives, and conclude that there is a
clear winner. Recall that the access density is incorporated
into our algorithms we described in Section 2 by adding
constraints 8.

Figure 3 shows both the waterline difference and the rel-
ative load for different values of α. Notice that is a trade
off between waterline difference and the maximum relative
load. However, the relative load drops substantially as α
goes from 1.0 to 0.9, with only a small increase in the water-
line difference. This suggests that LP1-alpha with α = 0.9
is the best choice. An α below 0.9 does not substantially im-
prove the relative load objective, and it hurts the waterline
objective significantly.

Note that as α decreases, emphasizing the relative load
objective, in the no-movement case, the relative load can
actually go up. Our simulator follows the movement and
placement suggestions from the LP, but always deletes the
data of lowest value. For low α values, the LP answer may
suggest deleting data which is above the lowest value. As
a result, the simulator may not implement the solution of
the LP. This is intentional as it would not be sensible in a
real system to delete data because it is getting too many
accesses. (One might throttle accesses to the data instead,
for example.) From these graphs, we conclude that using
the LP1-alpha with α = 0.9 is the best in this scenario.

Sensitivity of LP1 In this section, we show that LP1 is
robust to estimated data arrival rates and also is relatively
insensitive to the amount of data movement. Thus allowing
data movement is not essential to achieve good algorithmic
performance, an important statement in practical terms.

As noted, the goal is to keep the waterlines as equal as
possible and simultaneously balance the access rates. To
measure the closeness to this goal, we plot the maximum
waterline difference and the relative load, averaged over the
last ten epochs. Figures 4 compares LP1 with unlimited,
no-cost movement (LP1-free) to an LP1 algorithm with no
movement allowed (LP1-nomove)

The graphs show that the waterline difference for the
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Figure 4. Free movement and no movement
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Figure 5. Exact vs estimated arrivals

LP1-nomove case is no more than one away than LP1-
free with α = 0.9. Because of the acceptability constraints,
the optimal waterline difference is not always zero or one.
Mathematically speaking, the optimal waterline difference
in most problem instances will be at least one due to inte-
grality issues, more if the acceptability constraints are suf-
ficiently difficult. Solutions which have a waterline differ-
ence of one or less can be regarded as nearly or exactly per-
fect. They may be so even if the difference is greater.

Incoming data estimates. The optimization algorithm of
Section 2 takes as input the amount of incoming data in each
retention class. This will invariably not be known exactly in
advance. In Figure 5, we show that using approximations
produces results nearly as good as using exact values (these
graphs allow no movement of placed data, though the free
movement case is similar). Comparing the “mean” line on
the rightmost graphs shows that allowing movement does
not reduce the waterline difference when the data arrivals
are only approximate.

In both cases, the amount of data arriving is generated
using a normal distribution. For convenience, let Z∗

r,0 be the
amount of new data in retention class r. (Recall that Zr,0 the
amount of new data in retention class r, and is given as in-
put to LP1. Also, yr,0,v is a variable in LP1 that represents
the amount of this sent to vat v). For those curves labeled
“actual,” LP1 is given this number precisely, in that Zr,0

(the input to the linear program) is Z∗
r,0. However, know-

ing Z∗
r,0 precisely is unrealistic. For those curves labeled

“means,” Zr,0 is the expected value of Z∗
r,0. The LP returns

values yr,0,v that describe how to place the data. However,
the system actually has to place Z∗

r,0 rather than Zr,0 bytes
of data. So we interpret yr,0,v/Zr,0 as the proportion of the
Z∗

r,0 sent to vat v.
The differences between the “actual” and the “means”

cases are noticeable, but fairly small. This holds true in both
the skew and (unshown) uniform cases, when movement is
free, and regardless of constraints on movement. Thus, we
conclude that LP1 performs well even with only estimates
of incoming data rates.

Comparison to other techniques In this section, we
compare the linear programming approach described above
to natural heuristic approaches. The first algorithm, denoted
even, divides the incoming data of a particular retention
class in proportion to the storage capacity of the vats that
accept it. We will show that this algorithm performs very
badly with regard to the waterline metric, resulting in some
vats with waterlines near one hundred, and others with wa-
terlines near zero. The second algorithm, denoted min,
sends a data chunk to the vat with the waterline of low-
est numerical value. A tie-breaking rule used when there
is more than one such vat affects performance. Ties are
fairly frequent, since the waterline is measured discretely,
using a granularity of one percent.1 Thus the tie-breaking
rule actually matters. We consider three rules. The first,
min-low, always break ties in favor of the lowest numbered
vat. The second, min-even breaks ties evenly among all tied
vats. The min-access algorithm uses the access densities
to proportionally break ties. Finally, the min-intermediate
algorithm uses the even tiebreaking rule, but gets fresh wa-
terline information after each placement. (The others al-
ways use the waterline information from the beginning of
the epoch for the duration of the epoch.) The intermedi-
ate second model may be more realistic, corresponding to a
system in which writers reevaluate their decisions at uncor-
related intervals, while the other model is more pessimistic.

The even algorithm has no natural way to incorporate
these access rates. For the min algorithm, we will use
the access rates as part of the tie-breaking rule, as follows.
We send data with high dr values (“active” data) to under
loaded vats, and less active data to overloaded vats.

Figure 6 compares the performance of the even algo-
rithm, the min algorithm, and the LP1 algorithm using the
waterline difference and relative load. Since all versions of
the LP1 perform similarly, we use the (most restrictive) no
movement version with α set to 0.9. In terms of waterline,
the even algorithm performs quite poorly compared to the

1We believe this granularity is a reasonable representation of a large
distributed system. Delays in sending and gathering information will ren-
der a more exact statement of the waterline meaningless; thus, we believe
that it is natural to use a model that incorporates some rounding.
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Figure 6. even(off scale), min, and LP1

rest. In fact, it is actually off the scale. (The even algorithm
performs somewhat better for different sets of retention de-
cay functions, but it is always far above the other options.)
In the relative load metric, it is the second worst performer,
behind the unadorned LP that does not take relative load
into account.

The LP1 algorithm has the smallest waterline difference.
The performance of the min algorithm varies, depending
first on the tie-breaking rule used, and second on how cur-
rent the waterline information is. The lowest line for the
min algorithm assumes that the waterline information is up-
dated after each placement. In terms of waterline, this algo-
rithm performs comparably to the LP1 algorithm. On the
access rate objective, it is a significantly worse performer.
While the LP1 algorithm is using about 70% of the capacity
of the most heavily loaded vat, the min algorithm is using
about 80%. If the data were uniformly more active, that
difference could be the difference between 95% and 105%,
which would have a big impact on system performance. For
the relative load metric, the LP1 algorithm is the winner.

4 Conclusions and Future Work

We have shown how to balance two objectives in a dis-
tributed storage system. Our two objectives are (1) to bal-
ance the access rates to the vats, ensuring that no one vat
is overloaded, and (2) to ensure that the highest-value data
is kept. We give several linear programming based solu-
tions and compare these to natural heuristic approaches. Of
these, we find that LP1-alpha with α = 0.9 balances the
two objectives best of the solutions considered.

There is much work still to be done, both in terms of our
storage optimizer and System S. Though the storage opti-
mizer works well on synthetic data, it needs to be integrated
into the rest of the system and tested in the prototype en-
vironment. The final system will probably include several
additional constraints of a practical nature: for example, we
need to bound the number of changes allowed to the storage
class/vat decisions in each epoch. This is not hard, but the
effectiveness of the scheme must be tested given these addi-

tional constraints. We know the optimization scheme is fast
enough and will scale well, but we need to develop a variety
of infrastructure to make it work properly. In particular, we
need to incorporate forecasting and modeling techniques to
supply accurate input data. We need to ensure that the so-
lutions are implementable in real time. Finally, we need to
decide on an optimal length for a storage optimizer epoch.
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