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Storage Systems Dependent on Multivariate 

Stochastic Processes 

2. Kaczmarek 

Introduction 

The theory of storage a2pears to provide a suitable basis 

for a general analysis of water resources systems. Dooge [41, 

Nash [I61 and others have described the watershed by a system 

of storages; Kirby [ 101 presented the hydrologic cycle as a 

network (Figure 1) of storage processes, each acting deter- 

ministically on a random input. The most obvious example 

of the importance of storage theory in water resources is 

furnished by a system of reservoirs (Figure 2) constructed for 

meeting some water needs and/or for preventing flood damages. 

The theory of cooling ponds and lakes may also be based on 

the analysis of storage of waste heat from thermal power 

plants (Figure 3). 

Most of the papers on storage theory were done in the 

spirit of one-dimensional stochastic processes. Moran [15] 

in his pioneer work found the probability distribution of 

water stored Vi (i = 1,2, ....), assuming the inflows Qi to be 

independent and form the stationary random process. Kaczmarek 

[8] and Lloyd [Ill used different methods for extending Moran's 

model to the case of correlated inflows. Anis [2], Gani [ 5 ] ,  

Rozanov [18], Prabhu [17] and others contributed significantly 

to the stochastic storage theory. 
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However, in many cases the storage process depends on the 

random vector inputs and outputs. Let us mention only two 

simple examples. 

1. The stochastic behavior of the reservoir storage 

levels may usually be described by the simple differential 

equation 

where 

W: maximum capacity of the reservoir (cu.m.), 

V(t) relative storage level, <(t) = -- W 
Q(t) : inflow to the reservoir (cu.m../sec) , 

Qo (t) : outflow from the reservoir (cu.m./sec) . 
In [71 the following operation (release) rule was proposed for 

the outflow from the reservoir, supplying water to certain 

users! 

where D(t) is the water demand. It is obvious that using (2) 

the storage level will always fulfill 

Substituting (2) into (1) we obtain the nonlinear differential 

equation 

In many cases, e.g. for the agricultural water supply, D(t) 



is a random process, usually highly correlated with Q(t). 

Consequently, the storage process ~ ( t )  is formed by the 

random vector <Q(t), D(t) >. 
2. In [ 6 1  Jurak proposed the following equation for 

the water-air energy exchange from cooling lakes: 

where 

Qc: the rate of energy exchange ( ~ a l / ~ 2  h) , 
I 

To: the surf ace water temperature (OC) , 

ai = Qi(u,T,e,QSrt. ..): the random coefficients depen- 

dent on the wind velocity u, air temperature T, 

water vapor e, short-wave radiation Qsr and other 

meteorological phenomena. 

Assuming the full mixed cooling lake (pond), the following 

differential equation describes the water temperature changes 

in the imp~undment~provided the body of water is assumed to 

have uniform temperature distribution 

where 

p: water density, 

c specific heat of the water, w ' 

V: volume of water in the impoundment, 

L: thermal load. 

Obviously the stochastic process To(t) depends on the random 

vector <ao,al,a2> , assuming that V and L are constant or 

change deterministically. 



The purpose of this paper is to present some of the re- 

sults described earlier [ 81  for the case of univariant input 

processes and to extend them to the multivariate case. 

Reservoir D-ependent on LJmivariate Stochastic Input 

Let us consider a reservoir such that the volume v(t) 

of water stored, during any time period, is 

The maximum usable capacity f3 may be either constant or vari- 

able in time, e.g. it may be different during the flood and 

drought periods. Assuming the constant (average) inflow Qi in 

the period (t ,ti), we obtain from (1 ) i- 1 

Should the storage model serve for solving some real 

water resources problems, a number of specific requirements 

has to be met. In particular: 

- the reservoir volume must be finite, 
- the inflow model should describe realistically the rele- 
vant hydrologic phenomena, i.e. the input Qi being non- 

negative, usually time dependent, seasonally distributed, 

stationary (at least in many cases) with respect to annual 

series,and havinq a skewed probability distribution, 

- the function describing the operating (release) rules 
should reflect the system's objectives, be valid also for 



extreme hydrologic conditions of floods and droughts, be 

realizable by the dispatcher and, in particular, be 

based on the currently available information. 

Incidentally, it should be stressed that a large number 

of interesting papers are available in the mathematicad literature 

devoted to the "dam theory", which do not satisfy the above 

conditions. The aim of those papers was to develop mathematics, 

and, of course, water resources scientists and engineers should 

not expect mathematicians to be very much interested in the 

consistency of their assumptions with the real world water re- 

sources problems. Instead of complaining, water resources 

specialists should either sensibly adapt the existing mathe- 

matical knowledge (when feasible), or develop--in cooperation 

with mathematicians--the theory based on more realistic 

assumptions. 

To return to the main subject, we should now discuss in 

some detail the possible operating rules for Q (t). In most 
0 

practical cases the output (release) discharge can be 

presented as a function of the current storage level, reservoir 

inflow and a number of deterministic parameters 

Let us confine ourselves to a class of functions (9) which, 

substituted into (8) and after integration, give the functional 

relationship 



for which also the unique inverse transformation 

exists for all ~ ( t ~ - ~ ) ,  F[ti) and for all values of parameters. 

Let us now assume that Qi(i = 1,2,3, . . . I  is the lag-m 

time-discrete Markov process. It is obvious [1,71 that if 

(10) - (11) are valid, the process = <(to), S1 = S(tl), ..., 0 

Si = 5(ti), ... is the lag-(m + 1) time-discrete Markov pro- 

cess. If for example m = 1, the process 5 is the lag-two i 

process and the bivariate <Si - is again the simple (lag- 

one) Markov process. However, it should be remembered that 

the Markov property will be lost if there is no unique rela- 

tionship between the states of the original and the trans- 

formed processes. 

Let us take for example the release function (2), but 

assuming the constant (non-random) demand D(t) = d (~igure 4). 

After integrating (4) we obtain 

where 

with a = O.Old, b = 0. 99Qi - 1. Old, c = d - Qi. 



FIGURE 4. RESERVOIR RELEASE RULE - 
AN EXAMPLE. 



It is clear that for given (<i-lf~i) and given a, B f  t ,ti we 
i- 1 

may obtain the unique value of Q . The given realization i 

of the process (t) 

determines the trajectory 

of the process Qi. So, if Qi is the simple Markov process, 

then <(ti) is also ~arkovian, but with lag m = 2. 

The computational procedures for finding the probabilistic 

structure of the above reservoir process are described 

in [8] and will not be repeated here. The approximate 

solution may be obtained by dividing the <-space into r states 

(intervals). The errors in discretization may be reduced by 

using a large number of small intervals, although it should 

be remembered that the resulting matrices (for each time 

interval At = - 4 
ti ti-l) have r elements for m = 2. Similar 

computational difficulties arise when using the Lloyd theory 

of reservoirs with correlated inflows. 

Let us add a few more comments concerning the univariate 

case. As we mentioned beforefthe inflows to the reservoir 

should be periodic (seasonally distributed). It may also be 

assumed that the release function is again periodical, so it 

has exactly the same shape for t, t + TI t + 2T, ... where T 
is the period of one year. It may be shown that under 



very general assumptions the ergodic probabilities of the 

resulting storage process are also periodic. Interesting 

results in the theory of statistical equilibrium of storage 

processes were recently published by Rozanov [181. However, 

it should be stressed that for operational purposes the 

water resources manager may be more interested in the current 

probability structure of the storage process, i.e. in the 

first few matrices A1,A2, ..., A j,..., where 

assuming that the initial storage conditions 

V(to) = V for t = to 

are given. The reservoir dispatcher may then evaluate the 

possible results, expressed in probabilistic terms, of using 

the given operational policy, or may compare the effects of 

applying different policies. Mitosek [13] combined the 

storage model and the dynamic programming approach to find 

the optimal operational rules for a single reservoir. It 

should also be observed that when using storage models for 

operational purposes, the conditional (i.e. forecast) 

probability distribution of inflows 

cond (Q1,Q2,Q3,..-**I Z1rZ2,***,Zr) 

can be applied,where Zi denotes given predictors, that is, 

hydrometeorological factors affecting the probability distri- 

bution describing the inflow process to the reservoir. The 

general theory and type of hydrologic forecasting was 

presented in [ 9 I. 



Multivariate Stochastic Input to Storage Systems 

Let us consider the dynamic storage system described by 

the stochastic differential equation 

where X (t) are the components of a known multivariate m 

stochastic process. In most practical cases Xm(t) are 

interdependent, autocorrelated and seasonally distributed. 

In the relation (4) we have 

and in (6 ) ,  respectively, 

Let us assume that the time is divided into intervals (to,tl), 

(tl,t2),etc., and that for each of these intervals the random 

values 

'mi = ~ ( t )  for ti-l < t < t i  

m = 1,2, ... 
are constants, i.e. 

is a multivariate random variable with a given P.D.F. In some 

cases the conditional (forecasted) P.D.F. may be used. 

If the solution of (15) exists, it can be expressed by 

- the following relationship ( r  = ti ti-1): i 



or sometimes in an explicit form, 

where ci = <(ti) and <i-l - - t i  - 1 . The process 

Sit i = 0,1,2, ... is discrete-time and continuous-space, but 

for computational purposes it may be discretized also in the 

space domain. 

Let us assume, as was done in [ 8 ]  for the univariate 

case, that the total storage capacity W, constant or varying 

in time, is divided into r intervals. The relative storage 

level will be said to be in the state Sa if 

In the time intervals (t. ,ti+l) and (ti-l ,ti) the level of 
1 

storage may move from Sa i+ 1 i-l to si and from si to S , as B B Y 

is shown in Figure 5. Given that the number r of the 

storage states is sufficiently large, it seems feasible to 

i-1 assume that the transition from Sa i to S will occur if B 
inequalities 

are fulfilled. 

Let us now consider a class of release functions 

such that for given (Fi-l = z i-l; ci = 2.1 a 
1 

unique functional relationship exists, namely 



FI GURE 5. TRANSITION OF STORAGE STATES. 



z i-1' z i X i  X i  , 1 = 0 1 (22) 

and that for each system of inequalities (21) we may find a 

i unique set Q in the Xi-space. An example of such sets 
a8 - 

related to the release function (2) and relation (12) is 

presented in Figure 6. Therefore we have 

and, respectively, 

If the random vectors lC1,X2,...,lCi,... form the multivariate, 

lag-one Markov process, then the combined storage level 

intervals 

are the states of the Markovian process, and of course, 

TotT1tT2,-- Ci-l,Ti (26) 

is the lag-two, discrete-time, discrete-space Markov process. 

Having the conditional (transition) probabilities (24) 

and some information on the initial state SO for 

t = to, we may easily find all the stochastic characteristics 

of the storage process (26) . In particular, if Ai is the 

matrix of probabilities (23) and B i,i+1 is the matrix of 

conditional probabilities (24), then for each i = 1,2,,,, 
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FIGURE 6. SET ni ( O i  , d ) CORRESPONDING TO 

THE TRANSITION s i - L  si - 
AN EXAMPLE. 



Intuition suggests that in most practical cases water resources 

storage processes reach some sort of statistical equili- 

brium, which could be expressed by the periodic sets of 

ergodic probabilities. If such sets exist, they could be 

obtained from the system of linear equations 

which describe the simple fact that if the year is divided 

into k intervals, then A l+k - - 1 
Aerg* The matrix of transition erg 

probabilities is equal to 

i The remaining matrices Aerg, i = 2,3, ..., k may be found by 
using transformations similar to (27). 

It shollld be pointed out that in most cases it will not 

be easy to find the sets R and to compute the transition 

probabilities. This may create problems in applications of 

the above procedure to practical water resources problems, and 

maybe the classical method of statistical experiments (Monte 

CarTo approach) will be more convenient for solving such 

reservoir problems. Nevertheless, even the knowledge of 

the general structure of storage processes dependent on multi- 

variate random inflow and outflow may give us valuable 

information. 
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