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Abstract

We study the complexity of routing a set of messages with multiple destinations
(multicast routing) on an n-node square mesh under the store-and-forward model.
A standard argument proves that Ω (

√
cn) time is required to route n messages,

where each message is generated by a distinct node and at most c messages are to be
delivered to any individual node. The obvious approach of simply replicating each
message into the appropriate number of unicast (single-destination) messages and
routing these independently does not yield an optimal algorithm. We provide both
randomized and deterministic algorithms for multicast routing, which use constant-
size buffers at each node. The randomized algorithm attains optimal performance,
while the deterministic algorithm is slower by a factor of O

(
log2 n

)
. We also describe

an optimal deterministic algorithm that, however, requires large buffers of size O (c).
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1 Introduction

Routing primitives for collective communication are frequently used in parallel and

distributed systems when a piece of information must be shared among several hosts.

A typical example is multicast, which requires delivering a message from its source to

a number of distinct destinations. Multicast communication patterns are the message-

passing counterpart of the algorithmically useful “concurrent-read” primitives supported

by shared-memory models such as the PRAM [7], and arise in several parallel applica-

tions (e.g., matrix computations such as LU decomposition, Gaussian elimination and

network/circuit simulations), as well as in the implementation of barrier synchronization

and cache-coherence protocols. Hence, the provision of an efficient multicast primitive

facilitates the implementation of such applications on distributed-memory systems.

A number of earlier studies have explored the multicast problem under the wormhole-

routing switching model. Some of these works address the problem of routing a single

message to several destinations and develop suitable strategies for selecting the paths that

connect the message’s source to the destinations and for scheduling the actual delivery along

the selected paths efficiently [12, 13, 17]. Others focus mainly on determining conditions

for deadlock avoidance [1] or rely exclusively on experimental analysis of the performance

of the multicast routing algorithms under certain traffic conditions [11, 8, 19].

To the best of our knowledge, no analytical results are available in the literature on

the time complexity of multiple-message multicast problems, except for those that can be

derived through a reduction to the unicast (one destination per message) setting, which is

achieved by replicating each multicast message at the source into several unicast copies to
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be sent independently to the various destinations.

This paper makes an initial contribution aimed at filling this gap. Specifically, we

develop upper and lower bounds on the complexity of multicast routing on the mesh under

the store-and-forward model. We represent an instance of the multicast routing problem

on the n-node square mesh by an mcast(n, d, c) message set, a set of n messages, each

associated with at most d < n destinations to which a copy of the message must be

delivered, subject to the constraint that no node is the destination of more than c < n

messages overall. It is assumed that each node is the source of exactly one message.

Parameters d and c will be referred to as the degree and congestion of the message set,

respectively1.

1.1 Background

When c = 1, we must also have d = 1 and the problem reduces to standard permutation

routing, which can be solved in O (
√

n) time with constant-size queues [9, Sec.1.7]. In a

slightly different scenario, where initially there are m ≤ n messages (at most one per node)

and messages represent robots that cannot be replicated, it is shown in [3] that multicast

routing with c = 1 takes Θ
(√

dn
)

time (note that d can be greater than 1 when m < n).

The case where c > 1 requires more sophisticated techniques employing the

(d, c)−routing problem that involves the routing a set of n messages in which each node

is the source of a most d (distinct) messages and the destination of at most c messages.

By adapting the (d, c)-routing strategies presented in [18, 15] to work under the initial

condition that each node carries a single multicast (i.e. multi-destination) message rather

than d unicast (i.e. single-destination) messages, one can achieve O
(√

dcn
)

routing time

1In the literature, this problem has often been referred to as as one-to-many routing [9].
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with constant buffers, which, as we will see, is not optimal for multicast routing.

To see how (d, c)-routing differs from multicast routing and why we might entertain

hopes of solutions to the latter more efficient than the O
(√

dcn
)

time bound attainable

through (d, c)-routing, note that although a multicast routing instance does require one

copy of each message be delivered to that message’s various destinations, it is not necessary

that all of these copies be generated at the message’s source s and transported separately

across the network to their respective destinations. Indeed, if two destinations t′ and t′′ are

close to one another but far from their source s, it could be more convenient to dispatch

a single message copy to some node s′, which then replicates the message and sends the

copies onwards to t′ and t′′. If s′ is “close to” t′ and t′′ but “far from” s this should result

in significantly less network traffic than the traffic generated by routing two distinct copies

of the message all the way from s to t′ and t′′. A careful exploitation of this splitting idea

will yield running times for multicast routing significantly better than those achievable by

reducing it to (d, c)-routing.

Finally, it is worth pondering the relationship between multicast routing and a form

of unicast routing which allows multiple messages sharing a common destination s to be

combined into a single message along their way to s [16, 10]. In fact, for every instance M

of the multicast routing problem in which each message x ∈M must be delivered from its

source s(x) to its various destinations {t1(x), t2(x), . . . , tk(x)}, there is a related instance

MR of unicast routing in which a group of messages generated at {t1(x), t2(x), . . . , tk(x)}

need to be combined and delivered to node s(x). Now, a schedule S for instance MR that

specifies the paths taken by messages, the timing of their movements, and the combinations

along those paths could provide a solution for the multicast instance M, if the schedule

were run in reverse (with combining operations in S replaced by splittings). However,
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none of the known algorithms for unicast routing (with combining) provides the basis for

an efficient multicast algorithm. For example, the work by [10] is largely concerned with

scheduling the movement of packets along pre-selected paths; the path selection techniques

employed (largely based on greedy path selection and random intermediate destinations)

do not guarantee that the paths offer optimal performance when combining is allowed.

1.2 Our contributions

By combining simple diameter and bandwidth considerations we show that an arbitrary

mcast(n, d, c) message set requires Ω (
√

cn) time to be routed (Theorem 1).

If O (c) messages can be stored at a node, we show that a suitable routing strategy

(similar to the one adopted in [6] in the context of shared-memory simulations), which

replicates messages only when they are sufficiently close to their destinations, exhibits

optimal performance in the worst case (Theorem 2). For large values of c, this algorithm

is impractical because of the large buffer size.

Achieving optimal routing time using constant-size buffers, which is highly desirable

from a practical standpoint, is much harder. Under this limitation, we develop an optimal

randomized algorithm, and a deterministic algorithm whose performance is an O
(
log2 n

)
factor away from optimal (Theorems 3 and 4, respectively). Both algorithms rely on

partitioning the messages into groups, so that messages with destinations within (suitably

small) regions of the mesh are likely to be evenly distributed among the groups. Such

a distribution is obtained in the probabilistic setting by randomly assigning messages to

groups, and in the deterministic setting by employing a more complex scheme based on a

replicated assignment of copies of messages to groups that is governed by highly expanding

graphs.
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It is interesting to note that, unlike the case of (d, c)-routing with unicast messages,

the results proved in this paper show that the routing time for an arbitrary mcast(n, d, c)

message set is independent of parameter d. This is mainly explained by the observation

that while an instance of (d, c)-routing may involve up to dn distinct messages that need to

be transported individually across the width of the network, an mcast(n, d, c) message set

consists of only n messages (albeit with up to d destinations each) for which the splitting

technique sketched in the Introduction can be exploited to reduce the amount of network

activity entailed in its delivery.

The rest of the paper is organized as follows. Section 2 introduces our machine model

and describes a number of basic primitives that will be employed by our algorithms. Sec-

tion 3, presents the lower bound and the simple time-optimal deterministic algorithm that

uses buffers of size O (c). Sections 4 and 5 present, respectively, the randomized and deter-

ministic algorithms with constant-size buffers. Our algorithms assume that the congestion

of the message set c is given as an input parameter. In Section 6 we briefly discuss how

this assumption can be removed without affecting the asymptotic running time. Finally,

Section 7 offers some concluding remarks.

2 Technical setting

2.1 Machine model

Our reference machine is an n-node square two-dimensional mesh. We assume that every

node of the mesh has an input queue, an output queue and a buffer. Each message is located

initially in the input queue of its source node and remains there until it is injected into the

network. The message travels wrapped in a packet consisting of a header, which encodes

7



the destination addresses, and a payload, which contains the actual message body. Once a

packet reaches a destination node, the associated message is copied into the output queue

of that node and the packet is removed from the network. While travelling, a packet can

be held only in buffers. We will refer to buffer sizes in terms of the number of packets they

can accommodate.

The mesh is synchronous with time divided into steps. We assume that in a single step

either the transmission of a packet across a link or the creation of a copy of a packet/message

can be accomplished. This assumption is realistic in a setting in which all messages have

approximately the same size and account for a non-negligible fraction of the size of their

respective packets, independently of the number of destinations. Moreover, we assume that

in one step a node can execute a constant number of elementary operations on a packet,

including inspecting its destination addresses. Although the time required by this latter

activity may depend on d, we make the realistic assumption that this is dominated by the

time for packet transmission, upon which our notion of time is based.

In the algorithms, we often make use of tessellations of the mesh into square submeshes

of equal size. When the mesh is tessellated into t square submeshes of n/t nodes each,

we will call each such submesh a t-tile. Throughout the paper, tessellations with different

values of t are used, where t is a function of the parameters of the routing instance2.

Moreover we always assume that the mesh nodes as well as the tiles of a given tessellation

are numbered according to some natural ordering (e.g., row-major or snake-like) starting

from 0.

Our algorithms often require all packets located at a particular submesh to visit all of

2For convenience, in the presentation and analysis of the algorithms floors and ceilings are omitted under
an implicit assumption that the quantities involved are integral. This will not affect the asymptotics as
we shall show.
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the nodes in the submesh in turn, or requires groups of packets located in distinct tiles of

a given tessellation to visit all of the tiles. These movements can easily be orchestrated in

a Hamiltonian fashion thanks to the following straightforward property.

Fact 1 There exists a one-to-one mapping of the nodes of an m-node ring into the nodes

of an m-node mesh in such a way that each pair of adjacent ring nodes are mapped to mesh

nodes that are at most a distance of two apart in the mesh.

In the reminder of the paper, we will use the expression Hamiltonian cycle of a

mesh/submesh in a loose way to refer to the ring embedding claimed in Fact 1.

2.2 Basic primitives

Our algorithms will make use of a number of basic primitives which are briefly described

below. Consider n packets encapsulating the messages of an mcast(n, d, c) message set

and originating in distinct nodes. The following two propositions state useful well-known

results regarding the mesh.

Proposition 1 ([9, Ch.1]) Sorting a set of n packets according to some specified packet

field can be accomplished in O (
√

n) time on the mesh. A prefix computation on n values

can be completed in the same amount of time.

Both algorithms assume that the inputs are initially distributed one per node.

Proposition 2 ([2]) Any instance of (k, k)-routing, where each node is the source and the

destination of at most k unicast messages can be performed in Θ (k
√

n) time using buffers

of size O (k).
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We will use the term permutation routing when referring to instances of (k, k)-routing with

k = 1.

Consider a tessellation of the mesh into t-tiles, for some t. We define the t-migration

primitive as follows. Let S be a set of packets, each with a number of destinations. The

t-migration problem involves the selection, for each tile, of n/t packets with destinations in

the tile (or all packets with destination in the tile if they are less than n/t), and the routing

of a copy of each packet (packet-copy) to every tile for which the packet was selected. Each

packet-copy is routed to some intermediate destination in its destination t-tile, so that

each node receives at most one packet-copy (and each t-tile as a whole receives at most

n/t packet-copies). The t-migration primitive can be executed as follows:

1. Execute t prefix computations, where for the i-th prefix each packet contributes a
value 0 or 1 depending on whether it has destinations in the i-th tile (with tiles
numbered in some natural fashion). At the end of the i-th prefix a packet will be
marked as selected for the i-th tile if its prefix value is at most n/t. (Observe that
the space needed for representing the marks assigned to a packet never exceeds the
space used to represent its destinations.)

2. Let mj be the number of marks assigned to the packet originating in node j. Create
mj copies of the packet (packet-copies) as follows.

(a) Route the packet to the node with index
∑j−1

`=0 m`, which can be determined
through a prefix computation on the mjs using permutation routing. (We as-
sume here that the nodes are numbered in some suitable snake-like order.)

(b) The positioning of the packets along the sequence of nodes determined by the
snake-like ordering, effectively partitions the sequence into segments, with each
packet positioned at the beginning of “its” segment, which contains mj consec-
utive nodes.

(c) Broadcast a copy of each packet (packet-copy) to every node of its corresponding
segment. Associate the packet-copies with the distinct tiles for which the packet
was selected.

3. Sort the packet-copies according to their destination tiles and assign distinct ranks
to packet-copies destined to the same tile, using a prefix computation. Then execute
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a permutation routing to send each packet-copy to its associated tile, using its rank
as destination within the tile.

Proposition 3 The t-migration primitive can be performed in O (t +
√

n) time

Proof: Step 1 can be executed by pipelining t prefix computations, for a total time of

O (t +
√

n). All other steps require a number of prefix, sorting and permutation routing

primitives, thus contributing an additional O (
√

n) term to the running time. Note that

the broadcasts of the packets to all of the nodes of their corresponding segments, performed

in Substep 2.(c), can be implemented as a single instance of a prefix computation using a

suitable associative operator [9, Sec.1.2.1]. 2

3 Preliminary results

The following theorem provides a lower bound on the worst-case performance of any mul-

ticast routing algorithm. The proof is based on a standard congestion argument, which is

well known in the mesh-routing literature.

Theorem 1 For any setting of parameters n, d, c with 1 ≤ d, c < n, there exists an

mcast(n, d, c) message set such that the time required to deliver all of the messages to

their destinations is Ω (
√

cn).

Proof: Consider a square submesh A of side max{1, b
√

n/(2c)c}, and let B denote the

rest of the mesh. Note that |A| = Θ (n/c) and |B| ≥ c|A|. Consider an instance of

mcast(n, d, c) where c|A| messages originating at nodes of B have exactly one destination

each in A. Clearly, Ω
(
c
√
|A|
)

= Ω (
√

cn) time is needed for all of these messages to enter

A. 2
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Despite the fact that in a general instance of multicast the relative magnitude of d and

c is arbitrary, our algorithms are designed to work for the case d ≤ c. The following lemma

shows that there is no loss of generality by restricting our attention to this case.

Lemma 1 The routing of an mcast(n, d, c) message set with d > c can be reduced to

the routing of at most two mcast(n, c, c) message sets in O (
√

n) time using constant-size

buffers.

Proof: For 0 ≤ i < n, refer to the packet originating at node i as the i-th packet, and

let `i = ddi/ce, where di denotes the number of destinations of this packet. Using the

same technique as that employed in Step 2 of the t-migration algorithm, the reduction

strategy creates a copy of the i-th packet in every node of index (
∑i−1

j=0 `j + k) mod n, with

0 ≤ k < `i, assigning (at most) c distinct destinations of the original packet to each copy.

Observe that
∑n−1

j=0 dj ≤ cn, or otherwise there would be a node which is a destination for

more than c messages. Thus

n−1∑
j=0

`j ≤
n−1∑
j=0

(1 + dj/c) ≤ 2n,

hence each node receives at most 2 copies of packets. The whole process can be ac-

complished in O (
√

n) time using constant space at each node, using prefix, segmented

broadcast and routing primitives (see Propositions 1 and 3). 2

We now present a simple deterministic algorithm for routing any mcast(n, d, c) message

set, with d ≤ c, in optimal O (
√

cn) time, which, however, requires buffers of size Θ (c).

The algorithm, described below, makes use of a series of log4 c + 1 nested tessellations of

the mesh into tiles of increasing fineness, namely 4i-tiles, for 0 ≤ i ≤ log4 c. Note that for
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0 ≤ i ≤ log4 c, every 4i-tile consists of four quadrants which are 4i+1-tiles. We refer to a

node in a 4i+1-tile and the corresponding nodes in the same relative positions in the other

three 4i+1-tiles within the same 4i-tile as 4i-siblings.

1. Replicate the entire set of packets in every c-tile as follows. For 0 ≤ i < log4 c in
turn, send copies of the 4i packets located at each node to the 3 nodes that are its
4i-siblings within the same 4i-tile. After the last iteration each node contains O (c)
packets.

2. In parallel within each c-tile do the following:

(a) For each packet retain only the addresses related to destinations within the tile,
stripping out the other addresses. Partition the packets into classes determined
by the number of their destinations within the tile. More precisely, let class Cj

comprise all packets with between 2j and 2j+1 − 1 destinations within the tile,
for 0 ≤ j ≤ blog2 dc .

(b) Execute blog2 dc+ 1 prefix computations to rank separately the packets of each
class, and use the ranks to assign a intermediate node to each packet, in order
to spread the packets of each individual class evenly among the nodes of the
tile. More precisely, a packet with rank r in class Cj will be assigned the
(r mod (n/c))-th node of the tile as an intermediate node.

(c) Route each packet to its intermediate node.

(d) Within each node, for every packet received in the previous step, create as
many copies as the packet has destinations within the tile, assigning a distinct
destination to each copy. We will refer to the copies as clones.

(e) Route each clone to its final destination.

Theorem 2 The above algorithm correctly routes any mcast(n, d, c) message set, with

d ≤ c, in optimal Θ (
√

cn) time, using buffers of size Θ (c) at each node.

Proof: Correctness follows immediately by observing that the entire message set is repli-

cated in every c-tile and within a tile a copy (clone) of a packet is dispatched to each of

the packet’s destinations in the tile.

For 0 ≤ i < log4 c, Iteration i of Step 1 consists of an instance of (4i, 3 · 4i)-routing to

be executed within a 4i-tile since each node holds 4i packets to be forwarded to its three
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siblings. By Proposition 2 this takes O
(
4i
√

n/4i
)

time. Since the running times of the

log4 c iterations form a geometric series, the overall running time for Step 1 is O (
√

cn).

3 Step 2.(a) involves no packet movement. Step 2.(b) can be executed by pipelining the

required blog2 dc+ 1 prefix computations in time O
(
log2 d +

√
n/c

)
. The ranking ensures

that when packets are sent to their intermediate nodes, each node receives

blog2 dc∑
j=0

d|Cj|/(n/c)e ≤ 1 + log2 d + c = O (c)

packets, since
∑blog2 dc

j=0 |Cj| ≤ n and d ≤ c. Therefore Step 2.(c) requires (O (c) , O (c))-

routing within each c-tile, which takes O (
√

cn) time. As for Step 2.(d), we observe that

since each packet in Cj contributes at least 2j clones and each node will eventually receive

at most c clones, we have that
∑blog2 dc

j=0 2j|Cj| ≤ c(n/c) = n. By virtue of the redistribution,

in Step 2.(d) each node will create

blog2 dc∑
j=0

(2j+1 − 1)

⌈
|Cj|
n/c

⌉
= O (c)

clones in total. Hence the final routing in Step 2.(e) is again an instance of (O (c) , O (c))-

routing within c-tiles, which takes O (
√

cn) time. The theorem follows by adding up the

contributions of all the steps and noticing that no node receives more that O (c) packets

at any time during the algorithm. 2

3This description implicitly assumes that the
√

n/4i quantities are integral. It should be clear however
that the techniques extend to arbitrary n at the cost of a small constant factor per iteration. Note the
overall cost of Step 1 is formed by summing those of the various iterations and so that these small constant
factors cannot accumulate in a bad way. Similar reasoning can be applied to all the other results in the
paper that involve involve implicit assumptions of the integrality of the size of the submeshes involved.
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4 Randomized Algorithm

We now present an optimal randomized algorithm for routing an arbitrary mcast(n, d, c)

message set with d ≤ c and constant buffer size.

The algorithm is organized in phases. In each phase the mesh is tessellated into tiles

of a suitable size, and the packets with destinations that have not been visited in previous

phases are randomly partitioned into a number of groups equal to the number of tiles.

Each group of packets is first routed to a distinct tile and then circulated around the tiles

(in a Hamiltonian fashion), allowing the packets in the group to attempt reaching their

destinations within a tile as the group “visits” that tile. Most of these packet deliveries

will succeed due to the fact that the random assignment of packets to groups ensures that

“competitors” of a packet with a destination x in a tile C, meaning those other packets

that also have to be delivered to destinations in a given neighbourhood of x (called a block),

are evenly distributed among the various groups. Therefore, it is unlikely that the delivery

of the packet to x will be frustrated by above-average contention due to such competitors.

At the end of the phase, the total number of uncompleted deliveries will be substantially

reduced.

Let us now describe the algorithm in detail. Without loss of generality, assume that

c ≤ n/16, since otherwise the strategy where all packets circulate along a Hamiltonian

cycle of the mesh suffices to achieve optimal performance. (We assume for now that the

value of c is known to the nodes. We discuss how to remove this assumption in Section 6.)

There are K + 1 phases, numbered from 0 to K, where K = log16(dc log2 n/ne). (Note

that K = 0 for c ≤ n/ log2 n.) For 0 ≤ i ≤ K, let ci = c/16i, and consider a tessellation

of the mesh into ci-tiles {T i
j : 0 ≤ j < ci}, where the numbering identifies a Hamiltonian
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cycle of the tiles.

In turn, consider a tessellation of each ci-tile into bi =
√

n/ci square subtiles of bi nodes

each, referred to as bi-blocks. (See Fig. 1.) Note that since we assumed c ≤ n/16, bi ≥ 4

for every i ≥ 0.

ci-tile

bi-block

?

6

√
n

?

6

√
n
ci

?

6
4
√

n
ci

- - -

?

?

?

�

6

6

�

?

?

�

6

6

6

T i
0 T i

1 T i
2 T i

3

T i
15 T i

10 T i
9 T i

4

T i
14 T i

11 T i
8 T i

5

T i
13 T i

12 T i
7 T i

6

Figure 1: The double tessellation of the mesh employed in Phase i of the randomized algo-
rithm. Observe that the numbering of the ci-tiles follows the Hamiltonian cycle indicated
by the solid path.

16



For 0 ≤ i ≤ K, Phase i consists of the following steps.

1. Partition the packets into ci groups G1, G2, . . . , Gci
each containing at most 2n/ci

packets and distribute each group evenly among the nodes of a distinct ci-tile as
follows.

(a) Partition the packets into ci tentative groups G′
0, G

′
1, . . . G

′
ci−1, by assigning each

packet to a group with uniform probability 1/ci.

(b) Sort the packets by their tentative group index and rank the packets separately
within each tentative group using a segmented prefix computation.

(c) Partition the packets of each tentative group into segments of size n/ci (al-
lowing for one “incomplete” segment per group) using prefix computations.
Observe that the total number of segments among all tentative groups is∑ci−1

j=0 d|G′
j|/(n/ci)e ≤ 2ci, and let these segments be globally numbered from

0 onwards.

(d) For 0 ≤ j < ci, assign packets belonging to the two segments of indices j and
j + ci to group Gj.

(e) Sort the packets by their group index and rank them separately within each
group using prefix computations. For each group Gj, use the ranks of the
packets to assign intermediate nodes within tile T i

j so that at most 2 packets
are assigned to the same intermediate node.

(f) For 0 ≤ j < ci, send all packets in group Gj to their intermediate nodes in tile
T i

j using permutation routing.

2. In parallel for each cell T i
j , repeat the following sequence of steps ci times:

(a) Let r be a suitable constant to be specified later. Run r instances of the t-
migration primitive with t = bi so that each bi-block of Tj receives at most rbi

copies of packets (packet-copies) that have destinations within that block and
that these packet-copies are distributed evenly among the nodes of the block.
The r instances of the primitive must be executed in such a way that a packet is
selected no more than once for the same bi-block. Also, retain the original copy
(master copy) of each packet at the node where it was located at the beginning
of this substep.

(b) Within each bi-block, circulate the packet-copies received in the previous substep
along a Hamiltonian cycle of the block, to allow them to reach all of their
destinations in the block.

(c) Discard all packet-copies created in Substep 2.(a) and shift the retained master
copies to the same relative positions in the next cell T i

j+1 mod ci.
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3. If i = K, repeat Step 2 while there are deliveries yet to be completed.

The correctness of the above algorithm is ensured by Step 3. In order to get a proba-

bilistic bound on the running time, we need the following two lemmas.

Lemma 2 For every 0 ≤ i ≤ K, at the beginning of Phase i, the number of packets with

unvisited destinations within any given bi-block is at most bici, with high probability.

Proof: We bound from above the probability that there exists a phase for which the stated

property does not hold. Note that such a phase cannot be Phase 0, since there are at

most c = c0 packets destined to any mesh node in the message set. Suppose that the first

phase for which the property does not hold is Phase i + 1, with i ≥ 0, and let B be a

bi+1-block such that at the beginning of the phase there are more than bi+1ci+1 packets

with unvisited destinations in B. Then, it is easy to see that there must be at least one

of the four bi-blocks contained in B, say B′, for which more than bici/16 packets with

unvisited destinations in the block were not selected in Step 2.(a) of Phase i. This implies

that in Phase i these packets belonged to groups where the maximum number of packets

for B′, namely rbi, were selected. Since at the beginning of Phase i there were at most bici

packets in total with unvisited destinations in B′, the unselected packets cannot belong

to more than bici/rbi = ci/r groups, hence to more than ci/(r/2) tentative groups. The

probability of this event is bounded above by

(
bici

bici/16

)(
ci

ci/(r/2)

)(
2

r

)bici/16

≤
(

ebici

bici/16

)bici/16 (
eci

ci/(r/2)

)ci/(r/2) (
2

r

)bici/16

≤
(

16e
(

er

2

)16/(bir/2) 2

r

)bici/16
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≤
(

4

5

)√nci/16

,

where the last inequality is obtained by using the fact that bi is always at least 4 and by

fixing r ≥ 150. (No attempt is made here to optimize the constants.) Since the above

probability is exponentially small in n, the lemma follows by applying the union bound

over the at most polynomially many phases and blocks. 2

Lemma 3 In Phase K, all remaining deliveries are made in the first execution of Step 2,

with high probability.

Proof: Let B be an arbitrary bK-block and G′ an arbitrary tentative group formed in

Step 1.(a). By Lemma 2, at the beginning of Phase K there are at most bKcK packets with

unvisited destinations in B, with high probability, and each such packet is assigned to G′

independently with probability 1/cK . By Chernoff’s bound [4] the probability that G′ con-

tains more than rbK/2 packets with unvisited destinations in B is at most
(
eδ/(1 + δ)1+δ

)µ

(where µ = bK and 1 + δ = r/2), which is less than
(

2e
r

)rbK/2
. Since bK = Ω (log n) by

our choice of K, it is clear that by choosing a large enough value for constant r and by

applying the union bound over all blocks and groups, the probability that there exists

a tentative group with more than rbK/2 packets with unvisited destinations in the same

block can be made polynomially small. This implies that the routing is completed after

the first execution of Step 2, with high probability. 2

The algorithm may be implemented efficiently, as the following theorem demonstrates.

Theorem 3 The above randomized algorithm routes any mcast(n, d, c) message set with

d ≤ c in optimal time O (
√

cn) with high probability, using buffers of size O (1) at each

node.
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Proof: Consider Phase i. As indicated in the individual substeps, Step 1 can be imple-

mented using a constant number of sorting, permutation routing and prefix primitives

requiring O (
√

n) time. Within each ci-tile, every iteration of Step 2 involves: a con-

stant number of calls to the t-migration primitive, with t = bi (Substep 2.(a)); a complete

tour of the nodes within each bi-block along a Hamiltonian cycle (Substep 2.(b)), and

the movement of the packets in the tile to the adjacent tile (Substep 2.(c)). By applying

Proposition 3, each iteration takes O
(
bi +

√
n/ci

)
= O

(√
n/ci

)
time. Hence, Step 2 re-

quires O
(
ci

√
n/ci

)
= O

(√
cin
)

time altogether. The stated running time follows since, by

Lemma 3, in Phase K Step 2 is executed only once, with high probability.

As for the buffer size, observe that Step 1 of the algorithm begins with one packet

per node and ends with at most two per node and that the constituent substeps involving

segmented prefix and sorting operations never load more than O(1) packets per node.

Step 2 begins with O(1) packets per node; the migration primitive of Substep 2.(a) requires

only O(1) space per node and ensures that each node receives O (1) packet-copies; the

remaining substeps, Substeps 2.(b) and Substep 2.(c), similarly require only O(1) space

per node. Hence, buffers of constant size suffice to run the algorithm. 2

5 Deterministic Algorithm

In this section we develop a deterministic algorithm that routes any mcast(n, d, c) message

set, with d ≤ c, in time O
(√

cn log2 n
)

using buffers of constant size. Throughout the

section, we assume that c ≥ log4 n, since otherwise the same upper bound on the routing

time can be achieved by employing the known algorithms for (d, c)-routing with constant-

sized buffers, as described in the Introduction.
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The idea underlying the deterministic algorithm is somewhat similar to the one at the

core of the randomized algorithm described in the previous section: divide the packets

into groups, so that message deliveries to any given block within a single group create

less congestion than in the original problem. However, we cannot rely on randomization

to spread deliveries to a block evenly among the groups, hence we must resort to a more

complex scheme based on a replicated assignment of copies of packets to groups, regulated

by the highly expanding graphs defined below.

Definition 1 For constant λ, 0 < λ < 1 and integers r and c, with 1 ≤ r ≤ c ≤ m, a

regular bipartite graph4 G = (U, V ; E) is an (m, c, r, λ)-expander if |U | = m, |V | = c < m,

each node in U (resp., V ) has degree r (resp., rm/c), and for every S ⊆ U with |S| ≤

|V |/r, the edges emanating from S are incident upon a set Γ(S) of nodes of V of size

|Γ(S)| ≥ λ|S|r.

The existence of such graphs can be proved using the probabilistic method, by resorting

to the natural correspondence between the set of bipartite graphs G = (U, V ; E) with

|U | = m, |V | = c ≤ m and deg(u) = r for all u ∈ U , and the group Σrm of permutations

of (0, 1, . . . , rm− 1). Under this correspondence, any permutation π ∈ Σrm represents the

graph G = (U, V ; E), where node ui ∈ U , for 0 ≤ i < m, is adjacent to the nodes of V

of indices bcπ [ir + j] /(rm)c, for 0 ≤ j < r. When c = Ω (log m) and r = Θ (log m), it

can be shown that a random permutation in Σrm represents an (m, c, r, λ)-expander, for a

suitable constant λ, with probability at least 1 − 1/poly(c). (See [5, 14] for instances of

such proofs.)

Given an mcast(n, d, c) message set, an (n/ log n, c, r, λ)-expander G = (U, V ; E) with

4For technical reasons, we allow the possibility of two or more edges linking the same pair of nodes.
Hence our “graphs” are technically multi-graphs. Since this will not affect the subsequent discussion in
any material way, for simplicity we will use the term graph in the sequel.

21



r = Θ (log n) is employed in the deterministic algorithm as follows. Let π ∈ Σrn/ log n denote

the permutation representing G and assume that the entries of π are evenly distributed

among the mesh nodes by storing entry π[k] at the mesh node of index k mod n, which

requires only constant space per node. (Note that the set of neighbours of set S ⊂ U with

size at most n/r may be probed in O (
√

n) time using permutation routing.) We partition

the message set arbitrarily into log n classes of n/ log n messages each. We consider a

tessellation of the mesh into c-tiles {Tj : 0 ≤ j < c}, each of size n/c, where the numbering

identifies a Hamiltonian cycle of the tiles. In turn, each c-tile is partitioned into b =
√

n/c

square subtiles of b nodes each, referred to as b-blocks.

We route each class separately in a number of phases. Consider the routing of an

arbitrary class. In the first phase, we execute the following steps.

1. Create r replicas of each packet and assign them to r of c groups based on the
expander G = (U, V ; E) using ideas similar to those of Step 2 of the algorithm of
Proposition 3 as follows. Let the i-th packet of the class correspond to node ui of U ,
and the `-th group G` correspond to node v` of V .

(a) Using a prefix computation and permutation routing, spread the packets among
the mesh nodes so that each packet is positioned at the beginning of a segment
of r nodes and no node belongs to more than O (1) segments.

(b) Create the replicas of each packet, one for each node of its assigned segment,
using a segmented broadcast.

(c) Using permutation routing, route the j-th replica of the i-th packet to the node
of index ((i − 1)r + j) mod n (which stores the value π[(i − 1)r + j]) so that
the replica can be assigned to group G` with ` = bcπ [(i− 1)r + j] /(rn/ log n)c.
Note that each group formed in this fashion comprises Θ (n/c) replicas.

2. Sort the replicas by their group index and rank them separately within each group.
For each group G`, use the ranks to assign intermediate nodes within tile T` so that
at most O (1) replicas are given the same intermediate node.

3. For 0 ≤ ` < c, send all replicas in group G` to their intermediate nodes in tile T`

using permutation routing.
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4. In parallel for each tile T`, repeat the following steps c times:

(a) Let α > 1/λ be a constant. Repeat the following three substeps r times.

i. Perform α instances of the t-migration operation. This involves creating
copies of replicas (hereinafter referred to as clones), each clone of replica
x corresponding to some block for which x has unvisited destinations, and
the subsequent selection and movement of clones to their intended blocks in
such a way that at most αb clones are delivered to each block and each block
node receives O(1) of those clones. The various instances of the primitive
must be executed making sure that a clone is selected no more than once
for the same b-block.

ii. Within each b-block, circulate the clones received in the previous substep
along a Hamiltonian cycle of the block, to allow them to reach all of their
destinations in the block.

iii. Discard all clones created in Substep 4.(a).i, marking in each replica the
destinations visited during Substep 4.(a).ii using sorting and prefix opera-
tions.

(b) Shift the replicas to the same relative positions in the next tile T`+1 mod c.

5. Route all replicas back to the positions they occupied upon creation (i.e., at the end
of Substep 1.(b) using permutation routing.

6. Coalesce the r replicas of each packet into a single packet, thus identifying all des-
tinations that are still unvisited. (Note that a destination for a packet is unvisited
if it was not marked as visited in one of the replicas during Substep 4.(a).iii.) This
is similar to the replica-creation process of Step 1 and involves the same algorithmic
ingredients.

The subsequent phases consist of repetitions of Steps 1–6, with the exception that in

Substep 4.(a) we perform only one iteration rather than r, thus selecting αb packets for

each block rather than αbr.

The next lemma provides a bound on the number of phases needed to complete all

packet deliveries in a class. We say that a packet is alive for a b-block at the end of a phase

if it contains unvisited destinations within that block.

Lemma 4 For i ≥ 1, at the end of the i-th phase, the number of packets alive for each

block is at most c/(rbi−1).
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Proof: Let us first prove the claim for the first phase. Suppose that at the end of Step 6

there are more than c/r packets alive for a given block B, and consider a subset of exactly

c/r such packets. By the expansion properties of G, in Step 1 the replicas of these packets

were spread among at least λc groups. Since none of the clones of these replicas was selected

for B in the appropriate iterations of Substep 4.(a) (i.e., when the respective groups were

in the tile containing B), it must be the case that at least λc(αbr) > cbr clones of other

packets with destinations in B were selected. This is a contradiction, since the overall

number of clones with destinations in the block cannot exceed cbr.

A similar argument shows that in each of the remaining phases the total number of

packets alive for any given block decreases by a factor b. 2

Lemma 4 guarantees that logb(bc/r) = O (log n/ log(n/c)) = O (log n) phases are sufficient

to complete the routing of each class. We are now ready to prove the main result of this

section.

Theorem 4 The above deterministic algorithm routes any mcast(n, d, c) message set with

d ≤ c in time O
(√

cn log2 n
)

using buffers of size O (1) at each node.

Proof: Consider the first phase of the algorithm. Steps 1, 2, 3, 5, and 6 are all implemented

using a constant number of calls to sorting, (segmented) prefix computations and permu-

tation routing, for a total running time of O (
√

n) with constant size buffers. Within each

c-tile, every iteration of Step 4 involves: Θ (r) invocations of the t-migration primitive with

t = b (Substep 4.(a).i); r complete tours of the nodes within each b-block along a Hamil-

tonian cycle (Substep 4.(a).ii); r sortings and segmented prefix computations in order to

mark the visited destinations of each replica (Substep 4.(a).iii); and, finally, the movement

of the replicas to the adjacent tile (Substep 4.(b)). Hence, by applying Proposition 3, the
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overall time for Step 4 is O
(
cr(b +

√
n/c)

)
= O (r

√
cn), using buffers of constant size.

In summary, the first phase can be completed in time O (
√

cn log n). For the subsequent

phases, observe that we perform a single iteration in Step 4.(a), hence the overall running

time of each such phase is O (
√

cn). Since Lemma 4 guarantees that O (log n) phases suf-

fice, it follows that the routing of a single class is performed in time O (
√

cn log n). By

summing over the log n classes, we conclude that the entire message set is routed in time

O
(√

cn log2 n
)
. 2

In the above algorithm we made the implicit assumption that the permutation π

representing the expander graph G is available at the mesh nodes. However, it would

seem that a different expander is needed for every congestion value c, and therefore

the time to generate the permutation should be included in the analysis. However,

as an immediate corollary of the fact that a random permutation in Σrn/ log n repre-

sents an (n/ log n, c, r, λ)-expander, for a suitable constant λ, with probability at least

1− 1/poly(c), it follows that the same random permutation represents a family of graphs

{Gk = (U, Vk; Ek) : 0 ≤ k ≤ log n−4 log log n}, where Gk is an (n/ log n, ck, r, λ)-expander,

with the cks forming a geometric series of values ranging from log4 n to n, with probability

at least 1−1/poly(log n). Therefore, there exists a single permutation that can be used to

route any message set irrespective of its congestion. One such permutation can be stored

in a distributed fashion among the mesh nodes and can be probed in O (
√

n) time.

6 Dealing with unknown congestion values

The algorithms presented in the previous sections assume prior knowledge of the congestion

value c, which is generally not the case in a practical context. As explained below, this
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assumption can be removed for all of our algorithms without increasing the overall running

time asymptotically. First, the average congestion c̄ is determined as the total number of

message deliveries divided by n. Then, the algorithm is run for geometrically increasing

values of congestion, starting from c̄. An execution for a given guessed congestion value

c′ is aborted when either the running time goes beyond a certain threshold proportional

to the target time for the current guess, or the allotted buffer capacity (depending on

the algorithm) is exceeded. Clearly, the algorithm terminates when the actual congestion

value is guessed. Note that the sequence of running times of the various executions forms

a geometrically increasing series dominated by its last term, hence it will be of the same

order as the target time for the actual congestion value.

7 Conclusions

In this paper we presented several strategies for routing multicast message sets on meshes

under the store-and-forward switching model. More specifically, we devised both random-

ized and deterministic time-optimal algorithms. However, while the former requires only

constant-size buffers, the latter makes use of buffers whose size can be as large as the con-

gestion of the message set. In order to perform the routing deterministically with constant

buffers, we devised a more involved algorithm whose running time, however, is a polyloga-

rithmic factor away from optimal. A further limitation of this algorithm is represented by

its use of highly expanding graphs whose existence can be proved through the probabilistic

method, although their explicit construction is notoriously hard.

The complexity gap between the randomized and deterministic cases is intriguing since

no such gap exists for most other mesh problems (one notable exception being the PRAM
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simulation problem as shown in [6]). Improving the running time of the deterministic

algorithm to close this gap and avoiding the use of complex expanding graphs are interesting

open problems. It is also interesting to extend our results to other topologies or to different

routing models such as the robot model of [3] which prohibits replication and for which

only the case of unit congestion has been considered so far.
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