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Abstract

Decomposition of the electromagnetic energy into its stored and
radiated parts is instrumental in the evaluation of antenna Q and the
corresponding fundamental limitations on antennas. This decomposi-
tion is not unique and there several proposals in the literature. Here,
it is shown that stored energy defined from the difference between the
energy density and the far field energy equals the new energy expres-
sions proposed by Vandenbosch for many cases. This also explains
the observed cases with negative stored energy and suggests a possible
remedy to them. The results are compared with the classical explicit
expressions for spherical regions. It is shown that the results only
differ by a factor ka that is interpreted as the far-field energy in the
interior of the sphere. Numerical results of the Q-factors for dipole,
loop, and inverted L-antennas are also compared with estimates from
circuit models and differentiation of the impedance.

1 Introduction

It is well known that the electrostatic energy in free space can be written
as an integral of the energy density, ε0|E|2/4, or equivalently as an integral
of the electric potential, φ, times the charge density, ρ, [1–4]. A similar
expression holds for the magnetostatic energy. The electrodynamic case
is more involved. In [5], Carpenter suggests a generalization in the time
domain based on φρ+ A · J , i.e., the sum of the scalar potential times the
charge density and the vector potential, A, times the electric current density,
J , see also [6, 7]. In [8], Vandenbosch presents general integral expressions
in the electric current density for the stored electric and magnetic energies.
These expressions are similar to the expressions by Carpenter but include
some correction terms, see also [9].
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The expressions by Vandenbosch are very useful to analyze small an-
tennas [10–13] and have been verified for wire antennas in [14]. One minor
problem with the proposed expressions is that they can produce negative
values of stored energy for electrically large structures [11]. On the other
hand, the classical work by Chu [15] is based on subtraction of the power
flow and explicit calculations using mode expansions of the stored energy
outside a sphere, see also [16]. This gives simple expressions for the mini-
mum Q of small spherical antennas [15, 16]. The major shortcoming is that
the results are restricted to spherical regions although some generalizations
to spheroidal regions are suggested in [17, 18]. The results have also been
generalized to the case with electric current sheets by Thal [19] and Hansen
and Collin [20] by adding the stored energy in the interior of the sphere.

In this paper, we investigate stored electric and magnetic energy expres-
sions based on subtraction of the far-field energy density. The expressions
are suitable for antenna Q and bandwidth calculations and closely related
to the classical methods in [16] and others for antenna Q calculations. They
are not restricted to spherical geometries and, furthermore, resembles the re-
cently proposed expressions by Vandenbosch [8]. The results provide a new
interpretation of Vandenbosch’s expressions [8] and explain the observed
cases with negative stored energy [11]. They also suggest a possible remedy
to the negative energy and that the computed Q has an uncertainty of the
order ka, where a is the radius of the smallest circumscribing sphere and k
the wavenumber. This is consistent with the use of Q for small (sub wave-
length) antennas, where ka is small and Q is large [15, 16]. Analytic results
for spherical structures show that the expressions in [8] for Q differ with ka
from the results in [20], that is here interpreted as the far-field energy in the
interior of the sphere. The results for Q are also compared with estimated
values from circuit models and differentiation of the impedance [21, 22] for
dipole, loop, and inverted L antennas.

The paper is organized as follows. In Sec. 2, the stored electric and
magnetic energies defined be subtraction of far-field from the energy den-
sity are analyzed. Analytic results for spherical geometries and comparison
with classical results are presented in Sec. 3. The coordinate dependence
is analyzed in Sec. 4. Stored energies from small structures are derived in
Sec. 5. Comparisons with numerical results for dipole, loop, and inverted L
antennas are given in Sec. 6. The paper is concluded in Sec. 7.

2 Stored electromagnetic energy

We consider time-harmonic electric and magnetic fields, E(r) and H(r), re-
spectively, with a suppressed e−iωt dependence, where ω denotes the angular
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Figure 1: Illustration of the object geometry V and with outward normal
unit vector n̂ and current density J(r). The object is circumscribed by a
sphere with radius a.

frequency. The Maxwell equations in free space are [1]{
∇×E = iωµ0H = iη0kH

∇×H = −iωε0E + J = − ik
η0
E + J ,

(1)

where J denotes the current density, while ε0, µ0, and η0 =
√
µ0/ε0 are

the free space permittivity, permeability, and impedance, respectively. For
simplicity, we interchange between the angular frequency and the free space
wavenumber k = ω/c0, where the speed of light c0 = 1/

√
µ0ε0. We also

recall the continuity equation, ∇ · J = iωρ, relating the current density J
with the charge density ρ.

It is widely accepted [1, 2, 4] that the time-harmonic electric and mag-
netic energy densities are ε0|E|2/4 and µ0|H|2/4, respectively. On the other
hand, there are a few alternative suggestions in the literature [3], and the
energy densities are not observable [5]. The electric and magnetic ener-
gies comprise both radiated and stored energies; however, for antenna Q
calculations one must distill the stored energy. In this section we analyze
stored electric and magnetic energy expressions suitable for antenna Q and
bandwidth calculations, which shed new light on the meaning and practical
applicability of the methodology for evaluating stored energies directly from
the sources that was derived recently in [8]. In subsequent sections of this
paper we elaborate the implications and practical applicability of the results
of this section.

It follows from Maxwell’s equations (1) that the sources and fields obey
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the conservation of energy equation in differential form,

i2ω
(ε0

4
|E|2 − µ0

4
|H|2

)
+

1

2
E · J∗ =

−1

2
∇ · (E ×H∗), (2)

where the superscript ∗ denotes complex conjugate. We consider current
distributions J whose support is in a volume V bounded by the surface ∂V ,
see Fig. 1. Integrating (2) over this volume gives the real part result

Re

2

∫
∂V

E(r)×H∗(r) · n̂(r) dS = −Re

2

∫
V

E(r) · J∗(r) dV, (3)

where n̂ denotes the outward-normal unit vector of the surface ∂V . The
first term in the real part expression (3) is readily identified in view of the
Poynting vector [1, 4] as the time-average radiated power flow through the
surface ∂V , so that (3) equates the radiated power exiting ∂V to the time
average of the power generated by J , as expected from energy conservation.
Furthermore, integrating (2) over all space shows that the radiated power
exiting the surface ∂V can be expressed in terms of the far field as

Pr = Re

∫
∂V

E(r)×H∗(r) · n̂
2

dS =

∫
Ω

|F (r̂)|2

2η0
dΩ, (4)

where Ω denotes the surface of the unit sphere and the far field behaves like
E(r) ∼ eikrF (r̂)/r as r → ∞, where r = rr̂ and r = |r|. Similarly, by
integrating (2) over all space one obtains the imaginary part result∫

R3

ε0
4
|H(r)|2 − µ0

4
|E(r)|2 dV = Im

∫
V

E(r) · J∗(r)

4ω
dV, (5)

where we used the fact that the integral of the imaginary part of the diver-
gence term in (2) vanishes as the integration volume approaches R3. The
imaginary part result (5) relates the well-defined difference between the time-
average electric and magnetic energies with the net reactive power delivered
by J .

As is well known [15, 16], the total energy, defined as the integral of
the energy density integrated over all space, is unbounded due to the 1/r2

decay of the energy density in the far radiation zone. This is resolved by
decomposition of the total energy into radiated and stored energy. The
stored energy is, however, difficult to define and interpret. The classical
approach used by Chu [15] and Collin & Rothschild [16], and subsequently
by others, is based on mode expansions, and therefore restricted to canonical
geometries. Spherical regions are most commonly considered but there are
also some results for cylindrical [16] and spheroidal [17, 18] structures. The
stored energy density is customarily defined as the difference between the
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total energy density and the radiated power flow in the radial direction, thus
the stored electric energy becomes

W
(P)
E =

ε0
4

∫
R3
r

|E(r)|2 − η0 Re{E(r)×H∗(r)} · r̂ dV, (6)

where the subscript r in R3
r = {r : limr0→∞ |r| ≤ r0} is used to indicate that

the integration is over an infinite spherical volume. The classical results by
Chu [15] are for spheres with vanishing interior field [16], so that the stored
energy is due to the exterior field only (i.e., for the region where r > a where
a is the radius of the smallest sphere circumscribing the sources). The Thal
bound [19] generalizes the results to fields generated by electric surface cur-
rents, see also [20]. Here it is observed that there is a stored energy but
no radiated energy flux in the interior of the sphere. The definition (6) is
useful for spherical geometries and can be generalized to cylindrical geome-
tries [16]. It is difficult to generalize it to arbitrary geometries due to its
coordinate dependence that originates from the scalar multiplication with
r̂. The subtraction of the radiated energy flow is equivalent to subtraction
of the energy of the far field outside a circumscribing sphere, cf., (4). This
suggests an alternative stored electric energy defined by subtraction of the
far-field energy, i.e.,

W
(F)
E =

ε0
4

∫
R3
r

|E(r)|2 − |F (r̂)|2

r2
dV, (7)

where the integration is over the infinite sphere R3
r .

We note that the definitions with the power flow (6) and far field (7) differ
only in the interior of the smallest circumscribing sphere associated with the
source support. In the interior of the smallest circumscribing sphere, which
we assume next to be of radius a, this subtracted far-field energy is then

ε0
4

a∫
0

∫
Ω

|F (r̂)|2 dΩ dr =
a

2c0
Pr. (8)

Assuming that the contribution to the true stored electric energy, say WE,
due to the exterior field outside the smallest circumscribing sphere, is equal

to that of W
(P)
E and W

(F)
E in (6) and (7), and that it subtracts some non-

negative value less than ε0|F |2/(4r2) inside the sphere, then we obtain the
bound

W
(F)
E ≤WE ≤W (F)

E +
a

2c0
Pr. (9)

This means that the stored electric energy can be bounded from below and

above by (7). The stored magnetic energy, W
(F)
M , is defined analogously.
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It is customary to normalize the stored energy with the radiated power to
define Q-factors. The Q-factor is Q = max{QE, QM}, where

QE =
2ωWE

Pr
and QM =

2ωWM

Pr
(10)

and we have included a factor of 2 in the definitions of QE and QM to simplify
the comparison with antenna Q. This translates the bound (9) into

max{0, Q(F)} ≤ Q ≤ Q(F) + ka, (11)

where we have added that Q is non-negative.
We show that the stored energy with the subtracted far field (6) is sim-

ilar to the energy defined by Vandenbosch in [8] for the vacuum case. For
simplicity we express the energy using the scalar potential φ and the vector
potential A in the Lorentz gauge [1, 2, 4], so that (∇2 + k2)φ(r) = −ρ(r)/ε0
and (∇2 + k2)A(r) = −µ0J(r) and therefore

φ(r) = ε−1
0 (G ∗ ρ)(r) =

1

ε0

∫
V

G(|r − r′|)ρ(r′) dV′ (12)

and

A(r) = µ0(G ∗ J)(r) = µ0

∫
V

G(|r − r′|)J(r′) dV′, (13)

where ∗ denotes convolution and G is the outgoing Green’s function i.e.,
G(r) = eikr/(4πr). The vector and scalar potentials are related by ∇ ·A =
ikφ/c0 and the electric and magnetic fields are given by [1]

E = iωA−∇φ and H = µ−1
0 ∇×A. (14)

We also use the corresponding far-field potentials defined by

φ∞(r̂) =
1

4πε0

∫
V

ρ(r′)e−ikr̂·r′ dV′ (15)

and

A∞(r̂) =
µ0

4π

∫
V

J(r′)e−ikr̂·r′ dV′ (16)

giving the electric far-field

F (r̂) = iωA∞(r̂)− r̂ikφ∞(r̂). (17)

Using that the far-field is orthogonal to r̂, i.e., r̂ · F = 0, the far-field
radiation pattern obeys

|F |2 = ω2|A∞|2 − k2|φ∞|2. (18)
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The electric energy density is proportional to

|E|2 = ω2|A|2 − 2 Re{iωA · ∇φ∗}+ |∇φ|2

= ω2|A|2 − 2k2|φ|2 + |∇φ|2 − 2 Re{iω∇ · (φ∗A)}, (19)

where we used ∇ · (φ∗A) = φ∗∇ · A + A · ∇φ∗ = ik|φ|2/c0 + A · ∇φ∗.
We integrate this result over a large sphere to get the far-field type stored
electric energy (7) expressed in the potentials

4W
(F)
E

ε0
=

∫
R3
r

|E|2 − |F (r̂)|2

r2
dV =

∫
R3
r

|∇φ|2 − k2|φ|2

+ ω2

(
|A|2 − |A∞|

2

r2

)
− k2

(
|φ|2 − |φ∞|

2

r2

)
dV, (20)

where we applied the divergence theorem to the integration of the last term
in (19), obtaining via the discussion in (17) and (18) that

∫
Ω Im{φ∗(rr̂)Ar(rr̂)}r2 dΩ→

0 as r →∞, see (17).
Use the energy identity for the Helmholtz equation, |∇φ|2 − k2|φ|2 =

ε−1
0 Re{φρ∗} +∇ · (Re{φ∗∇φ}), and that φ∗∇φ → ikr̂|φ|2 for large enough
r, to rewrite the first two terms in (20) as∫

R3
r

|∇φ(r)|2 − k2|φ(r)|2 dV = ε−1
0 Re

∫
V

φ(r)ρ∗(r) dV

=

∫
V

∫
V

ρ(r1)
cos(k|r1 − r2|)
4πε20|r1 − r2|

ρ∗(r2) dV1 dV2, (21)

where we also used that the surface term vanishes. The Green’s function
identity, see App. A∫

R3
r

G(|r − r1|)G∗(|r − r2|)−
e−ik(r1−r2)·r̂

16π2r2
dV

= −sin(kr12)

8πk
+ i

r2
1 − r2

2

8πr12
j1(kr12), (22)

where j1(z) = (sin(z)− z cos(z))/z2 is a spherical Bessel function [4], is used
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to rewrite the two remaining terms in (20) as

∫
R3
r

|G ∗ J |2 −
|
∫
V e−ikr′·r̂J(r′) dV′ |2

16π2r2
dV

= −
∫
V

∫
V

J(r1) · sin(k|r1 − r2|)
8πk

J∗(r2) dV1 dV2

+ i

∫
V

∫
V

J(r1) · r
2
1 − r2

2

8πr12
j1(kr12)J∗(r2) dV1 dV2 (23)

and∫
R3
r

|G ∗ ρ|2 −
|
∫
V e−ikr′·r̂ρ(r′) dV′ |2

16π2r2
dV

= −
∫
V

∫
V

ρ(r1)
sin(k|r1 − r2|)

8πk
ρ∗(r2) dV1 dV2

+ i

∫
V

∫
V

ρ(r1)
r2

1 − r2
2

8πr12
j1(kr12)ρ∗(r2) dV1 dV2 . (24)

We note that the first terms in the right-hand side of (23) and (24) only
depend on the distance r12 and are hence coordinate independent, whereas
the last terms depend on the coordinate system due to the factor r2

1 − r2
2 =

(r1 + r2) · (r1 − r2). The coordinate dependence originates in the explicit
evaluation of the integral in (22) over large spherical volumes R3

r that is
necessary due to the slow convergence of the integral in (22), see also App. A.

Collecting the terms in (21), (23), and (24), we get a quadratic form in
the current density J for the far-field type stored electric energy (20) as

W
(F)
E = W

(F0)
E +W

(F1)
EM +W

(F2)
EM , (25)

where W
(F0)
E +W

(F1)
EM is the coordinate independent part

W
(F0)
E +W

(F1)
EM =

µ0

4

∫
V

∫
V

∇1 · J1∇2 · J∗2
cos(kr12)

4πk2r12

−
(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

)sin(kr12)

8πk
dV1 dV2 (26)

and W
(F0)
E and W

(F1)
EM contains the cos and sin parts, respectively. The
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coordinate dependent part is

W
(F2)
EM =

µ0

4

∫
V

∫
V

Im
{
k2J1 · J∗2

−∇1 · J1∇2 · J∗2
}r2

1 − r2
2

8πr12
j1(kr12) dV1 dV2 . (27)

The coordinate independent part W
(F0)
E + W

(F1)
EM is identical to the energy

by Vandenbosch in [8] for vacuum and hence presents a clear interpreta-
tion of the energy [8] in terms of (7). We also see that the definition (7)
explains the peculiar effects of negative stored energies [11] and suggests a

remedy to it in (9). The coordinate dependent part W
(F2)
EM is more involved.

Obviously the actual stored energy, as any physical quantity, should be in-

dependent of the coordinate system. First, we observe that W
(F2)
EM = 0 for

any current density that has a constant phase. This includes the fields orig-
inating from single spherical modes on spherical surfaces and hence most
cases in [15, 16, 19, 20]. It also includes currents in the form of single charac-
teristic modes [12]. We also get the coordinate independent part by taking

the average of the stored energy from J and J∗. The term W
(F2)
EM is further

analyzed in Secs 4 and 5.
For the stored magnetic energy we can use |B|2 = |∇ ×A|2 or simpler

the energy identity (5), to directly get the difference∫
R3
r

µ0|H|2 − ε0|E|2 dV = Re

∫
V

A · J∗ − φρ∗ dV, (28)

where we used

E · J∗ = iωA · J∗ −∇ · (φJ∗)− iωφρ∗. (29)

This gives the far-field type stored magnetic energy W
(F)
M = W

(F0)
M +

W
(F1)
EM +W

(F2)
EM , where the coordinate independent part

W
(F0)
M +W

(F1)
EM =

µ0

4

∫
V

∫
V

J1 · J∗2
cos(kr12)

4πr12

−
(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

)sin(kr12)

8πk
dV1 dV2 (30)

is expressed as a quadratic form in J , see also [8]. We also have the radiated
power

Pr =
η0

2k

∫
V

∫
V

(
k2J1 · J∗2 −∇1 · J1∇2 · J∗2

)sin(kr12)

4πr12
dV1 dV2 . (31)
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It is illustrative to rewrite the coordinate independent far-field stored
energy in the potentials:

W
(F0)
E =

Re

4

∫
V

ρ∗φ dV, W
(F0)
M =

Re

4

∫
V

J∗ ·A dV (32)

and

W
(F1)
EM = −Re

4

∫
V

k

2

(
J∗ · ∂A

∂k
− ρ∗∂φ

∂k

)
dV, (33)

where it is assumed that the frequency derivative of J and ρ are negligible

in (33). We note that the sum of the first terms, W
(F0)
E +W

(F0)
M , corresponds

to a frequency-domain version of the energy expression by Carpenter [5], see
also [6, 7]. Moreover, they reduce to well-known electrostatic and magneto-
static expressions in the low-frequency limit [1].

It is also convenient to follow standard notation in the method of mo-
ments (MoM) and introduce the operators Le and Lm such that L = Le−Lm

is the integral operator associated with the electric field integral equation
(EFIE) [23]. Here, the operators are generalized to volumes and defined
from

〈J ,Le J〉 =
−1

ik

∫
V

∫
V

∇1 · J(r1)∇2 · J∗(r2)G12 dV1 dV2, (34)

〈J ,Lm J〉 = ik

∫
V

∫
V

J(r1) · J∗(r2)G12 dV1 dV2, (35)

and

〈J ,Lem J〉 =
ik

2

∫
V

∫
V

(1

k
∇1 · J(r1)∇2 · J∗(r2)

− kJ(r1) · J∗(r2)
)∂G(k|r1 − r2|)

∂k
dV1 dV2 . (36)

They are defined such that the stored electric and magnetic energies and
radiated power are

W
(F0)
E =

η0

4ω
Im〈J ,Le J〉 (37)

W
(F0)
M =

η0

4ω
Im〈J ,Lm J〉 (38)

W
(F1)
EM =

η0

4ω
Im〈J ,Lem J〉 (39)

Pr =
η0

2
Re〈J , (Le−Lm)J〉. (40)

Efficient evaluation of the L operator is instrumental in MoM implemen-
tations where the discretized versions are often referred to as impedance
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matrices. The relations above show that the corresponding matrices for the
coordinate independent stored and radiated energies are available by evalu-
ating the real and imaginary parts of the MoM impedance matrices with the
addition of the mixed part (36). The stored energy is hence computed with
negligible additional computational cost in MoM implementations. More-
over, (40) shows that ReL is positive semidefinite.

3 Electric surface currents on a sphere

The two formulations (6) and (7) for the stored energy can be compared
for electric surface currents on spherical shells. This is the case analyzed
by Thal [19] and Hansen & Collin [20]. We expand the surface current
on a sphere with radius a in vector spherical harmonics Y, see App. B.
For simplicity, consider the surface current J(r) = J0 Yτσml(r̂)δ(r − a). It
induces the electric and magnetic fields

E(r) = iη0J̃0
u(p)
τσml(kr)

R
(p)
τl (ka)

and H(r) = J̃0
u(p)
τ̄σml(kr)

R
(p)
τl (ka)

, (41)

where p = 1 for r < a and p = 3 for r > a, u
(p)
τσml is the spherical vector

waves, and R
(p)
τl the radial functions in Hansen [24], defined as

R
(p)
τl (κ) =

z
(p)
l (κ) τ = 1

1

κ

∂(κz
(p)
l (κ))

∂κ
τ = 2,

(42)

where z
(1)
l = jl are Bessel functions, z

(2)
l = nl Neumann functions, z

(3)
l = h

(1)
l

Hankel functions [24], and κ = ka. We note that the derivatives of R
(p)
τl (κ)

are easily expressed in z(p), see App. B. Here, τ = 1 is transverse electric
(TE) and τ = 2 transverse magnetic (TM) waves. Moreover, the dual index
τ̄ is τ̄ = 2 if τ = 1 and τ̄ = 1 if τ = 2. The current in (41) is rescaled as

J̃0 = J0 R
(1)
τl (ka) R

(3)
τl (ka) and below we let J0 be real valued to simplify the

notation. We also note that the coordinate dependent term (27) vanishes
for single spherical modes.

3.1 Far-field type stored energy for the TE case

We start with the transverse electric (TE) case τ = 1, i.e., J(r) = Y1σml(r̂)δ(r−
a) that is divergence free, ∇ · J = 0. The integrals in (25) are evaluated
analytical by expanding the Green’s functions in (34), (35), and (36) in
spherical modes, see App. B. Using ∇ · Y1σml = 0, we get 〈J ,Le J〉 = 0

for (34) and hence the first part of the stored electric energy W
(F0)
E = 0.
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The expansion of the full Green’s dyadic, G = GI, (83) gives

1

ik
〈J ,Lm J〉/J2

0

=

∫
V

∫
V

Y1σml(r̂1)δ(r1 − a) ·G12 ·Y1σml(r̂2)δ(r2 − a) dV1 dV2

= a4

∫
Ω

∫
Ω

Y1σml(r̂1) ·G(|r1 − r2|) ·Y1σml(r̂2) dΩ1 dΩ2

= ia4kR
(3)
1l (κ) R

(1)
1l (κ) (43)

for the terms in (35) to get the first part of the stored magnetic energy

from (38) as 4ωη−1
0 W

(F0)
M = −a2κ2J2

0 R
(2)
1l R

(1)
1l . The radiated power follow

from (40) 2η−1
0 Pr = −Re〈J ,Lm J〉 = a2κ2J2

0 (R
(1)
1l )2. The corresponding

expansion of the frequency derivative of the Green’s function (83) is used
for the terms related to (36)

−2

ik2a4
〈J ,Lem J〉/J2

0

=

∫
Ω

∫
Ω

Y1σml(r̂1) · ∂G(|r1 − r2|)
∂k

·Y1σml(r̂2) dΩ1 dΩ2

= i
∂

∂κ

(
κR

(3)
1l (κ) R

(1)
1l (κ)

)
= i
(
κR

(3)
1l (κ) R

(1)
1l (κ)

)′
= i(R

(3)
1l R

(1)
1l +κR

(3)
1l
′
R

(1)
1l +κR

(3)
1l R

(1)
1l
′), (44)

where ′ denotes differentiation with respect to κ, giving 4ωη−1
0 W

(F1)
EM =

−a2κ2

2 J2
0 (κR

(2)
1l R

(1)
1l )′.

Collecting the terms gives the electric and magnetic Q-factors as

Q
(F)
1l,E(κ) =

2ωW
(F)
E (κ)

Pr(κ)
= −

(
κR

(1)
1l (κ) R

(2)
1l (κ)

)′
2(R

(1)
1l (κ))2

(45)

and

Q
(F)
1l,M(κ) =

2ωW
(F)
M (κ)

Pr(κ)
= Q

(F)
1l,E(κ)− R

(2)
1l (κ)

R
(1)
1l (κ)

, (46)

respectively. We note that R
(1)
1l = jl and R

(2)
1l = nl can be used to rewrite

the Q-factors, however the form with the radial functions simplifies the
comparison with the TM case below. The differentiated terms are also
easily evaluated using (44) and (81).
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3.2 Far-field type stored energy for the TM case

The transverse magnetic (TM) case is given by τ = 2 and generated by
the current density J(r) = J0 Y2σml(r̂)δ(r − a) that has the divergence
∇ ·Y2σml = −

√
l(l + 1) Yσml /r. With the expansion of the Green’s func-

tion (82) we get the part related to the charge density (34)

− ik〈J ,Le J〉/(a4J2
0 )

=

∫
Ω

∫
Ω

∇1 ·Y2σml(r̂1)G(|r1 − r2|)∇2 ·Y2σml(r̂2) dΩ1 dΩ2

=
ikl(l + 1)

a2
jl(κ) h

(1)
l (κ) (47)

and the full Green’s Dyadic expansion (83) gives

1

ik
〈J ,Lm J〉/(a4J2

0 )

=

∫
Ω

∫
Ω

Y2σml(r̂1) ·G(|r1 − r2|) ·Y2σml(r̂2) dΩ1 dΩ2

= ik

(
R

(1)
2l (κ) R

(3)
2l (κ) + l(l + 1)

h
(1)
l (κ) jl(κ)

κ2

)
. (48)

for the part related to the current density (35). The expansions of the
frequency derivatives of the Green’s function (82) and Green’s Dyadic (83)
give

Re

∫
Ω

∫
Ω

Y2σml(r̂1) · ∂G(|r1 − r2|)
∂k

·Y2σml(r̂2)

−∇1 ·Y2σml(r̂1)
∂G(|r1 − r2|)

k2∂k
∇2 ·Y2σml(r̂2) dΩ1 dΩ2

= 2l(l + 1) nl(κ) j1(κ)− κ2(κR
(1)
2l (κ) R

(2)
2l (κ))′. (49)

for the part related to (36).
Collecting the terms gives that the normalized radiated power is 2η−1

0 Pr/J
2 =

Re〈J , (Le−Lm)J〉/J2
0 = a3κ(R

(1)
1l )2. The electric and magnetic Q factors

are finally determined to

Q
(F)
2l,E(κ) = −

(
κR

(1)
2l (κ) R

(2)
2l (κ)

)′
2(R

(1)
2l (κ))2

(50)

and

Q
(F)
2l,M = Q

(F)
2l,E(κ)− R

(2)
2l (κ)

R
(1)
2l (κ)

, (51)
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respectively. We note that the expressions for the TE case in (45) and (46)
and TM case in (50) and (51) are written in identical forms by using the
radial functions (42).

3.3 Power flow stored energy W
(P)
EM

The stored electric energy with the subtracted power flow (6) is analyzed
by Hansen & Collin [20], see also Thal [19]. The integral (6) is decomposed
into integration of the exterior and interior regions where we have outgoing

waves, u
(3)
τσml, and regular waves, u

(1)
τσml, respectively in (41). The exterior

part was already analyzed by Collin & Rothschild [16]. The subtracted
power flow in (6) of the fields (41) has the radial dependence

Pr =
Re

2

∫
Ω

E(r)×H∗(r) · r̂r2 dΩ =
J̃2

0η0

2|R(3)
τl (κ)|2

(52)

in the exterior region r ≥ a and vanishes in the interior region r < a. As
the spherical vector waves are orthogonal over the unit sphere they can be
analyzed separately. Their integrals are divided into its angular and radial

parts. To simplify the notation, we introduce the normalized energies w
(e)
τl

and w
(i)
τl outside and inside the sphere, respectively. They are given by, see

App. C for details

w
(e)
1l =

∞∫
κ

∫
Ω

|u(3)
1σml(kr)|2k2r2 dΩ− 1 dkr

= κ− κ3

2
(| h(1)

l (κ)|2 − Re{h(1)
l+1(κ) h

(2)
l−1(κ)}) (53)

for τ = 1 and for the τ = 2 modes

w
(e)
2l =

∞∫
κ

∫
Ω

|u(3)
2σml(kr)|2k2r2 dΩ− 1 dkr

= −Re{κh
(2)
l (κ)(κh

(1)
l (κ))′}+ w

(e)
1l . (54)

The corresponding normalized energy in the interior of the sphere is
given by the integrals

w
(i)
1l =

κ∫
0

∫
Ω

|u(1)
1σml(kr)|2k2r2 dΩ dkr =

κ∫
0

x2| jl(x)|2 dx

=
κ3

2

(
j2l (κ)− jl−1(κ) jl+1(κ)

)
(55)
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and

w
(i)
2l =

κ∫
0

∫
Ω

|u(1)
2σml(kr)|2k2r2 dΩ dkr

= −Re{κ jl(κ)(κ jl(κ))′}+ w
(i)
1l . (56)

We have the electric and magnetic Q factors

Q
(P)
τl,E = |R(3)

τl (κ)|2
(

w
(e)
τl (κ)

|R(3)
τl (κ)|2

+
w

(i)
τl (κ)

|R(1)
τl (κ)|2

)
(57)

and

Q
(P)
τl,M = |R(3)

τl (κ)|2
(

w
(e)
τ̄ l (κ)

|R(3)
τl (κ)|2

+
w

(i)
τ̄ l (κ)

|R(1)
τl (κ)|2

)
. (58)

After extensive simplifications we can rewrite them as

Q
(P)
τ,EM(κ) =

2ωW
(P)
EM(κ)

Pr(κ)
= κ+Q

(F)
τ,EM(κ), (59)

where Q
(F)
τ,EM denotes the electric and magnetic far-field type Q factors

in (45), (46), (50), and (51). Note that the subscript EM is used to denote
E and M in (59). The difference κ = ka is consistent with the interpretation
of a standing wave in the interior of the sphere, cf., (11). Moreover, the ex-
pressions (50) and (51) unifies the TE and TM cases and offer an alternative
to the expressions in [20], here we also note a misprint in (6) in [20].

3.4 Numerical example for spherical shells

The electric and magnetic Q-factors are depicted in Fig. 2 for l = 1, 2. The
relative differences are negligible for small ka where Q is large. For larger
ka, where Q can be small, the relative difference is significant although the
absolute difference is exactly ka. We also note that the Q factors oscillate
and can be significant even for large ka. This is mainly due to small values

of R
(1)
τl (ka) that can be interpreted as a negligible radiated power. Moreover,

the Q-factors related to the far-field type stored energy (7) is negative in
some frequency bands. The corresponding Q-factors related to (6) are always

non-negative. Moreover, it is observed that Q
(P)
1l,M ≥ Q

(P)
1l,E for low ka but

has regions with Q
(P)
1l,M < Q

(P)
1l,E for larger ka.

To further analyze the negative values of (7), we depict the stored electric
and magnetic energy density over spherical shells related to (7) in Fig. 3 for
a TE spherical current sheet with radius ka = 1 and a coordinate system
with origin at the center of the sphere. The results confirm that the far-
field (7) and power flow (6) stored energy densities are identical outside the
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Figure 2: Electric and magnetic Q factors for electrical surface currents
J(r) = J0 Yτσml(r̂)δ(r − a) for l = 1, 2. Power (solid curves) and far-field
(dashed curves) stored energies. They differ by ka (59). a) TE (τ = 1)
modes. b) TM (τ = 2) modes.

sphere. It is also seen that the far-field stored energy density is negative
in parts of the interior region of the sphere, r < a, whereas the power flow
stored energy density is non-negative. We also notice that the stored energy
density is discontinues at r = a except for the far-field type stored electric
energy. This is consistent with the boundary conditions that states that
tangential components of the electric field are continuous.

4 Coordinate dependent term

The stored electric (25) and magnetic energies contain the potentially co-

ordinate dependent part W
(F2)
EM defined in (27). Lets assume that W

(F2)
EM =

W
(F2)
EM,0 for one coordinate system. Consider a shift of the coordinate system

r → d + r and use that r2
1 − r2

2 → r2
1 − r2

2 + 2d · (r1 − r2). This gives the
coordinate dependent term

W
(F2)
EM,d = W

(F2)
EM,0 + kd ·W , (60)

where W = Wρ + WJ and

Wρ =
i

2ε0

∫
V

∫
V

ρ1∇1
sin(kr12)

8πkr12
ρ∗2 dV1 dV2

=
kε0
4

∫
Ω

r̂
∣∣∣ ∫
V

ρe−ikr̂·r

4πε0
dV
∣∣∣2 dΩ =

kε0
4

∫
Ω

|φ∞|2r̂ dΩ (61)
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Figure 3: Illustration of the stored electric (E) and magnetic (M) energy
densities for the TE (τ = 1) mode generated by currents on a spherical shell
with radius ka = 1. Power (solid curves-P) and far-field (dashed curves-F)
stored energies. The energy densities are normalized with the radiated power
and integrated over spherical shells to emphasize the radial dependence. The
angular distribution is also depicted.

and we used (77), the identity

∇1
sin(kr12)

4πkr12
= −ik lim

r→∞

∫
|r|=r

r̂G1G
∗
2 dS

= − ik

16π2
lim
r→∞

∫
Ω

r̂e−ikr̂·(r1−r2) dΩ, (62)

and the far-field potential (15). Similarly, the current part is

WJ = − iµ0

2

∫
V

∫
V

J1 · J∗2∇1
sin(kr12)

8πkr12
dV1 dV2

= − 1

4µ0
k

∫
Ω

|A∞|2r̂ dΩ. (63)

And with (18) totally

W = − ε0
4k

∫
Ω

|F (r̂)|2r̂ dΩ. (64)
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The corresponding Q factor is shifted as

∆Q
(F2)
EM =

−kd ·
∫

Ω r̂|F (r̂)|2 dΩ

2
∫

Ω |F (r̂)|2 dΩ
, (65)

where we see that |∆Q(F2)
EM | ≤ ka for all coordinate shifts within the smallest

circumscribing sphere.
Consider a spherical current sheet to illustrate the coordinate depen-

dence. Let the far field be F ∼ α1 Y1e01 +α2 Y2o11, i.e., a combination of
a ẑ directed magnetic dipole and a ŷ directed electric dipole. This gives

∆Q
(F2)
EM = −kx/4 and with a coordinate system centered in the sphere also

Q
(F2)
EM,0 = 0 as then r1 = r2 giving Q

(F2)
EM,d = −kx/4, where x = d · x̂ and d is

the vector to the center of the sphere.

5 Small structures

Evaluation of the stored energy for antenna Q is most interesting for small
structures, where Q is large, e.g., Q ≥ 10, and can be used to quantify
the bandwidth of antennas [10, 11, 15, 21, 22]. The low-frequency expansion
of the stored energy are presented in [8–11]. Here, we base it on the low-
frequency expansion J = J (0) + kJ (1) +O(k2) as k → 0, where ∇ ·J (0) = 0
and the static terms J (0) and ρ0 = −i∇ · J (1)/c0 have a constant phase.

It is illustrative to compare the corresponding asymptotic expansions of
the Q-factor components in (25). The coordinate dependent part vanishes
if J and ρ(r) have constant phase. This gives

Im{ρ(r1)ρ∗(r2)}
= Im{(ρ0(r1) + kρ1(r1))(ρ∗0(r2) + kρ∗1(r2))}+O(k2)

= k Im{ρ0(r1)ρ∗1(r2) + ρ1(r1)ρ∗0(r2)}+O(k2) (66)

as k → 0 and similarly for J . The different parts of the stored energy (25)
contribute to the Q-factor asymptotically

Q
(F0)
EM ∼

1

(ka)3
, Q

(F1)
EM ∼

1

ka
, Q

(F2)
EM ∼ ka (67)

as ka → 0, where a is the radius of smallest circumscribing sphere and the
coordinate system is centered inside the sphere.

We can compare the expansion (67) with the Chu bound [15]

QChu =
1

(ka)3
+

1

ka
, (68)

where it is seen that QChu has components that are of the same order as

Q
(F0)
EM and Q

(F1)
EM and hence that these terms are essential to produce reliable
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results. This is also the conclusion from Sec. 3 in (59), where it is shown
that the Q-factors differ by ka.

The coordinate dependent part Q
(F2)
EM is negligible for small structures

and of the same order as the difference between the far-field (7) and power (6)
type as seen by the bound (11). We also note that the importance of Q
diminishes as Q approaches unity. This also restricts the interest of the

results to small antennas. The importance of Q
(F2)
EM for larger structures can

however not be neglected.

6 Antenna examples

6.1 Strip dipole

Consider a center fed strip dipole with length ` and width `/100 modeled
as perfectly electric conducting (PEC). The Q-factors (10) determined from

the integral expressions Q
(F)
E in (26) and Q

(F)
M in (30), the circuit model [25],

and differentiation of the impedance [21, 22] are compared in 4a. The circuit
model is based on a the circuit representations of the lowest order spherical
modes [26] with the lumped elements determined with the approach in [25].
The Q-factors from the circuit model approximates the integral expression
very well for ` < 0.3λ but starts to differ for shorter wavelengths where
the circuit model is less accurate. The Q factors from the differentiated
impedance is [21, 22]

Q(Z)(ω0) =
ω0|Z ′m|ω=ω0

2R(ω0)
, (69)

where ′ denotes differentiation with respect to ω and Zm is the impedance
Z = R + jX, with j = −i, tuned to resonance with a lumped series (or
analogous for lumped elements in parallel) inductor or capacitor

Zm(ω) = Z(ω)−

{
jX(ω0)ω/ω0 if X(ω0) < 0

jX(ω0)ω0/ω if X(ω0) > 0.
(70)

In addition to the Q factor in (69), we determine the stored energy in the
lumped element normalized with the radiated power as

∆Q(Z)(ω0) =
|X(ω0)|
R(ω0)

(71)

giving the electric and magnetic Q factors

Q
(Z)
E =

{
Q(Z) if X(ω0) < 0

Q(Z) −∆Q(Z) if X(ω0) > 0
(72)

and

Q
(Z)
M =

{
Q(Z) if X(ω0) > 0

Q(Z) −∆Q(Z) if X(ω0) < 0,
(73)
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Figure 4: Illustration of the Q factor for a center feed strip dipole with
length ` and width `/100. The Q factors are determined from the stored en-
ergies (26) and (30) and from differentiation of the impedance (72) and (73).
a) electric and magnetic Q-factors from (26), (30), the circuit model (dashed
curves), and differentiation of the impedance Q(Z). b) difference between the
computed Q-factors Q(F) −Q(Z), where Q(Z) is computed from a difference
scheme and analytic differentiation of a high order rational approximation
in 1 and 2, respectively.

respectively.
The difference Q(F) − Q(Z) is also depicted in 4b. It is seen that the

difference is negligible for the considered wavelengths. Curve (1) shows Q(Z)

computed with a finite difference scheme. The curve is sensitive to noise
and the used discretization. The noise is suppressed by approximating the
impedance with a high order polynomial and performing analytic differen-
tiation as seen by curve (2).

6.2 Loop antenna

The computed stored electric and magnetic energies for a loop antenna are
depicted in Fig. 5. The loop antenna is rectangular with height `, width `/2,
vanishing thickness, and is modeled as perfectly electric conducting (PEC).
It is seen that the magnetic energy dominates for low frequencies. It changes
to dominantly electric energy at approximately λ ≈ 6` or equivalently λ ≈
C/2, where C = 3` denotes the circumference of the loop.

In Fig. 5, it is seen that the Q-factors determined from the stored ener-
gies (26) and (30) and from differentiation of the impedance agree very well
for Q ≥ 10. The difference increases for lower Q values. This is consistent
with the increasing difficulties to approximate the impedance with a single
resonance model [22] and the potential ka ambiguity of the far-field stored
energy (11). Here, it is also important to realize that the concept and use-
fulness of the Q-factor is increasingly questionable as Q decreases towards
unity.
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Figure 5: Illustration of the Q factor for a rectangular loop antenna with
height ` and width `/2. The Q factors are determined from the stored ener-
gies (26) and (30) and from differentiation of the impedance (72) and (73).

6.3 Inverted L antenna

An inverted L antenna on a finite ground plane is considered to illustrate
the usefulness of the stored energies for terminal antennas. The antenna
has total length ` and width `/2, see Fig. 6. The electric and magnetic Q

factors are depicted in Fig. 6. It is seen that Q
(F)
EM and Q

(Z)
EM agree well for

Q ≥ 10, that is for approximately ` ≥ λ/3 or below 1 GHz for 10 cm chassis.

The results start to differ for larger structures, where e.g., Q
(F)
E ≈ 5 and

Q
(Z)
E ≈ 2 at `/λ = 0.4 or ka ≈ 1.4. For this levels of Q(Z), the underlying

single resonance model [22] is problematic and henceQ(Z) reduce in accuracy.

Moreover, Q
(F)
E as an approximation of Q have a relatively large uncertainty

bound (11) for ka ≈ 1.4. At the same time Q is low enough to be considered
less useful as a quantity to estimate the bandwidth, e.g., Q ≈ 2 corresponds
to a half-power bandwidth of 100%.

7 Conclusions

The analyzed expression (7) for the stored energy defined by subtraction of
the far-field energy density from the energy density is mainly motivated by
the formulation of Collin & Rothschild [16] and the expressions by Vanden-
bosch in [8]. We show that the stored energy (7) is identical to the energy
in [8] for many currents. However, some current densities have an additional
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Figure 6: Illustration of the Q factor for an inverted L antenna. The cir-
cumscribing rectangle has height ` and width `/100. The Q factors are
determined from the stored energies (26) and (30) and from differentiation
of the impedance (72) and (73).

coordinate dependent term. This term is very small for small antennas but it
can contribute for larger structures. Here, it is also important to realize that
the classical definition [16] with the subtracted power flow (6) is inherently
coordinate dependent. The identification of the energy expressions in [8]
with (7) offers simple interpretation of the observed cases with a negative
stored energy [11]. The analysis also suggests that the resulting Q factor
has an uncertainty of the order ka. This is consistent with the use of the
results for small (sub wavelength) antennas [11, 13], where ka is small and
Q large.

The energy expressions proposed by Vandenbosch in [8] are very well
suited for optimization formulations as they are simple quadratic forms of
the current density. The quadratic form is very practical as it allows for
various optimization formulations such as Lagrangian [11] and convex op-
timization [13] and has already led to many new antenna results. Their
resemblance of the electric field integral equation (EFIE) makes the numer-
ical implementation very simple. Analytic solutions for spherical structures
show that the Q in [8] and [20] differ by ka and this is interpreted as the
far-field in the interior of the sphere as seen from (7) and (6). The new
formulation also produce simplified expressions (59) the unifies the TE and
TM cases for the Q factor of current densities on spherical shells [20]. Nu-
merical results for dipole, loop, and inverted L antennas are also used to
illustrate the accuracy of the energy expressions.
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A Green’s function identities

Multiply the Helmholtz Green’s function for G1: (∇2 + k2)G1 = −δ(r− r1)
with G∗2, and similarly for G∗2. Adding the results together with a standard
vector calculus identity gives 2(∇G1 · ∇G∗2 − k2G1G

∗
2) = G1δ2 + G∗2δ1 +

∇2(G1G
∗
2). Integration yields the identity [8]∫

R3
r

∇G(|r − r1|) · ∇G∗(|r − r2|)

− k2G(|r − r1|)G∗(|r − r2|) dV =
cos(k|r1 − r2|)

4π|r1 − r2|
, (74)

where we used Gauss’s theorem together with the observation that∇(G1G
∗
2)→

−r̂eikr̂·(r2−r1)/(8π2r3) for large enough radius.
The k-derivative of the Helmholtz Green’s equation for G1 is (∇2 +

k2)∂kG1 + 2kG1 = 0. Similarly to the derivation of (74) we multiply with
G∗2, and repeat the procedure with the k-derivative of G∗2. Adding the
result and applying vector calculus identities to move ∇2 away from the
k-derivative results in the identity

4kG1G
∗
2 = δ2∂kG1 + δ1∂kG

∗
2 −∇ · q, (75)

where

r̂ · q = r̂ · (G1∇∂kG2 − (∂kG
∗
2)∇G1 +G∗2∇∂kG1

− (∂kG1)∇G∗2)→ −k
8π2r

[
2 +

1

r

(
r̂ · (r1 + r2)

+ i[|r̂ × r1|2 − |r̂ × r2|2]
)

+O(
1

r2
)
]
e−ikr̂·(r1−r2) (76)

for large enough radius. Collecting term of decay rate r−1 on the left-hand
side and the remaining terms on the right-hand side. Integration over a large
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sphere, together with Gauss’s theorem and elementary integrals results in∫
R3
r

G(|r − r1|)G∗(|r − r2|)−
e−ik(r1−r2)·r̂

16π2r2
dV

= −sin(kr12)

8πk
+ i

r2
1 − r2

2

8πk2r3
12

(sin(kr12)− kr12 cos(kr12))

= −sin(kr12)

8πk
+ i

(r1 + r2) · (r1 − r2)

8πr12
j1(kr12)

= −sin(kr12)

8πk
− i

(r1 + r2)

k
· ∇1

sin(kr12)

8πkr12
. (77)

Here j1(z) = (sin(z) − z cos(z))/z2 and r12 = |r1 − r2|. Note that (77)
generalizes the result in [8] to the case r1 + r2 6= 0 and shows that the
integral depends of the coordinate system. It also shows that it is necessary
to specify how the integration over R3 is performed, i.e., here as the limit
R3

r = {r : limr0→∞ |r| < r0}.

B Spherical waves

The radiated electromagnetic field is expanded in spherical vector waves or
modes [24]:

u(p)
1σml(kr) = R

(p)
1l (kr)Y1σml(r̂)

u(p)
2σml(kr) = R

(p)
21 (kr)Y2σml(r̂) + R̃(kr) Yσml(r̂)r̂

u(p)
3σml(kr) = z

(p)′
l (kr) Yσml(r̂)r̂ + R̃(kr)Y2σml(r̂)

(78)

where r is the spatial coordinate, r̂ = r/r, r = |r|, k the wavenumber,

R̃(κ) =
√
l(l + 1)z

(p)
l (κ)/κ, and R

(p)
l (kr) are the radial function of order l:

R
(p)
τl (κ) =

z
(p)
l (κ) τ = 1

1

κ

∂(κz
(p)
l (κ))

∂κ
τ = 2.

(79)

For regular waves (p = 1) z
(1)
l = jl is a spherical Bessel function, irregular

waves (p = 2) z
(2)
l = nl is a spherical Neumann function, and outgoing waves

(p = 3) z
(3)
l = h

(1)
l is an outgoing spherical Hankel function. The indices

are l = 1, . . ., m = 0, . . . , l, σ = {e, o}, see [27, 28]. In addition, Yτσml(r̂)
denotes the vector spherical harmonics defined as

Y1σml(r̂) =
1√

l(l + 1)
∇×

(
r Yσml(r̂)

)
(80)
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and Y2σml(r̂) = r̂ × Y1σml(r̂) where Yσml denotes the ordinary spherical
harmonics [28]. There are a few alternative definitions of the spherical vector
waves in the literature [24, 27, 28]. Here, we follow [27] and use cosmφ
and sinmφ as basis functions in the azimuthal coordinate. This choice is
motivated by the interpretation of the fields related to the first 6 modes
as the fields from different Hertzian dipoles. The modes labeled by τ = 1
(odd ν) are TE modes (or magnetic 2l-poles) while those labeled by τ = 2
(even ν) correspond to TM modes (or electric 2l-poles). We note that the

derivatives of R
(p)
τn (κ) are easily expressed in spherical Bessel and Hankel

functions, i.e.,

∂ R
(p)
τl

∂κ
=


∂

∂κ
z

(p)
l τ = 1

−R
(p)
τl

κ
+
l(l + 1)− κ2

κ2
z

(p)
l τ = 2.

(81)

The Green functions are expanded in spherical waves to analyze spherical
geometries. The scalar Green’s function has the expansion [28]

G(r1 − r2) =
eik|r1−r2|

4π|r1 − r2|
= ik

∑
σml

jl(kr<) h
(1)
l (kr>) Yσml(r̂1) Yσml(r̂2), (82)

where r< = min{|r1|, |r2|} and r> = max{|r1|, |r2|}, and Yσml denotes the
spherical harmonics. In addition, the full Green’s dyadic, G = IG, can be
expanded as [28]

G(r1 − r2) = ik
∑
τσml

u(1)
τσml(kr<)u

(3)
τσml(kr>), (83)

where τ = 1, 2, 3. We also use the frequency derivatives of the Green’s
function and the Green’s dyadic expansions.

C Volume integrals

The volume integrals of the spherical vector waves are given by integrals of
spherical Hankel functions as evaluated here. We have∫

x2z2
p(x) dx =

x3

2

(
z2
p(x)− zp−1(x)zp+1(x)

)
. (84)

For the spherical Hankel function zp = h
(1)
p = jp +i np we have∫

x2|h(1)
p (x)|2 dx =

x3

2

(
|h(1)
p (x)|2 − Re{h(1)

p−1(x) h
(1)∗
p+1(x)}

)
. (85)
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To evaluate the stored reactive energy outside a sphere, we need the result

∞∫
a

(
x2| h(1)

p (x)|2 − 1
)

dx

= a− a3

2

(
|h(1)
p (a)|2 − Re{h(1)

p−1(a) h
(1)∗
p+1(a)}

)
. (86)

The corresponding internal energy is

a∫
0

x2| j(2)
p (x)|2 dx =

a3

2

(
j2p(a)− jp−1(a) jp+1(a)

)
. (87)

We also have for τ = 1∫
[a,b]×Ω

|u1σml(kr)|2 dV =

b∫
a

|h(1)
l (kr)|2r2 dr (88)

For τ = 2, we use

k|u2σml |2 = k u2σml ·u∗2σml = ∇× u1σml ·u∗2σml
= ∇ · (u1σml×u∗2σml) + u1σml ·∇ × u∗2σml

= ∇ · (u1σml×u∗2σml) + k|u1σml |2 (89)

and hence∫
[a,b]×Ω

|u2σml(kr)|2 dV =
1

k
Re

[
h

(1)∗
l

R
(3)
2l

kr
r2

]b
a

+

b∫
a

|h(1)
l (kr)|2r2 dr, (90)

where we have used the Wronskian relation z∗z′ − z′∗z = −2i/x2, for z =

h
(1)
l (x), and the recursion relations for the spherical Hankel functions [4] in

the last steps. The terms can be evaluated as b → ∞ by considering the
asymptotic behavior of the spherical Hankel functions.
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