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Abstract. The production of effective workforce rosters is a common
management problem. Rostering problems are highly constrained and
require extensive experience to solve manually. The decisions made by
expert rosterers are often subjective and are difficult to represent system-
atically. This paper presents a formal description of a new technique for
capturing rostering experience using case-based reasoning methodology.
Examples of previously encountered constraint violations and their cor-
responding repairs are used to solve new rostering problems. We apply
the technique to real-world data from a UK hospital.

1 Introduction

The rostering of employees within an organisation must satisfy operational, legal
and management requirements whilst taking into account the conflicting consid-
erations of staff morale and sensible working practice. Manual rostering experts
develop strategies for balancing these requirements, drawing on their extensive
experience to make rostering decisions. This paper describes a method for cap-
turing this experience for re-use in an automated setting.

Capturing such rostering knowledge in the form of logical rules (e.g. IF THEN
rules) is difficult and can lead to incomplete and inflexible domain models [15].
This is because rostering decisions are made by often subjective interpretations
of the subtle interactions of a number of parameters. We move away from ex-
plicit representations of rostering rules and introduce a system that stores them
implicitly in a history of past experience.

Case-based reasoning (CBR) [11] is an artificial intelligence methodology that
aims to imitate human style decision making by solving new problems using
knowledge about the solutions to similar problems. CBR methodology operates
under the premise that similar problems will require similar solutions. Previous
problems and solutions are stored in a case-base and accessed during reasoning by
processes of identification, retrieval, adaptation and storage. The identification
and retrieval phases search the case-base for cases containing problems that are

E. Burke and P. De Causmaecker (Eds.): PATAT 2002, LNCS 2740, pp. 148–165, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Storing and Adapting Repair Experiences in Employee Rostering 149

most similar to the current problem in terms of a set of characteristic features
called indices. The solutions from these retrieved cases are then adapted and
applied to the context of the current problem. If the new solution might be
useful for solving future problems then it is stored as a new case in the case-
base. CBR is suited to the problem of capturing rostering knowledge because it
enables us to build a history of correspondences between constraint violations
and their solutions.

A number of different approaches have been used for solving employee roster-
ing problems in the past including linear and integer programming [3,4,14,18],
goal programming [2,5], and constraint satisfaction techniques [1,8,12,13]. CBR
was employed by Scott and Simpson [16] by storing shift patterns used for the
construction of rosters. A number of meta-heuristic methods have also been de-
veloped with some success using tabu search [6,9,10] and memetic algorithms [7].
These methods traverse the search space through neighbourhoods defined using
extensive domain knowledge and experimental trial and error.

The knowledge capturing technique described here aims to provide a means
to intelligently and dynamically define neighbourhoods tailored to individual
problems. The repairs used to solve constraint violations are stored in a case-base
of previous experience and are adapted when new violations are encountered.
This method is not intended to produce final solutions to rostering problems
but instead works on the more local level by repairing individual constraint
violations. It provides a means by which to store and re-use rostering experience
and could in the future be incorporated in some form of metaheuristic or other
problem solving framework.

We investigated the problem of rostering nurses in an ophthalmological ward
at the Queens Medical Centre University Hospital Trust (QMC) in Nottingham,
United Kingdom. Section 2 of this paper will describe the problem in this ward
including the manual procedures used at present. Sections 3 and 4 will define
the problem mathematically and present the CBR based local repair algorithms
that have been developed. An example of a problem solving instance is given in
Section 5. The results of some experiments are provided in Section 6 before a
discussion on the future directions of this research.

2 Problem Description

The rostering problem at the QMC is rather more complex than many previ-
ously investigated in the literature in terms of the levels of detail that must be
considered. The descriptions of nurses qualifications and abilities does not lend
itself well to the problem subdivision methodologies of [2,10] – we cannot simply
divide the nurses up into disjoint “levels” of qualification. This also results in
more complex constraint descriptions in the form of appropriate skill mixes and
cover requirements for the ward.

The problem consists of assigning shifts to nurses over a set time period (usu-
ally 28 days) subject to a number of constraints. Nurses have one of four levels
of “qualification” depending on the training they had to become a nurse. These
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are, in descending order of seniority: Registered (RN), Enrolled (EN), Auxiliary
(AN) and Student (SN). RNs are the most qualified and have had extensive
training in both the practical and management aspects of nursing whereas ENs
have had less training in only practical nursing. ANs are unqualified nurses who
can perform basic duties and SNs are training to be either RNs or ENs. Three
additional qualification types are used to group these “real” types. Registered
and enrolled nurses are grouped together as Qualified Nurses (QN) and RNs,
ENs, and ANs, are classified as Employed Nurses (PN). The classification XN
groups all of the nurses together.

In addition to these qualifications nurses can receive specialty training
specific to the ward they work on (in this ophthalmological ward it is “eye-
training” (ET)). A grade is also assigned to each nurse and is determined by a
combination of their qualification, specialty training and the amount of practi-
cal experience they have. These grades range from A to I with I being the most
senior. Two final attributes taken into account during the rostering process are
gender (M or F) and international status (I or H). The latter is important in
UK hospitals due to an increased reliance on overseas-trained nurses to over-
come staff shortages in the public sector. In this paper we refer to all of these
attributes of a nurse as their “descriptive features”.

At present, roster production in the QMC ward is a three-stage process. The
self-rostering planning approach is used to collect shift preference information
from all members of staff (see [17] for a comprehensive survey of the use of self-
rostering in UK hospitals). This approach recognises that nurses are professionals
who will fulfil their responsibilities without excessive administrative intervention.

The three stages of roster production are

1. nurses are assigned to teams (according to a particular skill mix);
2. nurses produce partial rosters (called preference rosters) for the planning

period in consultation with other members of their teams;
3. partial rosters are combined to produce the ward roster which is invariably

infeasible; any constraint violations are repaired by senior staff members.

These preference rosters indicate when individual nurses would like to work
a particular shift, and when they would like a day off. If they have no preference
then they can leave a particular day blank. The amount of detail and flexibility
for shift assignments varies considerably between nurses.

We wish to automate the third stage of the process. At present, this stage
takes a considerable number of hours per month to complete. The constraint
violations present in the roster need to be repaired whilst retaining as much
preference information as possible.

At this stage of this research we consider only a subset of the constraints that
are present in the real-world problem. A number of hard and soft constraints
can be identified but here we shall deal only with the two most important hard
constraints. It is our conjecture that some of the soft constraints will be satisfied
as a consequence of the information stored about the repair of hard constraint
violations – or at least that a series of these repairs will minimise the degree of
violation of the soft constraint.
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The two hard constraints (hereinafter referred to simply as “constraints”)
considered here are

– Cover constraints define the skill mix required for a particular shift. They
are described by variables indicating the type and number of nurses needed
for a specified shift. For example, the early shift requires 4 QNs;

– Totals constraints describe the maximum working hours allowed over a par-
ticular period. These can be defined for all nurses of a specific type as well
as for individual nurses over any time period. For example, the maximum
number of hours that can be (legally) worked by any nurse (XN) within a
fortnight is 75.

Three basic rostering actions, or repair types, have been identified and these
are representative of the kind of actions carried out by rostering experts. RE-
ASSIGN repairs are the simplest and involve reassigning a nurse’s shift on a
particular day. Two nurses can have their shifts on a particular day swapped
by the SWAP repair. The final repair type, SWITCH, interchanges the shifts
assigned to one nurse on two different (consecutive or non-consecutive) days.
These basic repair types require different data and this will be reflected in the
mathematical representation described in the following section.

The method proposed in this paper stores information about individual re-
pairs of constraint violations in rosters. It keeps a history consisting of pairs of
problems and solutions from which new repairs can be generated.

3 Mathematical Formulation

We define a rostering problem as an ordered pair

R = 〈N, C〉 ,

where N = {nursei : 0 ≤ i < n} is the set of nurses to be rostered such that

nursei = 〈NurseTypei, hoursi, NRi, NPi〉 .

NurseTypei = {fi,1 . . . fi,I} is an array of descriptive features where

fi,1 ∈ {RN, EN, AN, SN, QN, PN, XN}

is the nurse’s qualification and fi,2 . . . fi,I describe gender, international status,
specialty training, and grade. hoursi ∈ R

+ is the number of hours the nurse is
contracted to work in a week (normally 37.5).

NRi = {si,j : 0 ≤ j < period}

is a set of assignment variables si,j which represent the actual shift assignment
for nursei on day j over the number of days for which the roster has been
constructed, period.

NPi = {pi,j : 0 ≤ j < period}
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is a set of variables pi,j representing the preferred assignment of nursei on day j.
The variables si,j and pi,j can take values from the set {UNASSIGNED, EARLY,
LATE, NIGHT, OFF}.

The set C consists of a number of constraints that can take one of the fol-
lowing types:

COV ERCONSTRAINT (NurseType, shift, minimumCover) ;
TOTALSCONSTRAINT (NurseType, period, maximumHours) .

Cover constraints describe the minimum number minimumCover of nurses
of type NurseType who must be assigned shift on every day of the roster.
Totals constraints describe the maximum number of hours maximumHours

that nurses of type NurseType may work over a number of days period.
When constraints are applied to N , they generate a set of violations of a type

corresponding to the constraint type. We define the problem instance spaces PR
v

and PR
r as the set of violations and possible repairs given the current roster R.

An element violationα ∈ PR
v details the type of violation and the parameters

relevant to it. It may be one of the following types:

COV ER(NurseType, day, shift) ;
TOTALS(nursei, startDay, endDay) .

Cover violations are generated by cover constraints and represent that the
number of nurses of type NurseType assigned shift on the day indicated is
insufficient. Likewise, totals violations are generated by totals constraints and
describe that nursei has been assigned too many hours between days startDay

and endDay.
An element repairβ ∈ PR

r describes the type of repair and the nurses, days,
and shift assignments involved. They can be one of the following types:

REASSIGN(nursei, dayβ , shiftβ) ;
SWAP (nursei, nursej , dayβ) ;

SWITCH(nursei, day1β , day2β) .

Reassign repairs assign shiftβ to nursei on day dayβ . Swap repairs inter-
change the shift assignments of nursei and nursej on day dayβ and switch re-
pairs interchange the shift assignments of nursei on the days day1β and day2β .

The violation and repair problem spaces represent information relevant to
a specific instance of a rostering problem (an instantiation of R). The nurses,
days and shifts they describe refer only to those specified by R. In order to store
and reuse examples of previous violation/repair experiences we need to define a
generalised structure.

We define the case-base CB as a set of previously encountered violations
and their corresponding repairs. The case-base CB = Wv × Wr where Wv is the
space of stored violations (the problem history) and Wr is the space of stored
repairs (the solution history). Therefore a case cγ = (vγ , rγ) ∈ CB where γ ∈ Γ .
We define vγ and rγ as follows:
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vγ = 〈V iolationTypeγ , V iolationIndicesγ〉 ,
rγ = 〈RepairTypeγ , RepairIndicesγ〉 .

Here V iolationTypeγ and RepairTypeγ contain the type and necessary pa-
rameters describing generalised violations and repairs. V iolationIndicesγ and
RepairIndicesγ store the feature information needed to match problem instances
during case retrieval, and to generate repairs during case adaptation. The index
sets are arrays of feature values, which are generally integers or real numbers,
and in the case of the repair indices store shift pattern information. This index
information will be described in more detail later in the paper.

We can now define the generalisation functions θR
v : PR

v → Wv and θR
r :

PR
r → Wr that map instance specific violations and repairs respectively to their

generalised case representations. The various types of violation and repair are
converted to their generalised equivalents and the indices necessary for retrieval
and adaptation are calculated. For example, the TOTALS violation and its
parameters will be mapped:

θR
v

(

TOTALS(nursei, startDay, endDay)
)

= 〈CBTOTALS(NurseTypei), V iolationIndices〉 ,

and similarly for a SWAP repair:

θR
r

(

SWAP (nursei, nursej , day)
)

= 〈CBSWAP (NurseTypei, NurseTypej , si,day, sj,day), RepairIndices〉 .

The violation and repair indices used are described in Section 4.
Figure 1 gives a graphical summary of the generalisation functions. Note that

here we define only the transformation from problem instance to case-base. The
inverses of these functions are not well-defined mathematically and in fact would
not make sense from an operational point of view. The method of generating
new repairs using a combination of current problem information and historical
experience is the subject of the next section.

In order to describe the retrieval and adaptation processes the definitions
of equality of some variables need to be defined. Two nurses are considered to
have the same type if all of their descriptive feature information is the same.
We define equality of the NurseType variable mathematically as follows. Given
NurseTypea = {fa1

, . . . , faI
} and NurseTypeb = {fb1 , . . . , fbI

}

NurseTypea = NurseTypeb iff fai
= fbi

∀i, (1 ≤ i ≤ I) .

Equality of the generalised V iolationType and RepairType information are
defined similarly. This information is in the following form:

TY PENAMEa(parama1
, . . . , paramaM

) .

Then equality between variables V iolationTypea and V iolationTypeb, or
RepairTypea and RepairTypeb occurs if and only if
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Fig. 1. Relationship between the current instance and the cases from the case-base

(TY PENAMEa = TY PENAMEb) ∧ (paramai
= parambi

)∀i, (1 ≤ i ≤ M) .

It remains to define two functions that will be used in the following sec-
tion. The similarity measure function Sim is a standard nearest-neighbour
method common in the CBR literature [11]. We apply it here to the index
sets of violations and repairs. Given IndexSeta = {indexa1

, . . . , indexaI
} and

IndexSetb = {indexb1 , . . . , indexbI
}, representing either V iolationIndices or

RepairIndices sets,

Sim(IndexSeta, IndexSetb) =

(

1

I

I
∑

i=1

wi × dist(indexai
, indexbi

)

)−1

,

where I is the number of elements in the index sets, wi are the index weights,
and

dist(indexai
, indexbi

) =

∣

∣

∣

∣

indexbi
−indexai

indexmaxi
−indexmini

∣

∣

∣

∣

.

The values indexmaxi
and indexmini

are the maximum and minimum values
for the corresponding index recorded in the case-base. The dist function therefore
finds the normalised distance between feature values. By weighting each of these
distances we assign a relative importance to each feature. In this research these
weights are generally flat (all set to 1). The effect of changes to these values will
be the subject of future investigation.
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During repair adaptation it is necessary to compare the shift patterns of
nurses in the current roster with stored patterns in the RepairIndices variables.
The shift pattern comparison function comp compares the shift patterns of two
different nurses over a five day period (two days before and after the day on
which a repair is applied). The difference in shift pattern strings is calculated
as follows. Given nurseα with shift pattern string x1x2x3x4x5 and a pattern
y1y2y3y4y5 to be compared we define

compα(y1y2y3y4y5) =

5
∑

i=1

δα(yi) ,

where

δα(yi) =

{

0 yi = xi ,

1 yi �= xi .

By this definition the shift patterns EUUNN and EEUUL have a difference
of 0 + 1 + 0 + 1 + 1 = 3.

4 Retrieval and Adaptation

The main difference between the classical OR and meta-heuristic approaches to
nurse rostering described in the literature and the CBR approach proposed here
is that the repairs generated are not optimal in any sense. We have described
no measures of the quality of repairs – the aim here is to imitate, as closely as
possible, the decisions made by rostering experts without relying on quantified
measures of roster quality.

The notion of problem similarity is key to the success of any CBR application.
A method must be developed for finding the most similar problems in the case-
base to the current problem being solved. Having identified the most similar
problems the stored repairs have to be adapted to the context of the current
roster. Here again we use the notion of similarity. We must generate a new
repair that most closely matches the repair stored in the case.

There are a number of justifications for taking this approach. The aim must
not be to replicate exactly the repair from the retrieved case. This would be
incorrect in most situations as the nurses and time periods involved would un-
doubtedly be different. In some instances it may even be impossible if a different
set of nurses is defined. It is also clear that simply generating a random repair of
a specified type would not be correct. A compromise between these two extreme
approaches is reached between by the generation of repairs that are considered
similar to the retrieved repairs. This emphasis on the similarity of repairs in
different instances motivated the generalisations of both violation and repair
described in the previous section.

The retrieval process is split into two distinct searches of the case-base. The
first search filters the case-base to obtain cases containing violations that match
the current problem in terms of violation type and parameters. This is a strict
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Table 1. Violation indices

Global problem characteristics

Number of violations The level of infeasibility of the roster w.r.t. the
(hard) constraints

Nurse satisfaction The percentage of nurse shift preferences that
have remained intact

Utilisation The percentage of the total assignable hours
(w.r.t. nurse contracted hours h) already as-
signed over the whole roster and within the
week of the violation

Local problem characteristics

Nurse rank An index assigned based on the qualification
level of the nurse or NurseType involved in the
violation

Nurse satisfaction The percentage of shift preferences that have
remained intact w.r.t. nurses of the type in-
volved in the violation

Utilisation The percentage of total assignable hours as-
signed of the nurses of the type involved in
the violation over the whole roster and within
the week of the violation

search whereby cases are either accepted or not and no similarities are evaluated.
The equality of the V iolationType variables described in Section 3 is used to
make the case comparisons.

The second search ranks the restricted set of cases using the similarity func-
tion Sim applied to the violation indices. These indices are the characteristics of
the problem identified as having an influence on the decision making process and
are divided into two categories. Global characteristics are the properties of the
roster as a whole including the number of violations, levels of staff satisfaction
and current utilisation statistics. Local characteristics describe the problem in
the location of the violation. They include the magnitude of the violation, and
the current satisfaction and utilisation statistics of the types of nurses involved.
Table 1 lists all the problem indices and gives a brief description of each.

Formally, the retrieval algorithm is described by the function Retrieve

(violationα, CB, CB′) (see Figure 2) which from the case-base CB returns a
set of cases, CB′, sorted in order of similarity, that are compatible to the cur-
rent problem violationα. Lines 1 and 2 initialise CB′ and apply the function θR

v

to violationα to get the generalised form. The set of cases CB′ is filled, in lines
3 to 7, with all cases in the case-base of the same V iolationType as the current
problem. By the definition of equality (as defined in Section 3) this includes the
parameters of the violation. If there are no such cases then line 8 returns false
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Retrieve (violationα, CB, CB′)
1: CB′ ← ∅.
2: 〈V iolationTypeα, V iolationIndicesα〉 ← θR

v (violationα).
3: for all caseγ = 〈〈V iolationTypeγ , V iolationIndicesγ〉, rγ〉 ∈ CB do

4: if V iolationTypeγ = V iolationTypeα then

5: CB′ ← CB′ ∪ {caseγ}.
6: end if

7: end for

8: if |CB′| = 0 then return false. end if

9: generate an array score[|CB′|].
10: for all caseγ = 〈〈V iolationTypeγ , V iolationIndicesγ〉, rγ〉 ∈ CB′ do

11: score[γ] ← Sim(V iolationIndicesα, V iolationIndicesγ).
12: end for

13: sort CB′ according to score.
14: return true.

Fig. 2. Retrieval algorithm

and a manual solution will be required. Lines 9 to 13 generates an array of scores
for each of the cases in CB′ and then sorts CB′ accordingly.

This sorted set of restricted cases generated by Retrieve is then passed to
another method for repair adaptation. The adaptation process is also separated
into two phases. Initially, the method generates, using the data from the current
roster, a set of candidate repairs each of the same type as in the retrieved case.
The second stage involves ranking these candidate repairs according to their
similarity to the repair in the retrieved case. Here the set of repair indices from
the retrieved case is compared with the calculated indices of the candidates using
the Sim function. The exact indices that are used depend on the type of repair
being generated. Table 2 lists the indices used for each of the three different
repair types.

Formally, the function GenerateRepair(R, CB′, violationα, Candidates)
(see Figure 3) tries to generate a repair as similar as possible to that used in the
retrieved cases. The array of possible repairs Candidates is filled by a function
DetermineCandidates. If there are no available candidates given the repair
information from the retrieved case then the next case in the Candidates array
is considered. Lines 1 to 8 of the algorithm try to produce a set of candidates for
each of the cases in CB′ starting with the most similar. Then, analogously to
the retrieval algorithm, the candidates are ranked according to their similarity
to the repair in the retrieved case with respect to their RepairIndices.

The DetermineCandidates (N, violationα, RepairType0) function is the
key to the generation of repairs. This returns a set of actual repairs that match
the retrieved repair in terms of the type of the repair and the types of the nurses
and shifts involved. Six sets of rules have been established for determining the
candidates – one for each possible pair of violation and repair types. These rules
are fairly intuitive and use some very simple domain knowledge to produce.
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Table 2. Repair indices

Feature CBREASSIGN CBSWAP CBSWITCH

# nurses assigned newShift1 on day1β

√ √ √

# nurses assigned newShift2 on day1β

√ √

# nurses assigned newShift1 on day2β

√

# nurses assigned newShift2 on day2β

√

# nurses of type NurseType1β assigned
newShift1 on day1β

√ √ √

# nurses of type NurseType1β assigned
newShift2 on day1β

√ √

# nurses of type NurseType1β assigned
newShift1 on day2β

√

# nurses of type NurseType1β assigned
newShift2 on day2β

√

# nurses of type NurseType2β assigned
newShift1 on day1β

√

# nurses of type NurseType2β assigned
newShift2 on day1β

√

# nurses assigned oldShift on day1β

√

# nurses of type NurseType1β assigned
oldShift on day1β

√

Assigned/Contract Hours nurse1β

√ √ √

Assigned/Contract Hours nurse2β

√

comp value for nurse1β around day1
√ √ √

comp value for nurse1β around day2
√

comp value for nurse2β around day2
√

GenerateRepair (N, CB′, violationα, Candidates)
1: Candidates ← ∅
2: index ← 0
3: while |Candidates| = 0 do

4: case := 〈v, 〈RepairType, RepairIndices〉〉 ← CB′[index].
5: Candidates ← DetermineCandidates (N, violationα, RepairType).
6: index ← index + 1.
7: if index = |CB′| then return false. end if

8: end while

9: generate an array score[Candidates].
10: for all repairβ ∈ Candidates do

11: 〈RepairTypeβ , RepairIndicesβ〉 ← θR
r (repairβ).

12: score[repairβ ] ← Sim(RepairIndices0, RepairIndicesβ).
13: end for

14: sort Candidates according to score[Candidates].
15: return true.

Fig. 3. Adaptation algorithm
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Nevertheless, they are quite large when notated and so here we shall only
present the following rule, which shall be used in the example in Section 5:

Given violationα = COV ER(NurseTypeα, dayα, shiftα) and
repairType = CBREASSIGN(NurseType1, newShift1, oldShift), then

DetermineCandidates

(

N, violationα, repairType
)

=
{

REASSIGN(nurse1iβ
, day1β , shiftβ)

∣

∣(nurse1iβ
∈ N) ∧ (NurseType1β =

NurseType1) ∧ (sc,dayα
= oldShift), day1β = dayα, shiftβ = shiftα

}

.

This rule returns a set of repairs all of which have the REASSIGN type
with different parameter values. The nurse in each repair must be of the same
type as that used in the repair from the retrieved case. In addition the shift
currently assigned to each nurse on the day of the violation must be the same
as the oldShift parameter of the retrieved repair. The day and shift parameters
of the repair must be the same as that of the violation for this rule.

5 Example

In order to give an illustrative example of the method we shall consider a rel-
atively simple problem solving episode. It is assumed that the weighting of all
similarity calculations is flat (all weights equal 1). The problem we are attempt-
ing to solve is a cover violation of the roster R – that there is no registered nurse
(RN) rostered on the early shift (shift = E) of the third day (day = 2) of the
planning period. This is represented as

violationα = COV ER({RN, 0, 0, 0, 0}, 2, E) .

Here the zero-valued elements in the NurseType set indicate that there is
no restrictions on these feature values (so a suitable registered nurse could be
male or female, specialty trained or untrained, etc.).

This violation is first passed to the Retrieve method. The generalised form
of this violation is generated by the θR

v as follows:

θR
v

(

violationα

)

= 〈CBCOV ER({RN, 0, 0, 0, 0}), V iolationIndicesα〉,

where V iolationIndicesα = {62.00, 99.46, 47.29, 54.32, 1.00, 78.41, 44.63, 50.76} .

Each of the values in the V iolationIndicesα array corresponds to one of
the violation feature values described in Table 1. We must now find all cases
caseγ ∈ CB with V iolationType = CBCOV ER({RN, 0, 0, 0, 0}) and add them
to the set of cases CB′. In this example we find three such cases. The Retrieve

method then calculates the similarity between the V iolationIndicesγ of each of
these cases and the V iolationIndicesα array:
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Case Features Sim (score)

α 62.00 99.46 47.29 54.32 1.00 78.41 44.63 50.76 NA
CB′[0] 57.00 92.31 48.12 52.14 1.00 80.32 74.23 90.32 8.749
CB′[1] 31.00 86.32 53.98 78.92 1.00 44.02 70.23 60.12 4.975
CB′[2] 80.00 83.24 70.34 80.23 2.00 70.12 80.12 85.23 3.997

Finally, the CB′ set is sorted according to the similarity values in the far
right column. This set now contains all compatible cases in order of the similarity
between their and the current problem’s violation features.

Now that a set of cases of similar problems has been identified, their corre-
sponding solutions need to be adapted to the current problem violationα. For
simplicity in this example we shall assume that the first case (CB′[0]) allows the
production of such a set of candidates. The repair part of this case contains the
following:

r = 〈CBREASSIGN({RN, F, H, ET, E}, E, U), RepairIndices〉,
where RepairIndices = 〈{11, 9, 2, 0, 59.1, 0}, EEUUL〉 .

The GenerateRepair function fills the Candidates array with potential
repairs using the DetermineCandidates function. By applying the conditions
given in Section 4 for CBREASSIGN repairs given a COV ER violation we
get three candidate repairs, each of which uses a different registered nurse with
NurseType = {RN, F, H, ET, E}. These candidate repairs are

REASSIGN(nurse2, 2, E) ;
REASSIGN(nurse8, 2, E) ;
REASSIGN(nurse15, 2, E) .

We apply the generalisation function θR
r to each of these candidate repairs

and compare their resulting RepairIndices:

Repair Features Sim (score)

retrieved 11 9 2 0 59.1 Comp0(EEUUL) = 0 NA
θR

r (Candidates[0]) 5 5 3 0 20.3 Compα(EELLO) = 3 4.090
θR

r (Candidates[1]) 10 9 3 0 62.7 Compα(OEUUE) = 2 9.357
θR

r (Candidates[2]) 10 9 3 0 84.0 Compα(UUUUU) = 3 5.433

The candidate repair that is closest to the repair in the best case CB′[0] is
Candidates[1] – which is a reassignment of nurse8 to the EARLY shift on the
third day of the planning period.

The example here is simpler than many encountered for ease of explanation.
Other combinations of violation and repair types involve a more complex search
for candidate repairs. However, all the principals needed for more complex in-
stances are the same.
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6 Results

The results presented in this section illustrate how the method performs at
imitating the rostering decisions of humans. We do not compare performance
with other rostering methods for two reasons. Firstly, the amount of information
used and the way it is presented is incompatible with most existing problem
formulations. More significantly, the case-based reasoning method here treats
constraint violations as individual problems rather than providing solutions to
entire rostering problems in the traditional sense.

The method has been implemented and tested on real-world data from the
QMC. This data consisted of twelve 28-day rosters and the corresponding pref-
erence information for 19 nurses of various qualification and training levels. Nine
constraints were defined consisting of eight cover type constraints detailing re-
quired skill mixes for the three shifts and one totals constraint limiting the
number of hours in a fortnight to 75 per nurse.

Two sets of experiments were defined. The aim of the experiments was to de-
termine the quality of the reasoning process in terms of the agreement between
automated decisions and those of the nurse rostering expert. Constraint viola-
tions were identified at random and the repairs suggested by this method were
compared to the repairs actually made in the final roster. These expert repairs
were determined by comparing the final and preference rosters and only those
instances where the decision was clearly evident were considered. The “quality”
of a generated repair was assessed by comparing it with the expert repair and
assigning one the following verdicts:

– Exact match: the generated repair is identical to the expert’s repair;
– Equivalent match: the generated repair involves nurses of the same types

and the same shifts as those used in the expert’s repair;
– Fail: the generated repair is not an exact or equivalent match, or no repair

was generated.

The first experiment involved repairing five runs of 120 constraint violations.
Three repairs were suggested by the method and compared to the expert repair.
The case-base is empty at the start of the run and the expert repair for each of
the constraint violations is stored after it is applied to the roster. In this way the
method is storing more experience in the case-base as the run progresses. Figure
4 shows the average cumulative number of exact and equivalent matches against
the case-base size for each of the three suggested repairs. The bold lines are the
first (or best with respect to the reasoning process) repairs for each iteration.

The results in Figure 4 show an increasing gradient of all lines indicating an
increasing number of repairs of the given verdict per iteration. It can be seen
from this that the case-base learns how to produce more exact or equivalent
repairs as its size increases. An increase in the amount of training given to the
case-base corresponds to an increase in the quality of the repairs produced. It is
particularly encouraging that the first suggestions in general score more exact
and equivalent matches than the second and third. The increases in solution
quality are made more apparent in Figure 5. This shows the percentage of exact
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Fig. 4. Average cumulative number of exact and equivalent matches against case-base
size over five 120 iteration runs

Fig. 5. Effects of case-base size on solution quality

and equivalent repairs at different stages in the runs. In general, in the later
stages, when the case-base contains more experience, a larger number of good
suggestions are produced.

The second set of experiments was defined to test the influence of different
types of indices, namely global and local, on the reasoning process. Figure 6
shows the results of an experiment carried out using case-bases generated during
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Fig. 6. Effects of different combinations of problem index on the solution quality

the previous test. Case-bases containing 60 and 120 cases were collected during
each run. Using each of these 10 case-bases an additional 100 constraint violations
were repaired but this time there was no storage of new cases. Three different
combinations of problem index weights were set in the similarity function so that
all indices, only local indices, and only global indices were used.

The lower-quality results from the only global data set suggest, at first, that
the global indices are not useful. The best results were achieved when only local
data was used. However, the global data set nevertheless produced a reasonable
percentage of good results and this suggests that global information may still be
useful for the reasoning process. It is certainly the case that global data are not
as important as the local data and this should be reflected in any automated
feature weighting that may be carried out in future work.

7 Conclusion

This paper has introduced a new approach to the employee rostering problem.
The approach is different to existing methods in the sense that it does not use
explicitly defined evaluation functions, which often fail to include all aspects
of the rostering problem. The results show that it is possible to capture and
imitate the rostering actions of human rostering experts. By storing the rules for
repairing constraint violation implicitly in the case information we have created
a technique that is both adaptable and flexible.

We intend to increase the number of different types of constraints that are
considered including weekend constraints, night shift constraints, and possibly
any soft constraints that are not adequately covered by the information in the
case-base. This may involve adding additional structural and index elements to
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the definition of a case. The weighting of indices to reflect their relative impor-
tance in the reasoning process must be investigated. A system that dynamically
allocates weights under different conditions is being considered. This allocation
may depend on the content of the case-base and thus reflect the importance
placed on indices by the expert.

The success of this violation/repair model for problem solving will be built on
by incorporating the method within an intelligent iterative algorithm. A meta-
heuristic could use the technique to decide its next move in the search space
at each iteration. Although the processing time for each repair generation is
negligible, the cumulative effect of multiple searches of the case-base and the
impact on overall algorithm performance will need to be addressed. A hybrid
algorithm could be evaluated and compared with existing rostering methods
and its design and behaviour will be the subject of future research.
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