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Abstract. A common structure arising in computational geometry is the subdivision 

of a plane defined by the faces of a straight-line planar graph. We consider a natural 

generalization of this structure on a polyhedral surface. The regions of the subdivision 

are bounded by geodesics on the surface of the polyhedron. A method is given for 

representing such a subdivision that is efficient both with respect to space and the 

time required to answer a number of different queries involving the subdivision. 

For example, given a point x on the surface of the polyhedron, the region of the 

subdivision containing x can be determined in logarithmic time. If n denotes the 

number of edges in the polyhedron, m denotes the number of geodesics in the 

subdivision, and K denotes the number of intersections between edges and geodesics, 

then the space required by the data structure is O((n+m)log(n+m)), and the 

structure can be built in O(K + (n + m)log(n + m)) time. Combined with existing 

algorithms for computing Voronoi diagrams on the surface of polyhedra, this 

structure provides an efficient solution to the nearest-neighbor query problem on 

polyhedral surfaces. 

1. Introduction 

In computational geometry there has been considerable study of algorithms for 

problems involving points and lines in two-dimensional and three-dimensional 

Euclidean space. In applications such as robotics, computer-aided design, and 

terrain modeling it is frequently more meaningful to consider problems on 
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surfaces, that is, subsets of three-dimensional space that locally are continuous 
deformations of the plane. These surfaces are frequently approximated piecewise 

by polyhedra. For example, in [16] it was shown how to compute the shortest 

path between two points on the surface of a convex polyhedron in O(n 3 log n) 

time. This result was 'improved to finding both shortest paths and Voronoi 
diagrams on the surface of a polyhedron in O(n21og n) time [9], [11]. These 

shortest path problems (when paths are constrained to lie on the surface of a 

polyhedron) are of interest in areas such as autonomous vehicle navigation, when 

hilly terrain is being modeled. 
A number of problems in computational geometry that have been solved on 

the plane can be meaningfully posed on a polyhedral surface. We consider the 

polyhedral generalization of the point location problem. The Point Location 

Problem on the plane is: given a polygonal subdivision Q of the plane into 

regions bounded by straight line segments, and given a query point x, find the 

region of Q that contains x. By a subdivision we man a finite set of regions 

covering the plane whose interior are pairwise disjoint. A well-known application 

of the point location problem is the location of a query point among the regions 

of a Voronoi diagram to answer the nearest-neighbor query [14]. In light of the 

results in [9] and [11] on computing Voronoi diagrams on polyhedral surfaces, 

it is natural to consider the point location problem on the surface of a polyhedron. 

The planar version of the point location problem has been well studied, and 

solutions are known that are asymptotically optimal with respect to preprocessing 

time and the amount of storage needed to answer queries [4], [7]. This problem 

can be posed on polyhedral surfaces, where the straight line edges in the plane 

are replaced by geodesics. A curve on a polyhedron is geodesic if it is locally a 

shortest path. We consider the following problem: 

Polyhedral Surface Point Location. Given a subdivision Q partitioning the 

surface of a polyhedron into regions bounded by geodesics, and given a query 

point x on the surface of the polyhedron, find the region of Q that contains x. 

We assume that the subdivision Q is defined by a graph embedded on the 

surface of the polyhedron so that the geodesic edges of Q do not intersect each 
other except possibly at their endpoints. The query point x on the surface of the 

polyhedron is represented by giving the face of the polyhedron containing x and 

the coordinates of x with respect to a coordinate frame attached to the plane 

containing the face. 
A geodesic on a polyhedral surface is the natural generalization of a straight 

line segment on the plane. A geodesic traverses a face of the polyhedron in a 

straight line. A geodesic crosses an edge of the polyhedron so that if the faces 

about the edge are "unfolded" to lie in a common plane, then the geodesic 

becomes a straight line segment in the vicinity of the edge. Geodesics cross 

vertices in a manner that is not as locally predictable (see [9] and [11]), hence 

we will assume that geodesics of the subdivision intersect vertices only at their 

endpoints. Just as line segments and hyperbolic segments arise in Voronoi 
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diagrams of points and circles in the plane [15], geodesics and their hyperbolic 

generalizations arise in computing Voronoi diagrams on convex and nonconvex 

polyhedra, respectively. Since geodesics may generally be quite complex, we 

make the simplifying assumption that no geodesic traverses a given face more 

than once. This assumption is satisfied by the geodesics arising in Voronoi 

diagrams on the surface of polyhedra, and in general it can always be met by 

the insertion of additional subdivision vertices. 

There is an obvious solution to the polyhedral point location problem; namely, 

solve the point location problem separately for each face of the polyhedron by 

existing planar point location methods. The amount of space required to store 

the resulting data structures wilt be proportional to the number of intersections 

between geodesics and polyhedron faces. Thus, if n is the number of edges on 

the polyhedron and m is the number of geodesics, the space requirements could 

be as large as O(nm). This is far from optimal, since each geodesic is determined 

by a constant amount of information: an endpoint, its initial direction, and its 

length. This follows from the locally predictable manner in which geodesics 

traverse faces and edges of the polyhedron. 
Our main result is the development of a space-efficient representation of a 

geodesic subdivision on the surface of a polyhedron. Given this representation, 

a point location query can be answered in O(log(n + m)) time. The amount of 

storage required is O((n+m)log(n+m)), that is, a logarithmic factor from 
optimal. Let K denote the number of intersections between geodesics and 

polyhedron edges (K is O(nm)). The representation can be built in time 

O(K+(n+m)log(n+m)). This representation is of value even if the point 

location problem is not the object of study, since many natural queries can be 

answered quickly while avoiding the brute-force O(nm) storage cost. An example 

is the problem of listing the geodesics traversing a given edge. Using our structure, 

this problem can be answered in optimal time, that is, time linear in the size of 

the output. 
It seems at first that standard plane sweep methods [2] used for representing 

polyhedra, should suffice to store the geodesic/polyhedron edge intersection 

information efficiently. However, the unpredictable nature of geodesics makes it 

quite difficult, in general, to sweep in a fixed direction without encountering the 

same geodesic repeatedly. That is, unlike line segments, geodesics fail to act 

monotonically. Our method employs a hierarchical decomposition of the set of 

geodesic and polyhedron edge intersections. This method is similar in flavor to 

Kirkpatrick's hierarchical triangular decompositon of a planar subdivision [7], 

but the specifics of our algorithm are quite different. 
The data structure presented here to represent the structure of the polyhedron 

subdivision is a collection of trees, one tree for each edge in the polyhedron. 

The leaves of the tree associated with a given polyhedron edge e correspond 

to the geodesics that traverse e, ordered from left to right. Each subtree has 

O(log(n + m)) height. By sharing common subtrees the total space requirements 

are reduced. The problem of point location is reduced to the problem of a 

searching in a tree of logarithmic depth. The problem of listing the geodesics 

that traverse a given edge reduces to a simple tree traversal. 
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The paper is organized as follows. Section 2 contains definitions and notation. 

Section 3 describes the procedure by which the discrete combinatorial part of  

the data structure is constructed. In Section 4 the addition of  geometric informa- 

tion to the data structure is presented, and query processing is discussed. 

2. Definitions and Notation 

The notion of  a sequence will be central to our presentation. Define an ordered 

sequence (x~, x 2 , . . . ,  xj) to be a finite list of linearly ordered elements. Define a 

bi-ordered sequence (xl,  x2 . . . . .  xj) to be a finite list of linearly ordered elements 

in which no distinction is made between the sequence and its reverse. The endpoints 

of  the sequence are xl and xj. Unless otherwise noted, the sequences that we 

consider will be bi-ordered sequences. For sequences S~ and $2, we say that S~ 

is a subsequence of $2 if $1 occurs as a contiguous sequence within $2. Let 

Sl = (x~, x 2 , . . . ,  xj) and let S2 = (y~, Y 2 , . . . ,  Yk). Assuming that the elements of 

S~ and $2 are disjoint, their concatenation, $1 + $2, is defined by specifying the 

endpoints at which the sequences are joined. For example, the concatenation of  

S~ and $2 at x~, y~ is the sequence ( x j , . . . ,  x~, y ~ , . . . ,  Yk). 

Let P denote a polyhedron, which consists of  a finite set of  vertices, edges, 

and convex polygonal faces. We are not concerned with P's realization as a 

volume in 3-space, but rather we only consider the graph-theoretic specification 

of  P as a planar graph embedded on a surface of genus 0; see [6] and [12] for 

example. Let n denote the number of edges in P. By Euler's formula and the 

planarity of  P, n is bounded by a linear function of  the number of vertices in P. 

(In general, our results can be extended to graphs embedded on an arbitrary 

orientable 2-manifold. Our complexity bounds hold if the genus of  the manifold 

is bounded by a linear function of the size of the graph's vertex set. This 

requirement is met by the polyhedra used in CAD applications.) 

For the purpose of extracting discrete incidence information, such as listing 

the geodesics that traverse an edge, no geometric information is needed. However, 

if we wish to solve the point location problem, then additional geometric informa- 

tion is added to specify the location of  a point on a face. Each face is associated 

with a two-dimensional coordinate system. A point located on face f of  the 

polyhedron is represented by specifying f and giving the point's coordinates with 

respect to f ' s  coordinate system. 

Let Q denote a geodesic subdivision of  P. Q is represented by a graph 

embedded on the surface of  P whose edges (the geodesics) do not intersect one 

another except possibly at their endpoints (the vertices of Q). Henceforth, we 

use the term geodesic to refer to the edges of Q to avoid confusion with the 

edges of  the polyhedron. Let m denote the number of  geodesics in Q. Since P 

is planar, Q is also planar. If  Q has no multiple edges then, by Euler's formula, 

m is bounded by a linear function of the number of  vertices in Q. Each vertex 

of  Q is represented as any point on P 's  surface, by giving a face and its coordinates 

with respect to the face. 
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Fig. 1. Intersection sequences, 

For a geodesic g, let I (g)  denote the bi-ordered sequence of  edges intersecting 

g given in order from one end of g to the other. Similarly, for an edge e, let J(e) 
denote the bi-ordered sequence of  geodesics intersecting e given in order from 

one end of  e to the other. 

We make the following assumptions to handle degenerate cases. If a vertex 

of Q lies on an edge of  P, we add a vertex to P at this point and split the edge 

into two edges. If a vertex of  Q coincides with a vertex of  P, then the geodesics 

of Q incident on this vertex are considered to intersect the nearest edge e of P 

in clockwise order about the vertex. The order of intersection of  these geodesics 

in J(e) is in clockwise angular order about the vertex, so that the furthest 

counterclockwise geodesic is an endpoint of  J(e) .  I (g)  and J(e) can be construc- 

ted simultaneously using time and space proportional to the number of  

edge/geodesic intersections by a simple traversal of  Q. For example, in Fig. 1 

polyhedron edges are denoted by solid lines and geodesics with dashed lines. 

The edges have been unfolded so the faces lie on a common plane, and geodesics 

are straight line segments. J ( e l )  = ( g l ,  g2, g3, g4) and I(gl) = ( e l ,  e2, e3, e4). 

We say that two geodesics gl and g2 are adjacent on an edge e if gl and g2 

appear consecutively in J(e). Similarly, two edges el and e 2 are adjacent on a 

geodesic g if they appear consecutively in I(g). We cross reference the entries 

e e I (g)  with g e J(e) to facilitate local traversals of the structure. Each geodesic 

is represented by giving its endpoints (vertices of Q) and I(g) .  By unfolding the 

edges of  I (g ) ,  it is easy to trace the path of  the geodesic. 

3. The Incidence Structure 

As mentioned in the introduction, the relationship between the polyhedron P 

and the subdivision Q is represented by a data structure consisting of  a set of  trees. 

Definition. An incidence structure for Q on P is a collection of  ordered binary 

trees with shared subtrees whose roots correspond 1-1 with the edges of  P, and 

whose leaves correspond 1-1 with the geodesics of  Q, such that for each edge e 

of P, the leaves of  the corresponding subtree rooted at e form the sequence J(e). 
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Fig. 2. An incidence structure. 

The precise sense in which these trees are ordered is described in the next 

section. For example, in Fig. 2 we show a possible incidence structure for a set 

of  edges and geodesics. The descendants of  edge e3 are (g3, g4, gs, g6) = J(e3). 

The main result of  this section is the following theorem. 

Theorem 3.1. Consider a polyhedron P with n edges and a subdivision Q bounded 

by m geodesics embedded on P so that no two geodesics cross each other and 

no geodesic crosses an edge of P more than once. An incidence structure of 

height O(log(n+m)) containing O((n+m)log(n+m))  nodes can be built in 

O(K + (n + m) log(n + m)) time, where K denotes the number of intersections 

between geodesics and edges. 

Each node in the structure can be implicitly associated with the set of  geodesics 

that are its descendants at the leaf level and with the set of  edges that are its 

ancestors at the root level. To help describe this association, we introduce the 

concept of  a bundle of  edges and geodesics. 

Definition. A bundle is a pair (G, E)  where G is a sequence of geodesics, and 

E is a sequence of edges, such that: 

1. G is a subsequence of  J(e) for all e e E, 

2. E is a subsequence of  I(g) for all g ~ G. 

A bundle (G, E)  can also be thought of  as a subset of  intersection points 

between geodesics and polyhedron edges, namely the set of  intersections (g, e) 

in the product  G x E. The definition of  a bundle implies that each such 

geodesic/edge pair intersect. In Fig. 3 the geodesic/edge intersections of  the 

shaded region form a bundle. Intuitively a bundle corresponds to a four-sided 

region of  the polyhedron bounded oppositely by two edges and by two geodesics 

within which there are neither any vertices from P nor  vertices from Q. Define 

the g-length of  a bundle to be the number of  geodesics in G, and define the 

e-length to be the number of  edges in E. The g-endpoints and e.endpoints of  a 
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Fig. 3 .  T h e  b u n d l e  ( ( g l ,  g 2 ,  g3) ,  ( e l ,  e2 ,  e3) ). 

bundle are the endpoints of  the corresponding sequences. A bundle is g-maximal 
if G cannot be extended to a larger sequence (e-maximal is defined similarly). 

There are three special types of bundles that are significant to our presentation. 

Definition. 

1. For each edge e, (J(e) ,  (e)) is the single edge bundle for e. 

2. For each geodesic g, ((g), I(g)) is the single geodesic bundle for g. 

3. For each pair of geodesics g~ and g2 that are adjacent along some edge, 

let E be a maximal common subsequence of edges along which g~ and g2 

are adjacent. The double geodesic bundle for gl and g2 along E is 

((g~, g2), E).  We denote the set of all double geodesic bundles by D. 

A collection of  bundles is called an incidence partition if the associated subsets 

of geodesic/edge intersections form a partition of all the geodesic/edge intersec- 

tions. The collection of single geodesic bundles and the collection of single edge 

bundles are both examples of incidence partitions. The set of double geodesic 

bundles does not form an incidence partition because a given geodesic/edge 

intersection may belong to two different double geodesic bundles. 

The construction of the incidence structure is linked to certain operations 

performed on bundles. Each node in the structure is associated with a bundle. 

For example, the leaf node corresponding to a geodesic g is, in fact, associated 

with the single geodesic bundle for g, and the root node corresponding to an 

edge e is associated with the single edge bundle for e. We build the incidence 

structure in a bottom-up fashion, beginning with the leaves (the geodesics) and 

working up to the roots (the edges). The fundamental operation performed on 

bundles is a merging operation that we call tying. In this operation, two bundles 

are merged and replaced by one or more new bundles of greater g-length but 

possibly smaller e-length. Beginning with the single geodesic bundles we tie 

bundles together in pairs, gradually transforming the incidence partition from a 

collection of  single geodesic bundles into a collection of single edge bundles. 

The incidence structure is essentially an operator tree, recording the relationships 
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among bundles as tying occurs. Thus, the incidence structure is built in a 

bottom-up manner, with one new node added whenever a new bundle is formed. 

To describe the tying operation more formally, let bI=(G~,E~) and b2 = 

(G2, E2) be two bundles for which there are two g-endpoints g~ e G~ and g2c G2 

that are adjacent on some edge e that is in both E~ and//2;  see Fig. 4. Intuitively, 

the tie of  b~ and b 2 a t  e consists of concatenating bt and b 2 along a maximal 

common subsequence of edges into a new bundle. Both b~ and b 2 a r e  then 

replaced by this new bundle together with any of  their leftover fragments. 

Algorithm 3.1. Tying bundles b~ and b2 at edge e. 

1. Let E be a maximal subsequence of  E~ and E2 containing e on which gl 

and g2 are adjacent. Partition E~ into at most three subsequences, E~, E, 

and E~. (The first and third subsequences may be empty.) Similarly, parti- 

tion E 2 into at most three subsequences, EL, E, and E~. 

2. Create new bundles (G1, E~) and (G1, E~'). Do the same for b E. 

3. Create the new bundle (G~+G2,  E),  where the geodesic sequences are 

concatenated at g~ and g2. 

4. Delete the bundles b~ and b2. 

Note that if a collection of bundles forms an incidence partition before a tying 

operation is performed, then the new collection of bundles also forms an incidence 

partition. After tying, the number of  bundles in a partition increases by at most 

3. Because it consists of  simple list operations, tying can be performed in time 

proportional to the length of  E. 

The tying operation is recorded as follows in the incidence structure. Let us 

assume that each node in the incidence structure is named by its corresponding 

bundle. For  each newly constructed bundle, we add a new node to the incidence 

structure. The nodes (G~, E l )  and (G~, E~) have the node bl as their only child 

(and similarly for b2), and the node (G1 + G2, E)  has both b~ and b2 as children. 

In the next section we discuss the issue of  which node is the left child and which 

is the right child. Note that if the bundle (G' ,  E ' )  is the parent of  some bundle 



Storing the Subdivision of a Polyhedral Surface 161 

(G, E) ,  then G is a subsequence of  G'  and E '  is a subsequence of  E. For example, 

referring back to Fig. 2, the single geodesic bundles for g7 and g8 (the rightmost 

leaves) are tied along (e4, er) forming their parent bundle ((g7, gs), (e4, e6)). This 

bundle is then split when it is tied to the bundle ((g3, g4, gs, gr), (e3, e4)) (the 

central node) along edge e4 forming the three single edge bundles (roots) 

( (g3, - -  - ,  g6), (e3)), ((g3 . . . .  , g8), (e4)), and ((g7, g8), (er))- The remainder of  the 

incidence structure shown in Fig. 2 can be built using this operation along with 

the simple enhancement of  removing tree nodes that have but one child. 

As mentioned earlier, the incidence structure is built bottom-up starting with 

the single geodesic bundles and then repeatedly tying until only single edge 

bundles remain. The order in which we choose to tie the bundles is critical to 

the efficiency of  the structure. There are two constraints that must be met to 

ensure this efficiency. First, we wish to keep the number of bundles in the incidence 

partition as small as possible, since this directly influences space requirements. 

Haphazardly tying bundles may cause significant fragmentation in the incidence 

partition, which can result in as many as K = O(nm) bundles. Second, we must 

tie bundles in a relatively balanced manner to guarantee that the height of the 

incidence structure will be logarithmic. The issues of avoiding fragmentation and 

guaranteeing balance will be the subject of  the rest of  this section. 

In order to avoid fragmentation, we introduce a modification of the tying 

operation, called a full tie. A single full tie operation will actually consist of a 

series of  individual tying operations. To define this operation, first recall the set 

D of double geodesic bundles. The set D will serve as an aid in defining the 

tying process, and is independent of the bundles represented by the nodes in the 

incidence structure. To avoid confusion we use the term "bundle" for bundles 

represented by nodes in the incidence structure, and we use "an element of D "  

for these special bundles. 

Suppose that we have built a set of bundles that forms an incidence partition. 

Let d = ((g~, g~), E)  be an element of  D, such that for each e ~ E, (g~, e) and 

(g2, e) lie in different bundles of the partition. We define the full tie along d to 

be the tie of  all bundles that meet along the length of d. The complete description 

is given in Algorithm 3.2, and Fig. 5 illustrates the operation. As with regular 

ties, a full tie is an operation that preserves incidence partitions. 

Algorithm 3.2. 

1. 

. 

. 

The full tie along ((gl, g2), E).  

Let bl, b 2 , . . . ,  bj (j-> 1) be the bundles that contain the intersections 

{g~}xE, and let c,, C2,... ,Ck ( k - l )  be the bundles that contain the 

intersections {g2} x E. The bi and Ch are ordered according to their incidence 

with E. 
Both b, and b s may extend beyond E. If  so, split off this extension. This 

may result in the creation of  at most two new bundles, and b, and bs are 

trimmed back. Now, the edge sequence of  every bundle b~, 1 - i-<j, is a 

subsequence of E. We do the same with c, and Ck. 
The bundles b, define a partition of  E into j subsequences, and the bundles 

c~ partition E into k subsequences. For each bh and c~ that are adjacent on 
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Fig. 5. The full tie along ((gl, g2), E). 

some edge e ~ E, we form a new bundle by tying bh and c~ at edge e. This 

results in the replacement of the original j + k bundles by at most j + k -  1 

new bundles. 

The effect of  this operation on the incidence structure is the same as if each 

pair of  bundles bh and c~ were tied individually. The full tie along d replaces 

j + k existing bundles with at most j + k + 3 new bundles ( j  + k - 1 along E and 

at most four leftover extensions). The operation can be performed in time 

proportional to the e-length of  d. Note that a full tie can be performed at most 

once for each d ~ D, since, after tying, all of  the geodesic/edge intersections in 

d adjacent along each edge appear in the same bundle. The full tie operation 

along d =((g~, g2), E)  assumes that the geodesic/edge intersections ((gO, E)  

appear in a different bundle from their counterparts ((g2), E).  I f  we start with 

the single geodesic bundles and perform full ties along the elements o f  D, this 

assumption will always be met because a pair of  geodesic/edge intersections that 

are adjacent on an edge can be placed into the same bundle by the one and only 

one element of  D that contains this pair. Thus, we can perform full ties along 

every element of D. After performing full ties along all of  the elements of D, 

there are no more bundles that can be tied, so each edge will be traversed by at 

most bundle. 

By performing full ties along the elements of  D it can be proved (Lemmas 

3.4 and 3.3 below) that fragmentation of  bundles caused by haphazard tying will 

be avoided. To guarantee that bundles are tied in a balanced way to ensure 

logarithmic height in the incidence structure, we structure the order in which full 

ties are performed. We organize the tying process in stages. At each stage, we 

select a subset of elements from D, say S, and perform full ties along all of the 

elements of  S. The elements of S are removed from consideration for future 

tying. At stage k, we let D~ denote the elements of  D that remain eligible to use 

in tying. 
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Balance will be achieved by maintaining the restriction that, within a single 

stage, two bundles are tied if and only if they were both formed at earlier stages. 

This restriction limits the subsets S c_ Dk that can be selected for tying at stage 

k: We say that a subset of  Dk is eligible for tying if it satisfies this condition. The 

problem reduces to determining a sufficiently large eligible subset of Dk. Consider 

a bundle b = ((3, E) in the incidence partition formed prior to stage k. Let g~ 

and g2 be the g-endpoints of G and let e e E. If the geodesic/edge intersection 

(gt, e) is involved in tying during stage k, then the intersection (g2, e) is ineligible 

for tying in stage k (and vice versa). This, if d~ and d2 are elements of Dk, such 

that (g~, e) ~ dl and (g2, e) e d2, then d~ and d2 cannot both be eligible to be 

used in tying at stage k: This suggests the following relation defined on the 

elements of +Ok. 

Definition. Consider the bundles defining an incidence partition that result after 

performing some series of full ties. Let Dk denote the elements of D that remain 

to be tied. Two elements d~ and d2 in Dk are said to conflict if there exist 

geodesic/edge intersections (g~, e) e d~ and (g2, e) e d2 that lie in the same bundle. 

The conflict graph for Dk is an undirected graph with vertex set Dk whose edges 

are the conflicting pairs of Dk (see Fig. 6). 

Note that the geodesics gt and g2 in the definition of the conflict graph are 

the g-endpoints of their common bundle because they are both contained in 

elements of  Dk which, by definition, have not yet been tied. It follows from the 

previous discussion that a subset S of Dk is eligible to be used in tying if and 

only if it is a subset of vertices in the conflict graph that are not pairwise adjacent, 

that is, an independent set in the conflict graph. The algorithm for tying bundles 

follows immediately. 

Algorithm 3.3. Tying bundles by independent sets. 

1. Initially the set of bundles consists of the single geodesic bundles. 

2. Let Dt = D, be the set of double geodesic bundles. Let k = 1. 

3. While Dk is nonempty repeat steps 4-7. 

4. Form the conflict graph for Dk from the existing incidence partition. 
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5. Compute an independent set S in the conflict graph for Dk. 
6. Perform full ties along each d e S and construct the corresponding nodes 

in the incidence structure. 

7. Let Dk+I=Dk--S.  Let k = k + l .  
8. At this point, every edge is traversed by at most one bundle. For each 

bundle b = (G, E) where [E I > 1, and for each e ~ E, create the single edge 

bundle b~ = (G, (e)), and make b the only child of be in the incidence 

structure. 

Each iteration of the whole loop in Algorithm 3.3 constitutes one stage. The 

next fact is an important observation in finding an independent set in the conflict 

graph. 

Lemma 3.1. At each state of  Algorithm 3.3, the conflict graph is a planar graph. 

Proof. We show how to draw the conflict graph on the polyhedron P so that 

its edges do not cross. Let k denote the current stage. For each d = ((gl, g2), E) 
Dk, identify d with a four-sided region on the surface of the polyhedron bounded 

by gl, g2 and by the endpoint edges of E. These regions, called tie regions, have 

pairwise disjoint interiors because geodesics and edges do not cross their own 
kinds, and because of the e-maximality of elements of D. 

The tie regions are in 1-1 correspondence with the vertices of the conflict 

graph at stage k. The edges between conflict graph vertices, or conflict edges can 

be drawn as follows. If there is an edge between dt and d2 in the conflict graph 

for Dk, then by definition there is a bundle b in the incidence partition with 

g-endpoints gl and g2 and an edge e in b such that (gl, e) ~ d~ and (g2, e) E d2. 
We draw the conflict edge from (g~, e) to (g2, e) along the edge e. No other 

conflict edge can overlap this portion of edge e, because the bundles of the 

incidence partition are disjoint. Furthermore, no conflict edge can cross this 

portion of e, because all conflict edges lie on polyhedron edges, which do not 

cross each other. Finally, this conflict edge cannot cross a tie region, because the 

tie regions span the regions between untied bundles and the conflict edge lies 

entirely within the region defined by the bundle. Since (g~, e) ~ dt and (g2, e) ~ dE, 

the edge endpoints touch the boundary of the tie regions for d~ and d2. The 

planar graph results by continuously contracting each tie region boundary into 

a single point, pulling along the conflict edges on its boundary. [] 

It is easy to prove that planar graphs have easily computable independent sets 

whose size is at least a constant fraction of the size of their vertex set (see [7]). 

This follows, for example, by the fact that a 5-coloring of a planar graph can be 

computed in time linear in the number of vertices [1]. The largest color class is 

an independent set of size at least v/5. The fact that there exists a constant c -  > 1, 

such that an independent set can be found in the conflict graph of size at least 

v~ c, implies that t Dk] <-- ]Dk_l [( c -- 1)/C. THUS, after a logarithmic number of stages 
IDkl = 0 and the process terminates. Since at each stage at most one new level is 

added to the structure, we have the following result. 
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L e m m a  3.2. The incidence structure built by Algorithm 3.3 has O(log IDI) height. 

L e m m a  3.3. The number of elements in D is O( n + m ). 

Proof. To compute the size of  D we place an upper  bound on the number  of  

e-endpoints o f  the elements of  D. Let gl and g2 be two geodesics that are adjacent 

on an edge e. There is exactly one element of D that contains both of  the 

intersections of  gl and g2 along e. This element of  D can be defined by expanding 

e to a maximal subsequence of  edges along which gl and g2 are adjacent. There 

are two reasons why this expansion may terminate. First, we reach an endpoint 

of either gl or  g2. The number of  such terminations is at most 4m because each 

geodesic has two endpoints, and each geodesic may be adjacent to at most two 

other geodesics (one on the right and one on the left) along the last edge traversed 

by the geodesic; see the top of  Fig. 7(a). 

The second reason for termination is that we reach an edge e'  where g~ and 

g2 are adjacent, but the neighboring edges of  e' in I(g~) and I(g2), say e~ and 

e2, are not equal. The edges e', e~, and e2 lie on a common f a c e f o f t h e  polyhedron; 

see Fig. 7(b). We have a configuration in which two geodesics enter a face 

adjacently through a common edge and diverge, leaving the fact through two 

different edges. Charge this termination to a vertex v causing the divergence, that 

is, a vertex lying between e~ and e2. Because geodesics do not cross one another, 

no other pair  of  geodesics will be charged to this vertex within the face f. This 

implies that the number of  charges made to any vertex is no greater than the 

number of  faces incident on that vertex. Thus, the total number of  terminations 

of this second type is bounded by the sum of degrees of the vertices of  the 

polyhedron, which is twice the number of  edges or 2n. Therefore, the total number 

of e-endpoints is at most 4 m + 2 n  which is O(n+m) .  [] 

L e m m a  3.4.  L e t  N = n + m. The number of nodes in the incidence structure built 

by Algorithm 3.3 is O( N log N).  

Proof. Initially there are m nodes in the incidence structure corresponding to 

the m geodesics, and at the root level there are n nodes corresponding to the 

v 

\\~\\\..t, 

gl g2 gl g2 

la) (b) 

Fig. 7. Termination of  an element in D. 



166 D.M. Mount 

edges of the polyhedron. Since there are logarithmically many stages (in IDI = 

O(N)) to show that the remaining number of  nodes is O(N log N),  it suffices 

to show that each stage of  the algorithm creates at most N new nodes. Recall 

from the remarks following Algorithm 3.2 that, whenever a full tie is performed, 

some number h of  nodes (i.e., bundles) that were eligible for tying are replaced 

by at most h + 3 new nodes. The total number of full ties that are performed is 

IDI. Let Sk denote the number of  full ties performed at stage k. Thus sl + s2 + . . . .  

[D 1. The number of  nodes eligible for tying at stage k is bounded by the number 

of  nodes eligible for tying at stage k -  1 plus 3Sk-1. Thus, the number of  nodes 

eligible for tying and hence the number of  nodes created at stage k is at most 

m+ 3(s~ + s2 +. . --{- Sk_l) ~--- m + 31Dt = O( N). [] 

The following lemma completes the proof  of  Theorem 3.1. 

Lemma 3.5. The incidence structure can be built in O( K + ( n + m)log(n + m)) 

time, where K denotes the number of geodesic~ edge intersections. 

Proof. The running time of Algorithm 3.3 is determined by the sum of the times 

needed to perform the following tasks: 

1. Compute the single geodesic bundles. 

2. Compute D. 

3. Create the nodes of the incidence structure. 

4. Build the conflict graph for Dk for each stage. 

5. Construct an independent set in each conflict graph. 

6. Perform the full ties. 

Task 1 is computed by a simple traversal of I(g) for each geodesic, requiring 

O(K) time. For Task 2 we compute the elements of D by the same expansion 

process described in the proof  of  Lemma 3.3. Each intersection (g, e) is visited 

at most twice in the process. Thus the time to construct D is proportional to the 

number of  geodesic/edge intersections, which is O(K). For Task 3, the number 

of  nodes in the incidence structure is O((n + m)log(n + m)) and constant time 

suffices to create each node. For Task 4, note that the conflict graph for D1 can 

be built in O(K) time, and the graph can be updated as the full tie is being 

performed as follows. For each geodesic/edge intersection we can determine its 

immediate neighbors on the edge in constant time. For each such pair we store 

a pointer to the element of  D containinng this pair. As a full tie is performed 

along d e D, we delete node d from the conflict graph and check the e-endpoints 

of the newly merged bundles for new edges to add to the graph. Thus, 

the time for Task 4 is the same as the time for Task 6, which we give below. 

For Task 5, an independent set in Dk can be constructed in linear time in 

[Dk[ = O ( n +  m). Since there are logarithmically many stages the total time is 

O((n + m) log(n + m)). To determine the time to perform Task 6, recall that the 

time to perform a full tie along d e D is proportional to the e-length of  d. The 

sum of  e-lengths in D is O ( K )  because each of the K geodesic/edge intersections 
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lies in at most two members of  D, and the e-length of  a bundle in D is one-half 

its number  of  intersections in the bundle. [] 

Before ending this section, we describe one further performance enhancement 

that is made to the incidence structure without altering the asymptotic running 

time of  the algorithm. Ignoring root nodes, there may be trivial nodes in the 

structure that have only one child. This happens, for example, when a part of  a 

bundle is tied and the remainder is broken off to form an untied bundle. The 

remaining subbundle has the original bundle as its only child. We eliminate links 

to trivial nodes in the incidence structure by a postprocessing step that moves 

each link down to the first descendant node that is either a leaf or has two 

children. Now, except for root nodes, the nodes of  the incidence structure each 

have either zero or two children. This implies that the size of  the subtree rooted 

at any given node is at most twice the number of  its leaves. We will use this fact 

in the next section on query processing. 

We remark in passing that throughout this section we have made essentially 

no use of  the fact that the polyhedron and the geodesic subdivision are geometric 

objects, or even that the geodesics form a subdivision. The only data that we 

have used in defining the incidence structure are the intersection sequences, l(g) 
and J(e), the assumption that the curves represented by these structures can be 

drawn on the plane so that they do not cross over curves of their same kind, and 

the assumption that no geodesic traverses a face more than once. Hence, the 

incidence structure may be valuable in other applications that involve pairs of  

planar objects that overlap each other [5]. 

4. Query Processing 

In this section we consider how to answer a number  of  queries about the 

subdivision by using the incidence structure. We begin by considering the follow- 

ing two discrete queries. 

Geodesic Incidence with an Edge. Given an edge e of  the polyhedron, list the 

sequence of geodesics that traverse e ordered from one end of  e to the other, 

that is, list J(e). 

Geodesic Incidence with a Face. Given a face f of  the polyhedron, list the set 

of  geodesics that traverse fi 

Before describing the solutions to these queries, we describe some enhance- 

ments to the incidence structure that will allow us to determine the relative order 

in which geodesics traverse an edge. Normally, when dealing with a binary tree, 

there is an explicit notion of  left and right subtrees. In the case of  the incidence 

structure, this distinction is not made so easily. Consider, for example, the six 
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Fig. g. Ordering subtrees of the structure. 

geodesics, g ~ , . . . ,  g6, traversing the triangular face consisting of edges e, ,  e2, e3 

shown in Fig. 8(a). By specifying that g, is to the left of g2, it follows that g3 is 

to the left of  g4 on edge el, and g5 is to the left of g6 on edge e2. However, now 

there is no way to define right and left with respect to the edge e3 that is 

simultaneously locally consistent with the other two edges. 

We solve this problem by adding one additional bit to each link of  the incidence 

structure that allows us to define left and right separately for each bundle. Each 

polyhedron edge is arbitrarily oriented by distinguishing the edge's endpoints as 

head and tail. Points along the edge are ordered from left to right as we move 

from the tail to the head of the edge. With each bundle b = (G, E) ,  we arbitrarily 

select one edge e ~ E called the representative edge for the bundle. Since all the 

geodesics of G traverse the edge e, this implicitly defines an order of  the geodesics 

of  G. 

Let b~ = (G1, El) be a bundle in the incidence structure with a parent node 

b 2 = (G2 ,  E2) , and let el ~ E~ be the representative edge for bundle bl. This implies 

that E2 is a subsequence of  El ,  and G~ is a subsequence of  G2. We arbitrarily 

select an edge e2e E2 to be the representative edge for b2. The geodesics o f  G~, 

considered in order from left to right along el, either traverse e2 in left to right 

order or in right to left order. In the latter case, we place a mark on the link 

between b2 and b~ in the incidence structure. The mark indicates that all notion 

of left to right within the subtree rooted at the note b~ is to be interpreted in 

reverse (as right to left). Within the subtree of  b~ there may be other marks that 

reverse the order  again. Thus, if p is a path from a root  of the incidence structure 

to some node, then the interpretation of left and right subtrees at this node is a 

function of  the parity of  the number of marked links in p. For example, in Fig. 

8(a), the directions on the edges indicate the implied left to right order, and in 

(b) a mark is shown on one of the links f rom Ca. Thus, the order of geodesics 

along edge ea is taken to be (g4, g3, gs, g6). 

When two bundles, b~ and b2, are made children o f  a bundle b in the incidence 

structure, they are merged according to their relative order along e, the representa- 

tive edge for b. The disjointness of  bundles implies that one bundle lies entirely 

to the left of  the other bundle with respect to e. The leftmost bundle becomes 
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the left son of b and the other becomes the right son. I f  the direction of the 

representative edge of a child bundle, say b~, differs from the direction of the 

representative edge of the parent b, then a mark is added on the link between b 

and b~. This determination can be made in constant time for each tie. 

The Edge Incidence Problem is now easily solved by simply performing a left 

to right depth first traversal of  the tree rooted at edge e in the incidence structure, 

listing geodesics (leaves of  the structure) as they are encountered. Note that the 

bundle associated with the root e is a single edge bundle, hence its representative 

edge is e. This implies that the geodesics are listed in left to right order with 

respect to the orientation of e. The complexity of the operation is equal to the 

size of the tree rooted at e. In the previous section the size of  each tree was shown 

to be at most twice the number of  its leaves. Therefore the running time is linear 

in the length of the output. 

To solve the Face Incidence Problem, note that the geodesics incident on a 

given face f either intersect an edge of  f or are entirely contained within f. The 

latter set of  geodesics will not be represented at all in the incidence structure, so 

for each f we simply record the set of  geodesics entirely contained within f. The 

total space required to store this information is O ( n + m). The remaining geodesics 

are found by solving the Edge Incidence Problem for each edge of  f that is 

traversed by at least one geodesic. This set of  edges that are incident on f and 

are traversed by at least one geodesic can be stored explicitly in O ( n )  space. The 

time required to solve the problem is linear in the size of the output. 

Next, we consider how to answer geometric queries, such as the point location 

query. The incidence structure provides access to an ordered tree of  logarithmic 

height containing the geodesics intersecting each edge. We first outline how the 

geometric information is added to the incidence structure, and then we show 

how to use this information to process a point location query. 

For each directed edge we define a coordinate system. The origin of  the system 

is the tail of the edge, the x-axis is directed along the edge, and the y-axis is 

placed on the plane of  the adjacent face lying to the left of  the edge. Each 

geodesic that traverses the edge can be represented as a linear equation with 

respect to this coordinate system. The geodesics in a bundle are implicitly 

represented with respect to the representative edge of  the bundle. This is done 

as follows. For a single geodesic bundle (a leaf of the incidence structure), we 

store the equation of the geodesic explicitly as a linear equation T ( v )  = c where 

T is a linear operator, c is a scalar and v is the vector indeterminate. Each link 

in the incidence structure is associated with a linear transformation converting 

from the child bundle's coordinate system to the parent bundle's coordinate 

system. Informally, by composing these transformations along the path from the 

root to the leaf and then applying T we can derive the equation of any geodesic 

with respect to any edge. 

Specifically, let b~ = (G1, El) be a bundle in the incidence structure with a 

parent node b2 = (G2, E2), and let el ~ E! and e2 ¢ E2 be the respective representa- 

tive edges for these bundles. This implies that E2 is a subsequence of  El, and 

G~ is a subsequence of G2. Unfold the edges of  E~ so that their adjacent faces 

lie in a common plane. The geodesics in Gt are mapped to straight lines after 
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this unfolding. Note that e2 ~ E1 is a part of this unfolding. There is a unique 

Euclidean transformation that converts a vector v represented in the coordinate 

system of  e2 to the equivalent point in the coordinate system of  e~. Call this 

transformation Cbl,b2, and label the link between b~ and b2 in the incidence 

structure with this transformation. 

Letting T ( v )  = c denote the equation of a generic geodesic in G~ with respect 

to et, it is clear that the equation T(Cb,,bzV) = c is the equation of  this same 

geodesic in (32 with respect to e2. Thus, if b~, b 2 , . . . ,  bk form a path in the 

incidence from a leaf to a root, where bl is a single geodesic bundle for a geodesic 

g and bk is a single edge bundle for an edge e ~ I ( g ) ,  then the equation for g in 

the coordinate system of  e is given by composing these transformations: 

T(Cb,,t, zCbz.t,s . . .  Cb~_,.b~ v)  = c. 

This composition can be performed by matrix multiplication. Thus, the equation 

of any geodesic with respect to an edge that it traverses can be computed in 

logarithmic time by traversing the path from the root to the geodesic. 

Left and right discriminations can also be made by replacing the equality 

T ( v )  = c with an inequality T ( v )  ~ c devised, say, so that the head of the edge 

satisfies the inequality. The marks on the incidence structure links are used to 

reverse the direction of  the inequality. For every node in the incidence structure, 

we precompute the equation of  the leftmost geodesic in the right subtree and the 

fightmost geodesic in the left subtree and store these equations in the node. This 

can be performed in time linear in the size of  the incidence structure by a simple 

traversal of the structure. With these enhancements we can answer the following 

restricted version of the point location query. 

P o i n t  L o c a t i o n  on an Edge. Given a point x located on an edge e of the 

polyhedron, where x is represented in the coordinate system for e, determine the 

two geodesics or endpoints of  e that immediately surround x on the edge. 

The algorithm is recursive. At each level of  the recursion we are given a bundle 

b and the point x represented with respect to the representative edge for b. 

Initially, b is the single edge bundle for the query edge e. The ouptut of  each 

recursive invocation will either be a pair of  geodesics directly bounding x or else 

an indication that x lies entirely to the fight or left of  the bundle, where the head 

of  the representative edge is taken to be far fight. 

Algorithm 4.1. Locate x with respect to the bundle b. 

1. I f  b is a single geodesic bundle, then return "left" or "right" depending 

on whether x lies on the same side of  the geodesic as the tail or head, 

respectively, of  the representative edge for b. 

2. Otherwise, b has two children. Let T~ and T2 be the equations of the 

rightmost geodesic of  the left subtree and the leftmost geodesic of the right 
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. 

subtree of b, respectively. If x lies between T1 and 7"2, then return the 

names of  the corresponding pair of geodesics. 

Otherwise, x lies to the left of T, or to the right of T2. In the former case, 

let C, be the transformation on the link to the left subtree of b. Recursively 

locate the point C,x in the left subtree of b. If  the result of  the recursive 

call is "left" or "right" and the link between b and the left subtree is 

marked, then reverse the direction of the result before returning. A sym- 

metric operation holds in the case of searching the right subtree. 

The correctness of the algorithm follows from the preceding discussion. The 

invariant regarding the relative order of  intersection of the geodesics on the 

representative edges follows from the fact that geodesics do not cross. The search 

time is proportional to the depth of the incidence structure, O(log(n + m)). Note 

that once a pair of  geodesics (or endpoints of e) that bound a query point x are 

known, the region of  the subdivision containing x is determined. To compute 

the region, we store each pair of adjacent geodesics in a dictionary with a fast 

search procedure to look up the region of the subdivision. The number of  adjacent 

geodesics is bounded by the size of D, the set of double geodesic bundles. Thus, 

by Lemma 3.3, the size of this dictionary is O(n + m). 
At this point we have developed essentially enough mechanism to solve the 

general point location problem. 

Polyhedral Surface Point Location. Given a subdivision Q partitioning the 

surface of  a polyhedron into regions bounded by geodesics, and given a query 

point x on the surface of the polyhedron, find the region of  Q that contains x. 

The query consists of a face f and the coordinates of a point x on f with 

respect to f s  coordinate system. Some preprocessing of the polyhedron is 

required, prior to building the incidence structure. Consider the face f, and let 

S denote the set of subdivision vertices (geodesic endpoints) lying in the interior 

of f. Triangulate f together with the vertices S, forming a refined polyhedron 

with possibly coplanar faces. This triangulation forms a planar polygonal sub- 

division o f f ;  see Fig. 9. The size of the triangulated polyhedron is O(n + m) by 

its planarity and Euler's formula, and it can be computed in 

O((n + m) log(n + m)) 

time by standard techniques [14]. Using standard point location methods, we 

can determine which refined face contains the query point x in logarithmic time 

and overall O(n + m) space [4], [7]. 

Next, we build the incidence structure for the refined polyhedron. Consider 

the triangulated face f of the refined polyhedron that contains the query point. 

Because of  our refinement, there are no subdivision vertices in the interior of 

this face. Since the restriction of a geodesic to a face is a straight line, it follows 

that every subdivision region intersecting f either contains f or else transversely 

intersects at least one of  the edges of f .  In the former case, knowing the face that 

contains the query point x determines the region of the subdivision. Thus, we 
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concentrate on the latter case. It suffices to determine two geodesics bounding 

the region containing x that are adjacent on some polyhedron edge. We have 

developed the capability of  performing a tree search on the geodesics crossing 

any given edge of  the polyhedron. Intuitively, to solve the point location problem 

we repeat this operation on every edge surrounding the fact that contains x. 

Consider an arbitrary geodesic g, and assume that g traverses an edge e of 

the face. Recall that J(e) denotes the set of all geodesics traversing e. If  g does 

not intersect the interior of  the face, then g must be incident on an endpoint of 

e, say the tail v of  e. In this case g and the subset of J(e) lying to the left of g 

(clockwise about v) can be eliminated from the search. A symmetric argument 

holds if g is incident on the head of  e. If, on the other hand, g traverses the 

interior o f f ,  then, because there are no subdivision vertices on the interior o f f ,  

g subdivides f into two regions such that all the geodesics to the right of  g in 

J(e) lie entirely in one region, and the geodesics to the left of  g in J(e) lie in 

the other region. Thus, by applying a tree search to the subtree of  the incidence 

structure rooted at e, we can discriminate which two geodesics o f  J(e) bound 

the query point x in logarithmic time. In general, x may be bounded by only 

one geodesic, but we ignore this case for the sake of  simplifying the description. 

We repeat the discrimination on each of  the three edges of f. We claim that 

these three discriminations uniquely determine the region o f  the subdivision that 

contains x. The following cases arise: 

1. I f  for two edges of  f we find the same pair of  geodesics bounding x, then 

it follows that these two geodesics bound the region containing x in the 

subdivision. 

2. If  for all three edges o f f  we find a different pair of  geodesics bounding x, 

it follows that there are at least three geodesics bounding x in fi However, 

there can be no more than three geodesics bounding x, because each geodesic 

must intersect an edge of f, and f is a triangle. It follows that all three 

geodesics bound the region of  the subdivision that contains x. 

In either case, we have determined a pair of  geodesics that are adjacent on some 
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polyhedron edge that bound the region containing x. The region is determined 

by consulting the dictionary of  adjacent geodesic pairs. As mentioned earlier, 

the size of  the dictionary is bounded by the size of D, the set of double geodesic 

bundles, which was shown to be O(n + m) by Lemma 3.3. 

This completes the description of the solution to the point location query. The 

complexity is O(log(n+m)) since three tree searches are performed in the 

incidence structure, whose height is O(log(n + m)). 

5. Further Remarks 

We have described a data structure, called the incidence structure, based on a 

collection of trees with shared subtrees that records the ordered incidence of a 

collection of  geodesics on a polyhedron's surface. The structure consists of a 

discrete component, which depends only on the order in which geodesics intersect 

polyhedron edges, and a geometric component, from which the exact equation 

of  each geodesic on any face can be determined. We have shown how to answer 

a number of  natural queries based on simple tree traversals. The structure can 

be viewed as an unoriented counterpart to geometric search tree structures based 

on global orientation such as plane sweep [3], [13] or discrimination with respect 

to monotonic chains [4], [8]. The inadequacy of  existing geometric search 

strategies for our problem stems from the nonmonotonic nature of  geodesics. 

There are a number of interesting issues that are raised by this work. The 

discrete component of  the data structure can be defined in any situation in which 

two planar graphs are overlaid. Guibas and Seidel have considered quite a 

different problem in this same setting [5], although the techniques that they apply 

are quite different from ours. Applications of this structure to other areas in 

graph theory and discrete geometry may exist. 

We have presented one method of  constructing the incidence structure by 

performing full ties selected as an independent set from a planar graph. Although 

our method gives asymptotic bounds, it is doubtful whether this method is of  

direct practical value. It would be of interest to know if there are simpler, more 

direct methods that guarantee the same performance bounds, or whether random 

tying or random full tying will yield as good a performance on the average. 

One application of  this structure is in solving the nearest-neighbor problem 

on the surface of a convex polyhedron. Generalizing this result to nonconvex 

polyhedra requires allowing curves that are "hyperbolic geodesics." Although 

the incidence structure can easily represent such curves, the search procedure of  

Section 3 requires that no geodesic cross the same edge twice. This may be 

violated by hyperbolic geodesics. Generalizing the search procedure to this case 

would be of  interest. Furthermore, it would be interesting to know whether the 

incidence structure can be built "on the fly" while constructing the Voronoi 

diagram on the surface of the polyhedron, thus avoiding the O(nm) space 

requirements of  both algorithms [9], [ 11]. Although our approach seems to require 

O(nm) time and space just to store the input, there may be quite different 

approaches that obviate the need for maintaining all of this information. 
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