
Discrete Comput Geom 2:153-174 (1987)

© 1987 Sprinser-Verlag New York i n c r y

Storing the Subdivision o f a Polyhedral Surface*

David M. Moun t

Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742, USA

Communicated by David Dobkin

Abstract. A common structure arising in computational geometry is the subdivision

of a plane defined by the faces of a straight-line planar graph. We consider a natural

generalization of this structure on a polyhedral surface. The regions of the subdivision

are bounded by geodesics on the surface of the polyhedron. A method is given for

representing such a subdivision that is efficient both with respect to space and the

time required to answer a number of different queries involving the subdivision.

For example, given a point x on the surface of the polyhedron, the region of the

subdivision containing x can be determined in logarithmic time. If n denotes the

number of edges in the polyhedron, m denotes the number of geodesics in the

subdivision, and K denotes the number of intersections between edges and geodesics,

then the space required by the data structure is O((n+m)log(n+m)), and the

structure can be built in O(K + (n + m)log(n + m)) time. Combined with existing

algorithms for computing Voronoi diagrams on the surface of polyhedra, this

structure provides an efficient solution to the nearest-neighbor query problem on

polyhedral surfaces.

1. Introduction

In computational geometry there has been considerable study of algorithms for

problems involving points and lines in two-dimensional and three-dimensional

Euclidean space. In applications such as robotics, computer-aided design, and

terrain modeling it is frequently more meaningful to consider problems on

* A preliminary version of this paper appeared at the Second Annual Symposium on Computational
Geometry. The support of the Air Force Office of Scientific Research under Contract F-49620-85-K-
0009 is gratefully acknowledged.

154 D.M. Mount

surfaces, that is, subsets of three-dimensional space that locally are continuous
deformations of the plane. These surfaces are frequently approximated piecewise

by polyhedra. For example, in [16] it was shown how to compute the shortest

path between two points on the surface of a convex polyhedron in O(n 3 log n)

time. This result was 'improved to finding both shortest paths and Voronoi
diagrams on the surface of a polyhedron in O(n21og n) time [9], [11]. These

shortest path problems (when paths are constrained to lie on the surface of a

polyhedron) are of interest in areas such as autonomous vehicle navigation, when

hilly terrain is being modeled.
A number of problems in computational geometry that have been solved on

the plane can be meaningfully posed on a polyhedral surface. We consider the

polyhedral generalization of the point location problem. The Point Location

Problem on the plane is: given a polygonal subdivision Q of the plane into

regions bounded by straight line segments, and given a query point x, find the

region of Q that contains x. By a subdivision we man a finite set of regions

covering the plane whose interior are pairwise disjoint. A well-known application

of the point location problem is the location of a query point among the regions

of a Voronoi diagram to answer the nearest-neighbor query [14]. In light of the

results in [9] and [11] on computing Voronoi diagrams on polyhedral surfaces,

it is natural to consider the point location problem on the surface of a polyhedron.

The planar version of the point location problem has been well studied, and

solutions are known that are asymptotically optimal with respect to preprocessing

time and the amount of storage needed to answer queries [4], [7]. This problem

can be posed on polyhedral surfaces, where the straight line edges in the plane

are replaced by geodesics. A curve on a polyhedron is geodesic if it is locally a

shortest path. We consider the following problem:

Polyhedral Surface Point Location. Given a subdivision Q partitioning the

surface of a polyhedron into regions bounded by geodesics, and given a query

point x on the surface of the polyhedron, find the region of Q that contains x.

We assume that the subdivision Q is defined by a graph embedded on the

surface of the polyhedron so that the geodesic edges of Q do not intersect each
other except possibly at their endpoints. The query point x on the surface of the

polyhedron is represented by giving the face of the polyhedron containing x and

the coordinates of x with respect to a coordinate frame attached to the plane

containing the face.
A geodesic on a polyhedral surface is the natural generalization of a straight

line segment on the plane. A geodesic traverses a face of the polyhedron in a

straight line. A geodesic crosses an edge of the polyhedron so that if the faces

about the edge are "unfolded" to lie in a common plane, then the geodesic

becomes a straight line segment in the vicinity of the edge. Geodesics cross

vertices in a manner that is not as locally predictable (see [9] and [11]), hence

we will assume that geodesics of the subdivision intersect vertices only at their

endpoints. Just as line segments and hyperbolic segments arise in Voronoi

Storing the Subdivision of a Polyhedral Surface 155

diagrams of points and circles in the plane [15], geodesics and their hyperbolic

generalizations arise in computing Voronoi diagrams on convex and nonconvex

polyhedra, respectively. Since geodesics may generally be quite complex, we

make the simplifying assumption that no geodesic traverses a given face more

than once. This assumption is satisfied by the geodesics arising in Voronoi

diagrams on the surface of polyhedra, and in general it can always be met by

the insertion of additional subdivision vertices.

There is an obvious solution to the polyhedral point location problem; namely,

solve the point location problem separately for each face of the polyhedron by

existing planar point location methods. The amount of space required to store

the resulting data structures wilt be proportional to the number of intersections

between geodesics and polyhedron faces. Thus, if n is the number of edges on

the polyhedron and m is the number of geodesics, the space requirements could

be as large as O(nm). This is far from optimal, since each geodesic is determined

by a constant amount of information: an endpoint, its initial direction, and its

length. This follows from the locally predictable manner in which geodesics

traverse faces and edges of the polyhedron.
Our main result is the development of a space-efficient representation of a

geodesic subdivision on the surface of a polyhedron. Given this representation,

a point location query can be answered in O(log(n + m)) time. The amount of

storage required is O((n+m)log(n+m)), that is, a logarithmic factor from
optimal. Let K denote the number of intersections between geodesics and

polyhedron edges (K is O(nm)). The representation can be built in time

O(K+(n+m)log(n+m)). This representation is of value even if the point

location problem is not the object of study, since many natural queries can be

answered quickly while avoiding the brute-force O(nm) storage cost. An example

is the problem of listing the geodesics traversing a given edge. Using our structure,

this problem can be answered in optimal time, that is, time linear in the size of

the output.
It seems at first that standard plane sweep methods [2] used for representing

polyhedra, should suffice to store the geodesic/polyhedron edge intersection

information efficiently. However, the unpredictable nature of geodesics makes it

quite difficult, in general, to sweep in a fixed direction without encountering the

same geodesic repeatedly. That is, unlike line segments, geodesics fail to act

monotonically. Our method employs a hierarchical decomposition of the set of

geodesic and polyhedron edge intersections. This method is similar in flavor to

Kirkpatrick's hierarchical triangular decompositon of a planar subdivision [7],

but the specifics of our algorithm are quite different.
The data structure presented here to represent the structure of the polyhedron

subdivision is a collection of trees, one tree for each edge in the polyhedron.

The leaves of the tree associated with a given polyhedron edge e correspond

to the geodesics that traverse e, ordered from left to right. Each subtree has

O(log(n + m)) height. By sharing common subtrees the total space requirements

are reduced. The problem of point location is reduced to the problem of a

searching in a tree of logarithmic depth. The problem of listing the geodesics

that traverse a given edge reduces to a simple tree traversal.

156 D.M. Mount

The paper is organized as follows. Section 2 contains definitions and notation.

Section 3 describes the procedure by which the discrete combinatorial part of

the data structure is constructed. In Section 4 the addition of geometric informa-

tion to the data structure is presented, and query processing is discussed.

2. Definitions and Notation

The notion of a sequence will be central to our presentation. Define an ordered

sequence (x~, x 2 , . . . , xj) to be a finite list of linearly ordered elements. Define a

bi-ordered sequence (xl, x2 xj) to be a finite list of linearly ordered elements

in which no distinction is made between the sequence and its reverse. The endpoints

of the sequence are xl and xj. Unless otherwise noted, the sequences that we

consider will be bi-ordered sequences. For sequences S~ and $2, we say that S~

is a subsequence of $2 if $1 occurs as a contiguous sequence within $2. Let

Sl = (x~, x 2 , . . . , xj) and let S2 = (y~, Y 2 , . . . , Yk). Assuming that the elements of

S~ and $2 are disjoint, their concatenation, $1 + $2, is defined by specifying the

endpoints at which the sequences are joined. For example, the concatenation of

S~ and $2 at x~, y~ is the sequence (x j , . . . , x~, y ~ , . . . , Yk).

Let P denote a polyhedron, which consists of a finite set of vertices, edges,

and convex polygonal faces. We are not concerned with P's realization as a

volume in 3-space, but rather we only consider the graph-theoretic specification

of P as a planar graph embedded on a surface of genus 0; see [6] and [12] for

example. Let n denote the number of edges in P. By Euler's formula and the

planarity of P, n is bounded by a linear function of the number of vertices in P.

(In general, our results can be extended to graphs embedded on an arbitrary

orientable 2-manifold. Our complexity bounds hold if the genus of the manifold

is bounded by a linear function of the size of the graph's vertex set. This

requirement is met by the polyhedra used in CAD applications.)

For the purpose of extracting discrete incidence information, such as listing

the geodesics that traverse an edge, no geometric information is needed. However,

if we wish to solve the point location problem, then additional geometric informa-

tion is added to specify the location of a point on a face. Each face is associated

with a two-dimensional coordinate system. A point located on face f of the

polyhedron is represented by specifying f and giving the point's coordinates with

respect to f ' s coordinate system.

Let Q denote a geodesic subdivision of P. Q is represented by a graph

embedded on the surface of P whose edges (the geodesics) do not intersect one

another except possibly at their endpoints (the vertices of Q). Henceforth, we

use the term geodesic to refer to the edges of Q to avoid confusion with the

edges of the polyhedron. Let m denote the number of geodesics in Q. Since P

is planar, Q is also planar. If Q has no multiple edges then, by Euler's formula,

m is bounded by a linear function of the number of vertices in Q. Each vertex

of Q is represented as any point on P 's surface, by giving a face and its coordinates

with respect to the face.

Storing the Subdivision of a Polyhedral Surface 157

g~ g2
l

,,,~ ~ e I

r / s
I / ;

/ / /

i / [

: ~' i " ~ I

g3 g~

Fig. 1. Intersection sequences,

For a geodesic g, let I (g) denote the bi-ordered sequence of edges intersecting

g given in order from one end of g to the other. Similarly, for an edge e, let J(e)
denote the bi-ordered sequence of geodesics intersecting e given in order from

one end of e to the other.

We make the following assumptions to handle degenerate cases. If a vertex

of Q lies on an edge of P, we add a vertex to P at this point and split the edge

into two edges. If a vertex of Q coincides with a vertex of P, then the geodesics

of Q incident on this vertex are considered to intersect the nearest edge e of P

in clockwise order about the vertex. The order of intersection of these geodesics

in J(e) is in clockwise angular order about the vertex, so that the furthest

counterclockwise geodesic is an endpoint of J(e) . I (g) and J(e) can be construc-

ted simultaneously using time and space proportional to the number of

edge/geodesic intersections by a simple traversal of Q. For example, in Fig. 1

polyhedron edges are denoted by solid lines and geodesics with dashed lines.

The edges have been unfolded so the faces lie on a common plane, and geodesics

are straight line segments. J (e l) = (g l , g2, g3, g4) and I(gl) = (e l , e2, e3, e4).

We say that two geodesics gl and g2 are adjacent on an edge e if gl and g2

appear consecutively in J(e). Similarly, two edges el and e 2 are adjacent on a

geodesic g if they appear consecutively in I(g). We cross reference the entries

e e I (g) with g e J(e) to facilitate local traversals of the structure. Each geodesic

is represented by giving its endpoints (vertices of Q) and I(g) . By unfolding the

edges of I (g) , it is easy to trace the path of the geodesic.

3. The Incidence Structure

As mentioned in the introduction, the relationship between the polyhedron P

and the subdivision Q is represented by a data structure consisting of a set of trees.

Definition. An incidence structure for Q on P is a collection of ordered binary

trees with shared subtrees whose roots correspond 1-1 with the edges of P, and

whose leaves correspond 1-1 with the geodesics of Q, such that for each edge e

of P, the leaves of the corresponding subtree rooted at e form the sequence J(e).

158 D.M. Mount

g2 g5 g6
; i f

gl i ; J
l I t

l L / % i i g 7
~ ~ e l / \ t J I g 8

~ I ! i i
~ t i a i

s / /

s ~

6

, , i , [[e 4

g3 4

Edges

e~ e2 e3 e4 es e6

gl g2 g3 g4 gs g6 g7 g8

Geodesics

Fig. 2. An incidence structure.

The precise sense in which these trees are ordered is described in the next

section. For example, in Fig. 2 we show a possible incidence structure for a set

of edges and geodesics. The descendants of edge e3 are (g3, g4, gs, g6) = J(e3).

The main result of this section is the following theorem.

Theorem 3.1. Consider a polyhedron P with n edges and a subdivision Q bounded

by m geodesics embedded on P so that no two geodesics cross each other and

no geodesic crosses an edge of P more than once. An incidence structure of

height O(log(n+m)) containing O((n+m)log(n+m)) nodes can be built in

O(K + (n + m) log(n + m)) time, where K denotes the number of intersections

between geodesics and edges.

Each node in the structure can be implicitly associated with the set of geodesics

that are its descendants at the leaf level and with the set of edges that are its

ancestors at the root level. To help describe this association, we introduce the

concept of a bundle of edges and geodesics.

Definition. A bundle is a pair (G, E) where G is a sequence of geodesics, and

E is a sequence of edges, such that:

1. G is a subsequence of J(e) for all e e E,

2. E is a subsequence of I(g) for all g ~ G.

A bundle (G, E) can also be thought of as a subset of intersection points

between geodesics and polyhedron edges, namely the set of intersections (g, e)

in the product G x E. The definition of a bundle implies that each such

geodesic/edge pair intersect. In Fig. 3 the geodesic/edge intersections of the

shaded region form a bundle. Intuitively a bundle corresponds to a four-sided

region of the polyhedron bounded oppositely by two edges and by two geodesics

within which there are neither any vertices from P nor vertices from Q. Define

the g-length of a bundle to be the number of geodesics in G, and define the

e-length to be the number of edges in E. The g-endpoints and e.endpoints of a

Storing the Subdivision of a Polyhedral Surface 159

g3
i ~ / J ,
i • i

, / t " , .,,/,
g~ g2

Fig. 3 . T h e b u n d l e ((g l , g 2 , g3) , (e l , e2 , e3)).

bundle are the endpoints of the corresponding sequences. A bundle is g-maximal
if G cannot be extended to a larger sequence (e-maximal is defined similarly).

There are three special types of bundles that are significant to our presentation.

Definition.

1. For each edge e, (J(e) , (e)) is the single edge bundle for e.

2. For each geodesic g, ((g), I(g)) is the single geodesic bundle for g.

3. For each pair of geodesics g~ and g2 that are adjacent along some edge,

let E be a maximal common subsequence of edges along which g~ and g2

are adjacent. The double geodesic bundle for gl and g2 along E is

((g~, g2), E). We denote the set of all double geodesic bundles by D.

A collection of bundles is called an incidence partition if the associated subsets

of geodesic/edge intersections form a partition of all the geodesic/edge intersec-

tions. The collection of single geodesic bundles and the collection of single edge

bundles are both examples of incidence partitions. The set of double geodesic

bundles does not form an incidence partition because a given geodesic/edge

intersection may belong to two different double geodesic bundles.

The construction of the incidence structure is linked to certain operations

performed on bundles. Each node in the structure is associated with a bundle.

For example, the leaf node corresponding to a geodesic g is, in fact, associated

with the single geodesic bundle for g, and the root node corresponding to an

edge e is associated with the single edge bundle for e. We build the incidence

structure in a bottom-up fashion, beginning with the leaves (the geodesics) and

working up to the roots (the edges). The fundamental operation performed on

bundles is a merging operation that we call tying. In this operation, two bundles

are merged and replaced by one or more new bundles of greater g-length but

possibly smaller e-length. Beginning with the single geodesic bundles we tie

bundles together in pairs, gradually transforming the incidence partition from a

collection of single geodesic bundles into a collection of single edge bundles.

The incidence structure is essentially an operator tree, recording the relationships

1 6 0 D . M . M o u n t

E~

/

gl gz

','i ','! ~-~'~"-\\\"~-"~ 1

i i
i i

.x"~\\\\\'S"~ I :

G~ Gz

EZ

E l '

gl g2
I i ; ', ,' ,' .x~-~.\\\\\'..~

...................... t -

, ,,
I

.................... ~, i ~'~\\\-,x\'~

,5 ~\x,.\\\\\\\\\\\\\-\,,-,~

\ .x~\\\N\\"N
i i

Hg. 4. Tying bundles.

G~ G2

E Z '

among bundles as tying occurs. Thus, the incidence structure is built in a

bottom-up manner, with one new node added whenever a new bundle is formed.

To describe the tying operation more formally, let bI=(G~,E~) and b2 =

(G2, E2) be two bundles for which there are two g-endpoints g~ e G~ and g2c G2

that are adjacent on some edge e that is in both E~ and//2; see Fig. 4. Intuitively,

the tie of b~ and b 2 a t e consists of concatenating bt and b 2 along a maximal

common subsequence of edges into a new bundle. Both b~ and b 2 a r e then

replaced by this new bundle together with any of their leftover fragments.

Algorithm 3.1. Tying bundles b~ and b2 at edge e.

1. Let E be a maximal subsequence of E~ and E2 containing e on which gl

and g2 are adjacent. Partition E~ into at most three subsequences, E~, E,

and E~. (The first and third subsequences may be empty.) Similarly, parti-

tion E 2 into at most three subsequences, EL, E, and E~.

2. Create new bundles (G1, E~) and (G1, E~'). Do the same for b E.

3. Create the new bundle (G~+G2, E), where the geodesic sequences are

concatenated at g~ and g2.

4. Delete the bundles b~ and b2.

Note that if a collection of bundles forms an incidence partition before a tying

operation is performed, then the new collection of bundles also forms an incidence

partition. After tying, the number of bundles in a partition increases by at most

3. Because it consists of simple list operations, tying can be performed in time

proportional to the length of E.

The tying operation is recorded as follows in the incidence structure. Let us

assume that each node in the incidence structure is named by its corresponding

bundle. For each newly constructed bundle, we add a new node to the incidence

structure. The nodes (G~, E l) and (G~, E~) have the node bl as their only child

(and similarly for b2), and the node (G1 + G2, E) has both b~ and b2 as children.

In the next section we discuss the issue of which node is the left child and which

is the right child. Note that if the bundle (G' , E ') is the parent of some bundle

Storing the Subdivision of a Polyhedral Surface 161

(G, E) , then G is a subsequence of G' and E ' is a subsequence of E. For example,

referring back to Fig. 2, the single geodesic bundles for g7 and g8 (the rightmost

leaves) are tied along (e4, er) forming their parent bundle ((g7, gs), (e4, e6)). This

bundle is then split when it is tied to the bundle ((g3, g4, gs, gr), (e3, e4)) (the

central node) along edge e4 forming the three single edge bundles (roots)

((g3, - - - , g6), (e3)), ((g3 , g8), (e4)), and ((g7, g8), (er))- The remainder of the

incidence structure shown in Fig. 2 can be built using this operation along with

the simple enhancement of removing tree nodes that have but one child.

As mentioned earlier, the incidence structure is built bottom-up starting with

the single geodesic bundles and then repeatedly tying until only single edge

bundles remain. The order in which we choose to tie the bundles is critical to

the efficiency of the structure. There are two constraints that must be met to

ensure this efficiency. First, we wish to keep the number of bundles in the incidence

partition as small as possible, since this directly influences space requirements.

Haphazardly tying bundles may cause significant fragmentation in the incidence

partition, which can result in as many as K = O(nm) bundles. Second, we must

tie bundles in a relatively balanced manner to guarantee that the height of the

incidence structure will be logarithmic. The issues of avoiding fragmentation and

guaranteeing balance will be the subject of the rest of this section.

In order to avoid fragmentation, we introduce a modification of the tying

operation, called a full tie. A single full tie operation will actually consist of a

series of individual tying operations. To define this operation, first recall the set

D of double geodesic bundles. The set D will serve as an aid in defining the

tying process, and is independent of the bundles represented by the nodes in the

incidence structure. To avoid confusion we use the term "bundle" for bundles

represented by nodes in the incidence structure, and we use "an element of D "

for these special bundles.

Suppose that we have built a set of bundles that forms an incidence partition.

Let d = ((g~, g~), E) be an element of D, such that for each e ~ E, (g~, e) and

(g2, e) lie in different bundles of the partition. We define the full tie along d to

be the tie of all bundles that meet along the length of d. The complete description

is given in Algorithm 3.2, and Fig. 5 illustrates the operation. As with regular

ties, a full tie is an operation that preserves incidence partitions.

Algorithm 3.2.

1.

.

.

The full tie along ((gl, g2), E).

Let bl, b 2 , . . . , bj (j-> 1) be the bundles that contain the intersections

{g~}xE, and let c,, C2,... ,Ck (k - l) be the bundles that contain the

intersections {g2} x E. The bi and Ch are ordered according to their incidence

with E.
Both b, and b s may extend beyond E. If so, split off this extension. This

may result in the creation of at most two new bundles, and b, and bs are

trimmed back. Now, the edge sequence of every bundle b~, 1 - i-<j, is a

subsequence of E. We do the same with c, and Ck.
The bundles b, define a partition of E into j subsequences, and the bundles

c~ partition E into k subsequences. For each bh and c~ that are adjacent on

1 6 2 D . M . M o u n t

i

l ,

x\N_N'~\\KN"b.',b _

~\N~\KNNNN,N\\N\",b.\N ~ *

g~ g2

E

.\\, ~ -~ \ \ \ \ \k \ ,~

i i

x.X,~\N\\NX~X~ - , 'X\~\ \ \ \ \~\ \ '~ .

~ , . , . \ \ L - . \ \ \ \ , & \ \ \ X X ~ , \ X 2 _ _ __

[7 ~ N \ K N \ % ' ~ - N X N X x ? i ' x \ N \ N N ~ "Nx~,

x N \ ~ \ \ \ \ \ % . \ \ \ \ \ ~ \ ' - ~ _ ~N%N\N\N,cxN\NN~N~x. x

. % , ' x \ \ \ \ \ x , K \ \ \ \ ~ , \ ~
! ! i
i i J

i J

g~ g2

Fig. 5. The full tie along ((gl, g2), E).

some edge e ~ E, we form a new bundle by tying bh and c~ at edge e. This

results in the replacement of the original j + k bundles by at most j + k - 1

new bundles.

The effect of this operation on the incidence structure is the same as if each

pair of bundles bh and c~ were tied individually. The full tie along d replaces

j + k existing bundles with at most j + k + 3 new bundles (j + k - 1 along E and

at most four leftover extensions). The operation can be performed in time

proportional to the e-length of d. Note that a full tie can be performed at most

once for each d ~ D, since, after tying, all of the geodesic/edge intersections in

d adjacent along each edge appear in the same bundle. The full tie operation

along d =((g~, g2), E) assumes that the geodesic/edge intersections ((gO, E)

appear in a different bundle from their counterparts ((g2), E). I f we start with

the single geodesic bundles and perform full ties along the elements o f D, this

assumption will always be met because a pair of geodesic/edge intersections that

are adjacent on an edge can be placed into the same bundle by the one and only

one element of D that contains this pair. Thus, we can perform full ties along

every element of D. After performing full ties along all of the elements of D,

there are no more bundles that can be tied, so each edge will be traversed by at

most bundle.

By performing full ties along the elements of D it can be proved (Lemmas

3.4 and 3.3 below) that fragmentation of bundles caused by haphazard tying will

be avoided. To guarantee that bundles are tied in a balanced way to ensure

logarithmic height in the incidence structure, we structure the order in which full

ties are performed. We organize the tying process in stages. At each stage, we

select a subset of elements from D, say S, and perform full ties along all of the

elements of S. The elements of S are removed from consideration for future

tying. At stage k, we let D~ denote the elements of D that remain eligible to use

in tying.

Storing the Subdivision of a Polyhedral Surface 163

Balance will be achieved by maintaining the restriction that, within a single

stage, two bundles are tied if and only if they were both formed at earlier stages.

This restriction limits the subsets S c_ Dk that can be selected for tying at stage

k: We say that a subset of Dk is eligible for tying if it satisfies this condition. The

problem reduces to determining a sufficiently large eligible subset of Dk. Consider

a bundle b = ((3, E) in the incidence partition formed prior to stage k. Let g~

and g2 be the g-endpoints of G and let e e E. If the geodesic/edge intersection

(gt, e) is involved in tying during stage k, then the intersection (g2, e) is ineligible

for tying in stage k (and vice versa). This, if d~ and d2 are elements of Dk, such

that (g~, e) ~ dl and (g2, e) e d2, then d~ and d2 cannot both be eligible to be

used in tying at stage k: This suggests the following relation defined on the

elements of +Ok.

Definition. Consider the bundles defining an incidence partition that result after

performing some series of full ties. Let Dk denote the elements of D that remain

to be tied. Two elements d~ and d2 in Dk are said to conflict if there exist

geodesic/edge intersections (g~, e) e d~ and (g2, e) e d2 that lie in the same bundle.

The conflict graph for Dk is an undirected graph with vertex set Dk whose edges

are the conflicting pairs of Dk (see Fig. 6).

Note that the geodesics gt and g2 in the definition of the conflict graph are

the g-endpoints of their common bundle because they are both contained in

elements of Dk which, by definition, have not yet been tied. It follows from the

previous discussion that a subset S of Dk is eligible to be used in tying if and

only if it is a subset of vertices in the conflict graph that are not pairwise adjacent,

that is, an independent set in the conflict graph. The algorithm for tying bundles

follows immediately.

Algorithm 3.3. Tying bundles by independent sets.

1. Initially the set of bundles consists of the single geodesic bundles.

2. Let Dt = D, be the set of double geodesic bundles. Let k = 1.

3. While Dk is nonempty repeat steps 4-7.

4. Form the conflict graph for Dk from the existing incidence partition.

+ + , + i i

:~k\\'.\~__ - i , i l

I # I I

® , ,

- I I

.~k\--.k-.

I I • ,,,, ~-..~..-,..~.\\.e. ~
l i I i
o

i i i +
I + l i I I

I I
, i

g l g2

l i l l I

F - ~ ' ' i I

I

i i + , , , ,,,,
~ I , , , , ,

' ! V - ' r l '

: , ,el., ,
, , , , , ,

- i - , , ! , i N +
i . I : ~ l

I , l l I

l m ¢ ~ " .

l i

g l g2

Fig. 6. The conflict graph.

164 D .M. Mount

5. Compute an independent set S in the conflict graph for Dk.
6. Perform full ties along each d e S and construct the corresponding nodes

in the incidence structure.

7. Let Dk+I=Dk--S. Let k = k + l .
8. At this point, every edge is traversed by at most one bundle. For each

bundle b = (G, E) where [E I > 1, and for each e ~ E, create the single edge

bundle b~ = (G, (e)), and make b the only child of be in the incidence

structure.

Each iteration of the whole loop in Algorithm 3.3 constitutes one stage. The

next fact is an important observation in finding an independent set in the conflict

graph.

Lemma 3.1. At each state of Algorithm 3.3, the conflict graph is a planar graph.

Proof. We show how to draw the conflict graph on the polyhedron P so that

its edges do not cross. Let k denote the current stage. For each d = ((gl, g2), E)
Dk, identify d with a four-sided region on the surface of the polyhedron bounded

by gl, g2 and by the endpoint edges of E. These regions, called tie regions, have

pairwise disjoint interiors because geodesics and edges do not cross their own
kinds, and because of the e-maximality of elements of D.

The tie regions are in 1-1 correspondence with the vertices of the conflict

graph at stage k. The edges between conflict graph vertices, or conflict edges can

be drawn as follows. If there is an edge between dt and d2 in the conflict graph

for Dk, then by definition there is a bundle b in the incidence partition with

g-endpoints gl and g2 and an edge e in b such that (gl, e) ~ d~ and (g2, e) E d2.
We draw the conflict edge from (g~, e) to (g2, e) along the edge e. No other

conflict edge can overlap this portion of edge e, because the bundles of the

incidence partition are disjoint. Furthermore, no conflict edge can cross this

portion of e, because all conflict edges lie on polyhedron edges, which do not

cross each other. Finally, this conflict edge cannot cross a tie region, because the

tie regions span the regions between untied bundles and the conflict edge lies

entirely within the region defined by the bundle. Since (g~, e) ~ dt and (g2, e) ~ dE,

the edge endpoints touch the boundary of the tie regions for d~ and d2. The

planar graph results by continuously contracting each tie region boundary into

a single point, pulling along the conflict edges on its boundary. []

It is easy to prove that planar graphs have easily computable independent sets

whose size is at least a constant fraction of the size of their vertex set (see [7]).

This follows, for example, by the fact that a 5-coloring of a planar graph can be

computed in time linear in the number of vertices [1]. The largest color class is

an independent set of size at least v/5. The fact that there exists a constant c - > 1,

such that an independent set can be found in the conflict graph of size at least

v~ c, implies that t Dk] <--]Dk_l [(c -- 1)/C. THUS, after a logarithmic number of stages
IDkl = 0 and the process terminates. Since at each stage at most one new level is

added to the structure, we have the following result.

Storing the Subdivision of a Polyhedral Surface 165

L e m m a 3.2. The incidence structure built by Algorithm 3.3 has O(log IDI) height.

L e m m a 3.3. The number of elements in D is O(n + m).

Proof. To compute the size of D we place an upper bound on the number of

e-endpoints o f the elements of D. Let gl and g2 be two geodesics that are adjacent

on an edge e. There is exactly one element of D that contains both of the

intersections of gl and g2 along e. This element of D can be defined by expanding

e to a maximal subsequence of edges along which gl and g2 are adjacent. There

are two reasons why this expansion may terminate. First, we reach an endpoint

of either gl or g2. The number of such terminations is at most 4m because each

geodesic has two endpoints, and each geodesic may be adjacent to at most two

other geodesics (one on the right and one on the left) along the last edge traversed

by the geodesic; see the top of Fig. 7(a).

The second reason for termination is that we reach an edge e' where g~ and

g2 are adjacent, but the neighboring edges of e' in I(g~) and I(g2), say e~ and

e2, are not equal. The edges e', e~, and e2 lie on a common f a c e f o f t h e polyhedron;

see Fig. 7(b). We have a configuration in which two geodesics enter a face

adjacently through a common edge and diverge, leaving the fact through two

different edges. Charge this termination to a vertex v causing the divergence, that

is, a vertex lying between e~ and e2. Because geodesics do not cross one another,

no other pair of geodesics will be charged to this vertex within the face f. This

implies that the number of charges made to any vertex is no greater than the

number of faces incident on that vertex. Thus, the total number of terminations

of this second type is bounded by the sum of degrees of the vertices of the

polyhedron, which is twice the number of edges or 2n. Therefore, the total number

of e-endpoints is at most 4 m + 2 n which is O(n+m) . []

L e m m a 3.4. L e t N = n + m. The number of nodes in the incidence structure built

by Algorithm 3.3 is O(N log N).

Proof. Initially there are m nodes in the incidence structure corresponding to

the m geodesics, and at the root level there are n nodes corresponding to the

v

\\~\\\..t,

gl g2 gl g2

la) (b)

Fig. 7. Termination of an element in D.

166 D.M. Mount

edges of the polyhedron. Since there are logarithmically many stages (in IDI =

O(N)) to show that the remaining number of nodes is O(N log N), it suffices

to show that each stage of the algorithm creates at most N new nodes. Recall

from the remarks following Algorithm 3.2 that, whenever a full tie is performed,

some number h of nodes (i.e., bundles) that were eligible for tying are replaced

by at most h + 3 new nodes. The total number of full ties that are performed is

IDI. Let Sk denote the number of full ties performed at stage k. Thus sl + s2 +

[D 1. The number of nodes eligible for tying at stage k is bounded by the number

of nodes eligible for tying at stage k - 1 plus 3Sk-1. Thus, the number of nodes

eligible for tying and hence the number of nodes created at stage k is at most

m+ 3(s~ + s2 +. . --{- Sk_l) ~--- m + 31Dt = O(N). []

The following lemma completes the proof of Theorem 3.1.

Lemma 3.5. The incidence structure can be built in O(K + (n + m)log(n + m))

time, where K denotes the number of geodesic~ edge intersections.

Proof. The running time of Algorithm 3.3 is determined by the sum of the times

needed to perform the following tasks:

1. Compute the single geodesic bundles.

2. Compute D.

3. Create the nodes of the incidence structure.

4. Build the conflict graph for Dk for each stage.

5. Construct an independent set in each conflict graph.

6. Perform the full ties.

Task 1 is computed by a simple traversal of I(g) for each geodesic, requiring

O(K) time. For Task 2 we compute the elements of D by the same expansion

process described in the proof of Lemma 3.3. Each intersection (g, e) is visited

at most twice in the process. Thus the time to construct D is proportional to the

number of geodesic/edge intersections, which is O(K). For Task 3, the number

of nodes in the incidence structure is O((n + m)log(n + m)) and constant time

suffices to create each node. For Task 4, note that the conflict graph for D1 can

be built in O(K) time, and the graph can be updated as the full tie is being

performed as follows. For each geodesic/edge intersection we can determine its

immediate neighbors on the edge in constant time. For each such pair we store

a pointer to the element of D containinng this pair. As a full tie is performed

along d e D, we delete node d from the conflict graph and check the e-endpoints

of the newly merged bundles for new edges to add to the graph. Thus,

the time for Task 4 is the same as the time for Task 6, which we give below.

For Task 5, an independent set in Dk can be constructed in linear time in

[Dk[= O (n + m). Since there are logarithmically many stages the total time is

O((n + m) log(n + m)). To determine the time to perform Task 6, recall that the

time to perform a full tie along d e D is proportional to the e-length of d. The

sum of e-lengths in D is O (K) because each of the K geodesic/edge intersections

Storing the Subdivision of a Polyhedral Surface 167

lies in at most two members of D, and the e-length of a bundle in D is one-half

its number of intersections in the bundle. []

Before ending this section, we describe one further performance enhancement

that is made to the incidence structure without altering the asymptotic running

time of the algorithm. Ignoring root nodes, there may be trivial nodes in the

structure that have only one child. This happens, for example, when a part of a

bundle is tied and the remainder is broken off to form an untied bundle. The

remaining subbundle has the original bundle as its only child. We eliminate links

to trivial nodes in the incidence structure by a postprocessing step that moves

each link down to the first descendant node that is either a leaf or has two

children. Now, except for root nodes, the nodes of the incidence structure each

have either zero or two children. This implies that the size of the subtree rooted

at any given node is at most twice the number of its leaves. We will use this fact

in the next section on query processing.

We remark in passing that throughout this section we have made essentially

no use of the fact that the polyhedron and the geodesic subdivision are geometric

objects, or even that the geodesics form a subdivision. The only data that we

have used in defining the incidence structure are the intersection sequences, l(g)
and J(e), the assumption that the curves represented by these structures can be

drawn on the plane so that they do not cross over curves of their same kind, and

the assumption that no geodesic traverses a face more than once. Hence, the

incidence structure may be valuable in other applications that involve pairs of

planar objects that overlap each other [5].

4. Query Processing

In this section we consider how to answer a number of queries about the

subdivision by using the incidence structure. We begin by considering the follow-

ing two discrete queries.

Geodesic Incidence with an Edge. Given an edge e of the polyhedron, list the

sequence of geodesics that traverse e ordered from one end of e to the other,

that is, list J(e).

Geodesic Incidence with a Face. Given a face f of the polyhedron, list the set

of geodesics that traverse fi

Before describing the solutions to these queries, we describe some enhance-

ments to the incidence structure that will allow us to determine the relative order

in which geodesics traverse an edge. Normally, when dealing with a binary tree,

there is an explicit notion of left and right subtrees. In the case of the incidence

structure, this distinction is not made so easily. Consider, for example, the six

168 D.M. Mount

g l g2 gs g6
e l e2 e3 • j , ,~

i t t ~

\.,,"i/
e l e3

g3g3 --~-------~--"
g4 " - : : ~ - g l g2 g3 g4 g5 g6

(a) (b)

Fig. g. Ordering subtrees of the structure.

geodesics, g ~ , . . . , g6, traversing the triangular face consisting of edges e, , e2, e3

shown in Fig. 8(a). By specifying that g, is to the left of g2, it follows that g3 is

to the left of g4 on edge el, and g5 is to the left of g6 on edge e2. However, now

there is no way to define right and left with respect to the edge e3 that is

simultaneously locally consistent with the other two edges.

We solve this problem by adding one additional bit to each link of the incidence

structure that allows us to define left and right separately for each bundle. Each

polyhedron edge is arbitrarily oriented by distinguishing the edge's endpoints as

head and tail. Points along the edge are ordered from left to right as we move

from the tail to the head of the edge. With each bundle b = (G, E) , we arbitrarily

select one edge e ~ E called the representative edge for the bundle. Since all the

geodesics of G traverse the edge e, this implicitly defines an order of the geodesics

of G.

Let b~ = (G1, El) be a bundle in the incidence structure with a parent node

b 2 = (G2 , E2) , and let el ~ E~ be the representative edge for bundle bl. This implies

that E2 is a subsequence of El , and G~ is a subsequence of G2. We arbitrarily

select an edge e2e E2 to be the representative edge for b2. The geodesics o f G~,

considered in order from left to right along el, either traverse e2 in left to right

order or in right to left order. In the latter case, we place a mark on the link

between b2 and b~ in the incidence structure. The mark indicates that all notion

of left to right within the subtree rooted at the note b~ is to be interpreted in

reverse (as right to left). Within the subtree of b~ there may be other marks that

reverse the order again. Thus, if p is a path from a root of the incidence structure

to some node, then the interpretation of left and right subtrees at this node is a

function of the parity of the number of marked links in p. For example, in Fig.

8(a), the directions on the edges indicate the implied left to right order, and in

(b) a mark is shown on one of the links f rom Ca. Thus, the order of geodesics

along edge ea is taken to be (g4, g3, gs, g6).

When two bundles, b~ and b2, are made children o f a bundle b in the incidence

structure, they are merged according to their relative order along e, the representa-

tive edge for b. The disjointness of bundles implies that one bundle lies entirely

to the left of the other bundle with respect to e. The leftmost bundle becomes

Storing the Subdivision of a Polyhedral Surface 169

the left son of b and the other becomes the right son. I f the direction of the

representative edge of a child bundle, say b~, differs from the direction of the

representative edge of the parent b, then a mark is added on the link between b

and b~. This determination can be made in constant time for each tie.

The Edge Incidence Problem is now easily solved by simply performing a left

to right depth first traversal of the tree rooted at edge e in the incidence structure,

listing geodesics (leaves of the structure) as they are encountered. Note that the

bundle associated with the root e is a single edge bundle, hence its representative

edge is e. This implies that the geodesics are listed in left to right order with

respect to the orientation of e. The complexity of the operation is equal to the

size of the tree rooted at e. In the previous section the size of each tree was shown

to be at most twice the number of its leaves. Therefore the running time is linear

in the length of the output.

To solve the Face Incidence Problem, note that the geodesics incident on a

given face f either intersect an edge of f or are entirely contained within f. The

latter set of geodesics will not be represented at all in the incidence structure, so

for each f we simply record the set of geodesics entirely contained within f. The

total space required to store this information is O (n + m). The remaining geodesics

are found by solving the Edge Incidence Problem for each edge of f that is

traversed by at least one geodesic. This set of edges that are incident on f and

are traversed by at least one geodesic can be stored explicitly in O (n) space. The

time required to solve the problem is linear in the size of the output.

Next, we consider how to answer geometric queries, such as the point location

query. The incidence structure provides access to an ordered tree of logarithmic

height containing the geodesics intersecting each edge. We first outline how the

geometric information is added to the incidence structure, and then we show

how to use this information to process a point location query.

For each directed edge we define a coordinate system. The origin of the system

is the tail of the edge, the x-axis is directed along the edge, and the y-axis is

placed on the plane of the adjacent face lying to the left of the edge. Each

geodesic that traverses the edge can be represented as a linear equation with

respect to this coordinate system. The geodesics in a bundle are implicitly

represented with respect to the representative edge of the bundle. This is done

as follows. For a single geodesic bundle (a leaf of the incidence structure), we

store the equation of the geodesic explicitly as a linear equation T (v) = c where

T is a linear operator, c is a scalar and v is the vector indeterminate. Each link

in the incidence structure is associated with a linear transformation converting

from the child bundle's coordinate system to the parent bundle's coordinate

system. Informally, by composing these transformations along the path from the

root to the leaf and then applying T we can derive the equation of any geodesic

with respect to any edge.

Specifically, let b~ = (G1, El) be a bundle in the incidence structure with a

parent node b2 = (G2, E2), and let el ~ E! and e2 ¢ E2 be the respective representa-

tive edges for these bundles. This implies that E2 is a subsequence of El, and

G~ is a subsequence of G2. Unfold the edges of E~ so that their adjacent faces

lie in a common plane. The geodesics in Gt are mapped to straight lines after

170 D.M. Mount

this unfolding. Note that e2 ~ E1 is a part of this unfolding. There is a unique

Euclidean transformation that converts a vector v represented in the coordinate

system of e2 to the equivalent point in the coordinate system of e~. Call this

transformation Cbl,b2, and label the link between b~ and b2 in the incidence

structure with this transformation.

Letting T (v) = c denote the equation of a generic geodesic in G~ with respect

to et, it is clear that the equation T(Cb,,bzV) = c is the equation of this same

geodesic in (32 with respect to e2. Thus, if b~, b 2 , . . . , bk form a path in the

incidence from a leaf to a root, where bl is a single geodesic bundle for a geodesic

g and bk is a single edge bundle for an edge e ~ I (g) , then the equation for g in

the coordinate system of e is given by composing these transformations:

T(Cb,,t, zCbz.t,s . . . Cb~_,.b~ v) = c.

This composition can be performed by matrix multiplication. Thus, the equation

of any geodesic with respect to an edge that it traverses can be computed in

logarithmic time by traversing the path from the root to the geodesic.

Left and right discriminations can also be made by replacing the equality

T (v) = c with an inequality T (v) ~ c devised, say, so that the head of the edge

satisfies the inequality. The marks on the incidence structure links are used to

reverse the direction of the inequality. For every node in the incidence structure,

we precompute the equation of the leftmost geodesic in the right subtree and the

fightmost geodesic in the left subtree and store these equations in the node. This

can be performed in time linear in the size of the incidence structure by a simple

traversal of the structure. With these enhancements we can answer the following

restricted version of the point location query.

P o i n t L o c a t i o n on an Edge. Given a point x located on an edge e of the

polyhedron, where x is represented in the coordinate system for e, determine the

two geodesics or endpoints of e that immediately surround x on the edge.

The algorithm is recursive. At each level of the recursion we are given a bundle

b and the point x represented with respect to the representative edge for b.

Initially, b is the single edge bundle for the query edge e. The ouptut of each

recursive invocation will either be a pair of geodesics directly bounding x or else

an indication that x lies entirely to the fight or left of the bundle, where the head

of the representative edge is taken to be far fight.

Algorithm 4.1. Locate x with respect to the bundle b.

1. I f b is a single geodesic bundle, then return "left" or "right" depending

on whether x lies on the same side of the geodesic as the tail or head,

respectively, of the representative edge for b.

2. Otherwise, b has two children. Let T~ and T2 be the equations of the

rightmost geodesic of the left subtree and the leftmost geodesic of the right

Storing the Subdivision of a Polyhedral Surface 171

.

subtree of b, respectively. If x lies between T1 and 7"2, then return the

names of the corresponding pair of geodesics.

Otherwise, x lies to the left of T, or to the right of T2. In the former case,

let C, be the transformation on the link to the left subtree of b. Recursively

locate the point C,x in the left subtree of b. If the result of the recursive

call is "left" or "right" and the link between b and the left subtree is

marked, then reverse the direction of the result before returning. A sym-

metric operation holds in the case of searching the right subtree.

The correctness of the algorithm follows from the preceding discussion. The

invariant regarding the relative order of intersection of the geodesics on the

representative edges follows from the fact that geodesics do not cross. The search

time is proportional to the depth of the incidence structure, O(log(n + m)). Note

that once a pair of geodesics (or endpoints of e) that bound a query point x are

known, the region of the subdivision containing x is determined. To compute

the region, we store each pair of adjacent geodesics in a dictionary with a fast

search procedure to look up the region of the subdivision. The number of adjacent

geodesics is bounded by the size of D, the set of double geodesic bundles. Thus,

by Lemma 3.3, the size of this dictionary is O(n + m).
At this point we have developed essentially enough mechanism to solve the

general point location problem.

Polyhedral Surface Point Location. Given a subdivision Q partitioning the

surface of a polyhedron into regions bounded by geodesics, and given a query

point x on the surface of the polyhedron, find the region of Q that contains x.

The query consists of a face f and the coordinates of a point x on f with

respect to f s coordinate system. Some preprocessing of the polyhedron is

required, prior to building the incidence structure. Consider the face f, and let

S denote the set of subdivision vertices (geodesic endpoints) lying in the interior

of f. Triangulate f together with the vertices S, forming a refined polyhedron

with possibly coplanar faces. This triangulation forms a planar polygonal sub-

division o f f ; see Fig. 9. The size of the triangulated polyhedron is O(n + m) by

its planarity and Euler's formula, and it can be computed in

O((n + m) log(n + m))

time by standard techniques [14]. Using standard point location methods, we

can determine which refined face contains the query point x in logarithmic time

and overall O(n + m) space [4], [7].

Next, we build the incidence structure for the refined polyhedron. Consider

the triangulated face f of the refined polyhedron that contains the query point.

Because of our refinement, there are no subdivision vertices in the interior of

this face. Since the restriction of a geodesic to a face is a straight line, it follows

that every subdivision region intersecting f either contains f or else transversely

intersects at least one of the edges of f . In the former case, knowing the face that

contains the query point x determines the region of the subdivision. Thus, we

172 D.M. Mount

/
i I t

i
i

Fig. 9.

t

Triangulating of a polyhedron face.

concentrate on the latter case. It suffices to determine two geodesics bounding

the region containing x that are adjacent on some polyhedron edge. We have

developed the capability of performing a tree search on the geodesics crossing

any given edge of the polyhedron. Intuitively, to solve the point location problem

we repeat this operation on every edge surrounding the fact that contains x.

Consider an arbitrary geodesic g, and assume that g traverses an edge e of

the face. Recall that J(e) denotes the set of all geodesics traversing e. If g does

not intersect the interior of the face, then g must be incident on an endpoint of

e, say the tail v of e. In this case g and the subset of J(e) lying to the left of g

(clockwise about v) can be eliminated from the search. A symmetric argument

holds if g is incident on the head of e. If, on the other hand, g traverses the

interior o f f , then, because there are no subdivision vertices on the interior o f f ,

g subdivides f into two regions such that all the geodesics to the right of g in

J(e) lie entirely in one region, and the geodesics to the left of g in J(e) lie in

the other region. Thus, by applying a tree search to the subtree of the incidence

structure rooted at e, we can discriminate which two geodesics o f J(e) bound

the query point x in logarithmic time. In general, x may be bounded by only

one geodesic, but we ignore this case for the sake of simplifying the description.

We repeat the discrimination on each of the three edges of f. We claim that

these three discriminations uniquely determine the region o f the subdivision that

contains x. The following cases arise:

1. I f for two edges of f we find the same pair of geodesics bounding x, then

it follows that these two geodesics bound the region containing x in the

subdivision.

2. If for all three edges o f f we find a different pair of geodesics bounding x,

it follows that there are at least three geodesics bounding x in fi However,

there can be no more than three geodesics bounding x, because each geodesic

must intersect an edge of f, and f is a triangle. It follows that all three

geodesics bound the region of the subdivision that contains x.

In either case, we have determined a pair of geodesics that are adjacent on some

Storing the Subdivision of a Polyhedral Surface 173

polyhedron edge that bound the region containing x. The region is determined

by consulting the dictionary of adjacent geodesic pairs. As mentioned earlier,

the size of the dictionary is bounded by the size of D, the set of double geodesic

bundles, which was shown to be O(n + m) by Lemma 3.3.

This completes the description of the solution to the point location query. The

complexity is O(log(n+m)) since three tree searches are performed in the

incidence structure, whose height is O(log(n + m)).

5. Further Remarks

We have described a data structure, called the incidence structure, based on a

collection of trees with shared subtrees that records the ordered incidence of a

collection of geodesics on a polyhedron's surface. The structure consists of a

discrete component, which depends only on the order in which geodesics intersect

polyhedron edges, and a geometric component, from which the exact equation

of each geodesic on any face can be determined. We have shown how to answer

a number of natural queries based on simple tree traversals. The structure can

be viewed as an unoriented counterpart to geometric search tree structures based

on global orientation such as plane sweep [3], [13] or discrimination with respect

to monotonic chains [4], [8]. The inadequacy of existing geometric search

strategies for our problem stems from the nonmonotonic nature of geodesics.

There are a number of interesting issues that are raised by this work. The

discrete component of the data structure can be defined in any situation in which

two planar graphs are overlaid. Guibas and Seidel have considered quite a

different problem in this same setting [5], although the techniques that they apply

are quite different from ours. Applications of this structure to other areas in

graph theory and discrete geometry may exist.

We have presented one method of constructing the incidence structure by

performing full ties selected as an independent set from a planar graph. Although

our method gives asymptotic bounds, it is doubtful whether this method is of

direct practical value. It would be of interest to know if there are simpler, more

direct methods that guarantee the same performance bounds, or whether random

tying or random full tying will yield as good a performance on the average.

One application of this structure is in solving the nearest-neighbor problem

on the surface of a convex polyhedron. Generalizing this result to nonconvex

polyhedra requires allowing curves that are "hyperbolic geodesics." Although

the incidence structure can easily represent such curves, the search procedure of

Section 3 requires that no geodesic cross the same edge twice. This may be

violated by hyperbolic geodesics. Generalizing the search procedure to this case

would be of interest. Furthermore, it would be interesting to know whether the

incidence structure can be built "on the fly" while constructing the Voronoi

diagram on the surface of the polyhedron, thus avoiding the O(nm) space

requirements of both algorithms [9], [11]. Although our approach seems to require

O(nm) time and space just to store the input, there may be quite different

approaches that obviate the need for maintaining all of this information.

174 D.M. Mount

Acknowledgments

The author would like to thank Azfiel Rosenfeld for his comments on an earlier

draft o f this paper, to Deepak Sherlaker for providing a relevant reference, and

to the referees for their comments, which improved the presentation o f the paper.

References

1. N. Chiba, T. Nishizeki, and N. Saito, A linear 5-coloring algorithm of planar graphs, Z Algorithms

2 (1981), 317-327.
2. D. Dobkin and D. Kirkpatrick, Fast detection of polyhedral intersections, ~heoret. Comput. Sci.

27 (1983), 241-253.

3. D. P. Dobkin and J. I. Munro, Efficient uses of the past, Z Algorithms 6 (1985), 455-465.

4. H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a montone subdivision,

SIAMJ. Comput. 15 (1986), 317-340.

5. L. Guibas and R. Seidel, Computing convolutions by reciprocal search, Proceedings of the Second
AnnualACM Symposium on Computational Geometry, 90-99, Yorktown Heights, New York, 1986.

6. L. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the computa-
tion of Voronoi diagrams, ACM Trans. Graphics 4 (1985), 74-123.

7. D. G. Kirkpatrick, Optimal search in planar subdivisions, SIAMJ. Comput. 12 (1983), 28-35.

8. D. T. Lee and F. P. Preparata, Location of a point in a planar subdivision and its applications,

SlAM J. Comput. 6 (1977), 595-606.

9. J. S. B. Mitchell, D. M. Mount, and C. G. Papdimitriou, The discrete geodesic problem, SIAM
J. Comput., to appear.

10. D.M. Mount, On Finding Shortest Paths on Convex Polyhedra, Technical Report 1495, University

of Maryland, 1985.

11. D. M. Mount, Voronoi Diagrams on the Surface of a Polyhedron, Technical Report 1496,

University of Maryland, 1985.
12. D. E. Muller and F. P. Preparata, Finding the intersection of two convex polyhedra, Theoret.

Comput. Sci. 7 (1978), 217-236.

13. F. P. Preparata, A new approach to planar point location, SIAMZ Comput. 10 (1981), 473-482.

14. M. I. Shamos and D. Hoey, Closest-point problems, Proceedings of the 16th IEEE Foundations
of Computer Science Symposium, 151-162, 1975.

15. M. Sharir, Intersection and closest-pair problems for a set of planar discs, SIAM J. Comput. 14

(1985), 448-468.

16. M. Sharir and A. Schorr, On shortest paths in polyhedral spaces, SIAM Z Comput. 15 (1986),

193-215.

Received April, 1986, and in ~ i sed form December 3, 1986.

