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Abstract Recomputation and storing are typically seen as a tradewodifeckpoint-

ing schemes in the context of adjoint computations. At fimanglarity during the

adjoint sweep, in practice, only the store-all or recomalt@pproaches are fully
automated. This paper considers a heuristic approach fdoiérg finer granular

recomputations to reduce the storage requirements arebghenprove the overall
adjoint efficiency without the need for manual intervention
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1 Introduction

Computing derivatives of a numerical modelx — y: R" — R™, given as a com-
puter progranP, is an important but also computation-intensive task. fgtc
differentiation (AD) [6] inadjoint (or reverse) mode provides the means to obtain
gradients and is used in many science and engineering dsritefer to the recent
conference proceedings [2, 1]). Two major groups of AD togbiementations are
operator overloading tools and source transformatiorstddie latter are the focus
of this paper. As a simplified rule, for each intrinsic flogtipoint operatiorp (e.g.,
addition, multiplication, sine, cosine) that is executedlimg runtime inP as the
sequence
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Fig. 1 Tape space for phases (1) and (2) without (left) and with (yigheéckpointing.

of p such operations, the generated adjoint code has to imptetineriollowing
sequence that reverses the original sequenge in
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with incremental assignments of adjoint variablder each argument of the orig-
inal operationp. If m= 1 and we sey = 1, then the adjoint sequence yiekds- [If.
The two phases are illustrated in Fig. 1; note that to comé@tm phase (2), one
needs the values of the variablggrom phase (1). '

The need to store and restore variable values for the adjaiep requires mem-
ory, commonly referred to @ape, for the derivative computation. This tape storage
can be traded for recomputations in a checkpointing schéntaeory, the storage
for the tape and the checkpoints may be acquired from one @onpuol, as was
considered in [7]. However, practical differences arismrfrthe typical in-memory
stack implementation of the tape in contrast to the posdibl& write and read
to disk for checkpoints. Furthermore, one may nest checkgair do hierarchical
checkpointing [5]) while the tape access is in general stikek The impact of the
taping on the checkpointing scheme and the overall adjdfictency is the size of
the checkpointed segment of the program execution, whitimited by the avail-
able memoryReducing the storage requirements for taping implies a larger check-
pointed segment, which implies fewer checkpoints written and read, which implies
fewer recomputations in the hierarchical checkpointing scheme.

The goal of source code analysis has been the reductionioftaforage [8] for
the “store-all” approach and the reduction of recomputsf8j for the “recompute-
all” approach. The recompute-all approach replaces theddpgether, at least ini-
tially, whereas the adjoint sweep requires the values tovb#adle in the reverse
order of the original computation. Recomputing the valnggverse order can carry
a substantial cost. Consider a loop wititerations and loop carried dependencies
for the values to be recomputed. Computing the loop itsedféheost ok times the
cost of a single iteration. Recomputing the values in reverder has a complexity
of 0(k?) times the cost a single iteration. In tool implementatigak,this problem
is mitigated by allowing the user to manually force certakxpensive-to-recompute
values to be stored on a tape. This manual intervention chievacan excellent
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tradeoff between taping and recomputation but requirep desight into the code
and is fragile in models that are subject to frequent changes

Static source code analysis often cannot reliably estiteteomplexity of re-
computing values as soon as the computation includes ddlawoor subroutine
calls. On the other hand, one can safely assume that rete@eufixed, moderate-
length sequence of built-in operations and intrinsic dallsecompute a given value
will be preferable to storing and restoring said value. Sfixadd, moderate-length
sequences are given naturally by the computational grapfedy used for the elim-
ination heuristics in OpenAD [10].

Following the approach in [10], we denote the computatigmaph representing
a section of straight-line code (think sequence of assigishevithG' = (V! E').
TheG' are directed acyclic graphs with verticgse V' = Vi, UL UV, where
V}i.are the minimal vertices/, , the maximal vertices and, . the intermediate
vertices ofG'. The direct predecessofs.., Vi, ...} of each intermediate or maximal
vertexv;j represent the arguments to a built-in operation or intriggi. ., v;,...) =

vj. In the usual fashion, we consider the parti%i?sas labelzji to edge(vi, V).
Generally, these partials have a closed-form expressitariims of the predeces-
sorsv;, and we can easily add them to tB& More flexible than the rigid order
suggested by (2) is the use of elimination techniques (xegdge or face elim-
ination) on the computational graph to preaccumulate thiégpaerivatives. The
elimination steps performed on ti@ reference the edge labels as arguments to
fused multiply-add operations, which themselves can beesgmted as simple ex-
pressions whose minimal vertices are edge labels or maxientites of (preceding)
multiply-add operations. They too can be easily added t@&thand we denote the
computational graph with the partial expressions and teaguumulation opera-
tions as the extended computational graph For the propagation of the adjoint
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p=cos(b); ?@/A A\©§g 25 = —sin o
- . aq linearization
q=0%p; aq aq =0
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99 _ 99 s0.
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a b 2b = P *ab

Fig. 2 An example forG*, with the nodes for the partials marked #yand the nodes for the
preaccumulation marked by

variables, the edge labels of the remainder graph are esjuin the example in

Fig. 2, the required set is the maximal noq%, %g}, but not node q, even though
it too is maximal. The question now is how the values for thguheed nodes are
provided: by storing, by recomputation from the minimal eslgor by a mix of the

two.
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2 A use casefor storing edge labels

We limit the scope of the recompu-
tation to the respectivé&*, and if ;‘p‘re@
we decide to always recompute fromy )
the minimal vertices, we replicate the:
TBR behavior. However, this may not
be optimal, and in some cases one
may prefer to store preaccumulated ) )
partials. Consider the computation OFIgéé Use case illustration, the shaded areas make
a coupled modeld,p’) = f(q,p), P

where we consider thg part of the model state for differentiation, and the cou-
pling is done as a one-way forcing, such that f1(q, p) andp’ = f,(p), leaving
the p portion of the model state passive. The scenario is illtetrin Fig. 3. Re-
computing f would require the whole stat@, p), while propagating the adjoint
values requires only the scarcity-preserving remaindaplyredges. The original
TBR analysis would store at least the portions of p that imfaaonlinearly. Here
we have not even considered the cost of (re)evaluatingnd f,. If they are par-
ticularly expensive, then one may prefer to store edge satmetertain intermediate
values as a tradeoff for the evaluation cost.

a 1 v

3 Computational graphssharevaluerestoration

For storing the required values, we can 01 0) 03 04 Os Og

follow the TBR approach [8] by storing YVVVVYVY
the values before they are overwritten. [ 4
This information can be expressed as a * \

bipartite graphGp, = (UV}\;,, O,Ep). An / \ @,

example foiG, associated with two com- Q/O g

putational graph&! andG? is given in 1\% \ 2\0
b c (? @e

Fig. 4. In the example, one can see th@a

recovering the value for noderequires _
restores in overwrite locatiorg andoy; z;)%c‘t‘tﬁrngxig"nﬁfugtriézzl %;F:E% ‘g’gg ég
that implies that the value for nodkis “The two node sets faB, are shown a$ andy
restor_ed, and hence the ve_llue restoratiqfmpols, respectively.

benefits both graphs. Multiple overwrite

locations for a given use are caused by aliasing, for examialthe use of array in-
dices or the use of pointers or branches in the control flow. Glerwrite locations
ok € O can be vertices iJ(Vih, U Vi) or “placeholder” vertices for variables
(unigue for each program variable) that go out of scope withioe value in ques-
tion being overwritten by an actual statement. That astionigs essential only for
the final code generation and not for the formulation of thmlsimatorial problem.
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4 Problem For mulation

We assume a sét = {G*'} of extended computational grap$', as introduced in
Sect. 1, along with their required se# and one common bipartite use-overwrite
graphGy as introduced in Sect. 3. For ea@, there is a bipartite use-overwrite
subgraptGy|V/,] = G, = (Vi;,, O',El) containing only the edges and vertices ad-
jacent toVy;,. The goal is to determin8C O andU C JV' such that we minimize
a static estimate for the number of values to be stored on tape

Given anS andU of values to be restored, we need to be able to recompute
values in the remaining subgraph®f' such that all required nodes i@ can be
recomputed. To impose this as a formal conditiorSandU, we denote withGy,
the subgraph o&* induced by all the nodes precedigg

Condition for Recomputation (CR): The set$SandU are sufficient to allow re-
computation of nodes in af; if VGj}i—Zi : Jvertex culC' with respect ta%; such that
vejeCl:i(cjeU) Vv ((cj e Vi) A((cj,00 e 0O=0€Y)).
In other words, if we know the values of all the vertices in tieetex cutC' we are
guaranteed to be able to recompute the values of the nodgdinre-executing the
computational graph betweh andZ. A vertex in any of the cuts is either ln
or itis not inU, in which case it must be a minimal vertex; if there is an ovéew
of that value, then that overwrite location must b&in

Consider the example shown in Fig. 5 where we reBsdrom Fig. 4 but add
some example code for it and accordingly ext@fdto G*2. Note that for scarcity

01 03 04 O5 Op
t=5xd+4«e; V'  V
p=sin(c)+t;
r=cos(t);
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Fig.5 Anexample code (left) for the grayi (center) highlighted for the subgraph with required
nodes%% and% that are computed from nod¢s, t} according to the partials listing (right).

preservation we stop here with an incomplete eliminatiaqueace [9] such that
we have five remaining edges in the graph, of which only tworeme-constant.
These two are easily computable from nodeg} representing our vertex cut for
the sub graph and for which values are to be restored. Theref@ can choose
S={04,06} andU = {t}. This choice emulates the behavior of TBR [8], whereas
choosindJ = {%r}, for example, would be outside of the options TBR considérs.
simple example for the benefits of a non-TBR choice is a sezpiehassignments

vi = @(vi—1),i = 1,...,nwith non-linearg for which one would prefer storing the
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av.

single preaccumulated scal%ﬂ |‘| v over the TBR choice of storing all ar-

gumentsy,i =0,...,n—1. On the other hand, for the example in Fig. 5, adcﬁ@g
toU in exchange fo6= 0 would prevent any shared benefits that restoring rmode
has on restoring nodzin G* as shown in Fig. 4.

4.1 A Cost Function

Because the decision abdsiandU has to be made during the transformation (aka
compile time), any estimate regarding the runtime tape ci@aot be more than

a coarse indicator. Most significantly, the problem forntiola disregards control
flow, which may lead to an overestimate in case of branchetairong the overwrite
location or an underestimate if the overwrite location reyspto be in a loop. On
the other hand, the problem formulation as is allows for & wémple formulation

of the cost function a5 + U |.

4.2 A Search Strategy

Because the choice 8impacts multiple graphs i and thereby their contributions
to U, there is no obvious best choice for a sm@% that necessarily implies an
optimal choice for all the other reduced combined graphsamegal For all but the
simplest cases, the size of the search space implies thahanstive search is not
a practical option. Therefore, we need a heuristic searategly, and this strategy
is crucial to obtain useful practical results from the pregab problem formulation.

One difficulty in devising a heuristic search strategy sténms the fact that on
the one hand changing or S are the elementary steps but on the other hand we
have to adjusSor U, respectively, to satisfy (CR) so we may compute a valid cost
function value on a consistent p&rU. Adapting the sets to satisfy (CR) involves
the determination of vertex cuts and therefore is rathetlycda addition to deter-
mining vertex cuts, one also has to satisfy that all the ovieeviocations of the
minimal vertices in the respective cuts aresin

Therefore, it appears plausible to choose a search stridtaggdds or removes
elements irSin small but consistent groups. The two important specisésastab-
lishing upper bounds for the cost function are: (i) TBR, le= 0 andSdetermined
according to (CR), and (ii) saving preaccumulated parti®dJ = |J%;,S= 0. We
pick the one with the lower cost and a given p@rU) as a starting point. One has
to note at this point that case (i) is the original TBR caserasgnted in [8] only if
the graph<G' each represent one individual assignment statement. Asaomul-
tiple assignments are flattened into a single gr@hlthe computed cost for case (i)
will be less than or equal to that of the original TBR.
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Fig. 6 Example scenarios fday,.

While removing or adding the elements &fwe aim at making a change that
will plausibly have the desired effect on the cost functido.get an indication of
the effect on the cost function, we may limit our considematio G,. The most
obvious observations for different scenariosdp which inform changes t& are
shown in Fig. 6. It is clear that for (a) no particular prefere ofv; e U vs.0; € S
can be deduced while for (k) = {v1} andS= {os} are preferred.

To make consistent changesSwe consider maximal bicliques coveriy. For
the moment, lets assume the bicliques are not overlappmgld not share nodes
inV or O, as, for example, in Fig. 6 (a) and (b). For each bicligue (Vg,Og), we
can evaluate the node ratios for removing and addirf§) to

- \OB| L |val
r rg = —— 3)
57 e[ B [Og]

whereOg = OgNSandOf = Og\ S Obviously, ther* is only meaningful for
Of # 0 and otherwise we set" to 0. A bicliqueB* = (vj,05) with the maximal
ratio has the potential for the largest impact on the costtfan when applied as
follows

(4)

If S= 0, then all bicliques in Fig. 6(a) have ratio 1. In (b) theligice for v; has
r— =0andr* = 1/4 while the one foos hasr~ = 1/4 andr* = 4. So, we start by
addingos to Sas our first step. Clearly, in this setup only ratios gredtantone are
hinting at an improvement of the cost function. Ratios eqo@ne are expected to
be neutral and those less than one are expected to be caodigstive.

After updatingS, we apply (CR) to determind and evaluate the cost function,
compare to the minimum found so far, and accept or reject ity 4f the step
is rejected, we mark the biclique as rejected, remove it fforther consideration
for changes td&, restore the previouS, take the next biclique from the list order
by ratio, and so on. If we accept the step, we mark the biclep@ccepted and
removed it from further consideration for change$to

Before we formalize the search algorithm, we have to addhessase of overlap-
ping bicliques as illustrated in Fig. 6(c). There, bicliqye2}, {03}) overlaps with
({v1,v2}.{01,02}) and ({vs,va,V5},{03,04}). If we consider a bicliqueVg,Og)
with an overlap to another biclique in tMg, then we need to add ©g all nodes
connected to the nodes in the overlap to obtain a consisbamge toS. In our ex-

g._ [ SUOg if maximal ration isrg
S\ Og if maximal ratio isrg
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Algorithm 1 Apply (CR) an single combined,reduced DAG to update
GivenG?; = (Vinin UVinter UVimax, E), %, S Vs, U

01 U:=U\V; C:=VsNVmin

02 form the subgraplﬁ;*/ induced by all paths frodyin\ C to %

03 determine a minimal vertex c@ in G* using as tie breaker the minimal distance frGfrto Z.
04 setC:=CuUC as the vertex cut fo&* and set) :=U UC'.

ample, this means th&{v»},{0s}) is augmented t¢{v»},{01,02,03}). After the
augmentation, we no longer have a biclique cover and one mestipn whether
starting with a biclique cover is appropriate to begin wittawever, the rationale
for starting with the minimal biclique cover (maximal biglies) is to identify large
groups of program variables whose overwrite locations begesl and for whom
the store on overwrite yields a benefit to multiple uses. Atdame time, using the
minimal biclique cover implies a plausible reduction of #earch space, compared
to any other collection of bicliques which do not form a coWhile it is certainly
possible to consider the case where one starts with a béctigllection that is not
a cover, we currently have no rationale that prefers any saltaction over the one
where thé/g are the singletonév; }.

4.3 Algorithm

We formalize the method in Alg. 1 and Alg. 2. Assume from henetloat G, =
(Vb, O) is the subgraph induced by the vertices occurring irGQe. For a givenS,
the subset of restored verticésC V,, contains the vertices whose successors are all
in S A choice ofd < 1 permits a cut off in the search which disregards bicliques

Algorithm 2 Search algorithm for paifS,U)

Givend € [0,1),% =U%',G); forall G' € 4 andGy = (Vb, O, Ep); initialize A= R=0
o1 if |O| < |%| then(SU) :=(0,0); c:=|0|

02 else(SU) :=(0,%);, c:=|Z|

03 compute minimal biclique covef” for Gy

04 VB = (Vg,0p) € ¢ setOg :=0gU{0: ((v,0) e EpAVEVE)}
05 while? £ 0

06 VBe % compute ratiosg andrg according to (3) and sort
07  if maximal ratio is less than % J exit with current(S,U)

08  updateSaccording to (4)

09 VG updatel using Alg. 2

10 ifc>|9+|U|thenset:=|g+]|U|

11 else reseBto the value it had before line 07

12 set® =%\ {B}

not expected to improve the cost function.
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5 Observationsand Summary

As pointed out in Sect. 4.1, the principal caveat to estinggdi runtime memory cost
by counting instructions (i.e. value overwrite locatiomauiges) as done here is the
lack of control flow information. Conversely, for straigliie code, one will have
either a single DAG graph when there is no aliasing or m@tiphAGs with aliasing.
In these cases, the algorithm presented here will produesudtbetter than or on
par with the cases (i) and (ii). See Sect. 4.2, used as imétédn in linesol ando2

of Alg. 2. The instruction count accurately reflects the imet memory cost for a
single execution of the straight-line code segment in goiest

In the presence of control flow, the elementdlirare correctly accounted for in
the cost function byU | for a single execution of the DAG in which the respective
vertices occur. In contrast, the runtime memory requirdmor the elements i®
are generally not related to the execution count of the DAGsvhich the values
are stored. It has been observed for the store-on-overapipgoach that th¢S
undercounts if it contains instructions in a loop and ovants if its instructions are
spread over mutually exclusive branches. Research refatde: incorporation of
the control flow is ongoing, but given the complexity of oumflinsensitive problem
formulation clearly beyond the scope of this paper. Reghklis yieldU = 0 are
on par or better than TBR (see 4.2). The problem formulatioeschot limit the
number of DAGs in¢ to a single procedure, as long as the reaching definitions
analysis that form&sy, is interprocedural. However, going beyond the scope of a
single procedure increases the possibility of loop nesdimg) thus the error in the
runtime cost estimate when Alg. 2 yields b&kandU as non-empty.

While it is not the final answer to the general problem of stpriarsus recompu-
tation, we view it as a stepping stone that widens the reaahtoimatic decisions by
combining the information for multiple DAGs and permittingpre recomputation
through instructions flattened into DAGs. For a practicaplementation one has
to add logic excluding subgraphs of the combined graphseeltiate to constant
values and provide a means to recover the values for integkaddress variables
occuring in the memory references for storing and retrigwialues from the tape
at overwrite location® to correctly match the memory references represented as
the DAG verticess through which the restored values are used for recomputatio
This is already necessary for the original TBR algorithmisltjuite plausible to
add expressions computing addresses or control flow conditio the combined
computational graphs and appropriately adding verticethdéoset# of required

';\ ‘I!.h 'I!PZ’

T
0 |

Fig. 7 Combined graph in OpenAD.
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values so they become part of the automatic restore-redengiggisions. Then, the
ordering for the adjoint code generation has to abide byaredependencies of
memory references in the verticesipon addresses or indices also occuring as re-
quired values in the same graph. These are technical refirtertiat do not change
the approach of the paper and are therefore left out. An im@hgation of the al-
gorithms is forthcoming in OpenAD [11]. An example fGf from a practical code
using the experimental OpenAD implementation is shown g Fi
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