
Storing versus recomputation on multiple DAGs

Heather Cole-Mullen, Andrew Lyons, and Jean Utke

Abstract Recomputation and storing are typically seen as a tradeoff for checkpoint-
ing schemes in the context of adjoint computations. At finer granularity during the
adjoint sweep, in practice, only the store-all or recompute-all approaches are fully
automated. This paper considers a heuristic approach for exploiting finer granular
recomputations to reduce the storage requirements and thereby improve the overall
adjoint efficiency without the need for manual intervention.

Key words: source transformation, reverse mode, storage recomputation tradeoff,
heuristics

1 Introduction

Computing derivatives of a numerical modelf : x 7→ y : Rn 7→ R
m, given as a com-

puter programP, is an important but also computation-intensive task. Automatic
differentiation (AD) [6] inadjoint (or reverse) mode provides the means to obtain
gradients and is used in many science and engineering contexts (refer to the recent
conference proceedings [2, 1]). Two major groups of AD tool implementations are
operator overloading tools and source transformation tools. The latter are the focus
of this paper. As a simplified rule, for each intrinsic floating-point operationφ (e.g.,
addition, multiplication, sine, cosine) that is executed during runtime inP as the
sequence

[. . . , j : (u = φ(v1, . . . ,vk)), . . .], j = 1, . . . , p, (1)

Heather Cole-Mullen, Jean Utke
Argonne National Laboratory / The University of Chicago, IL,USA,{hlcm|utke}@mcs.anl.
gov

Andrew Lyons
Dartmouth College, Hanover, NH, USAlyonsam@gmail.com

1

2 Heather Cole-Mullen, Andrew Lyons, and Jean Utke

(2)(1)
pu

sh

pop

p

1

j

si
ze

st
ac

k

run time

pop

push

1

r+t
r

p
j

si
ze

st
ac

k

run time

Fig. 1 Tape space for phases (1) and (2) without (left) and with (right) checkpointing.

of p such operations, the generated adjoint code has to implement the following
sequence that reverses the original sequence inj:

[. . . , j : (v̄1+=
∂φ
∂v1

ū, . . . , v̄k+=
∂φ
∂vk

ū), . . .], j = p, . . . ,1, (2)

with incremental assignments of adjoint variables ¯v for each argumentv of the orig-
inal operationφ . If m = 1 and we set̄y = 1, then the adjoint sequence yieldsx̄ = ∇f.
The two phases are illustrated in Fig. 1; note that to compute∂φ

∂vi
in phase (2), one

needs the values of the variablesvi from phase (1).
The need to store and restore variable values for the adjointsweep requires mem-

ory, commonly referred to astape, for the derivative computation. This tape storage
can be traded for recomputations in a checkpointing scheme.In theory, the storage
for the tape and the checkpoints may be acquired from one common pool, as was
considered in [7]. However, practical differences arise from the typical in-memory
stack implementation of the tape in contrast to the possiblebulk write and read
to disk for checkpoints. Furthermore, one may nest checkpoints or do hierarchical
checkpointing [5]) while the tape access is in general stack-like. The impact of the
taping on the checkpointing scheme and the overall adjoint efficiency is the size of
the checkpointed segment of the program execution, which islimited by the avail-
able memory.Reducing the storage requirements for taping implies a larger check-
pointed segment, which implies fewer checkpoints written and read, which implies
fewer recomputations in the hierarchical checkpointing scheme.

The goal of source code analysis has been the reduction of taping storage [8] for
the “store-all” approach and the reduction of recomputation [3] for the “recompute-
all” approach. The recompute-all approach replaces the tape altogether, at least ini-
tially, whereas the adjoint sweep requires the values to be available in the reverse
order of the original computation. Recomputing the values in reverse order can carry
a substantial cost. Consider a loop withk iterations and loop carried dependencies
for the values to be recomputed. Computing the loop itself has a cost ofk times the
cost of a single iteration. Recomputing the values in reverse order has a complexity
of O(k2) times the cost a single iteration. In tool implementations,[4], this problem
is mitigated by allowing the user to manually force certain,expensive-to-recompute
values to be stored on a tape. This manual intervention can achieve an excellent

Storing versus recomputation on multiple DAGs 3

tradeoff between taping and recomputation but requires deep insight into the code
and is fragile in models that are subject to frequent changes.

Static source code analysis often cannot reliably estimatethe complexity of re-
computing values as soon as the computation includes control flow or subroutine
calls. On the other hand, one can safely assume that re-executing a fixed, moderate-
length sequence of built-in operations and intrinsic callsto recompute a given value
will be preferable to storing and restoring said value. Suchfixed, moderate-length
sequences are given naturally by the computational graphs already used for the elim-
ination heuristics in OpenAD [10].

Following the approach in [10], we denote the computationalgraph representing
a section of straight-line code (think sequence of assignments) with Gi = (V i,E i).
TheGi are directed acyclic graphs with verticesv j ∈V i =V i

min ∪V i
inter ∪V i

maxwhere
V i

minare the minimal vertices,V i
maxthe maximal vertices andV I

interthe intermediate
vertices ofGi. The direct predecessors{. . . ,vi, . . .} of each intermediate or maximal
vertexv j represent the arguments to a built-in operation or intrinsic φ(. . . ,vi, . . .) =

v j. In the usual fashion, we consider the partials∂φ
∂vi

as labelsc ji to edge(vi,v j).
Generally, these partials have a closed-form expression interms of the predeces-

sorsvi, and we can easily add them to theGi. More flexible than the rigid order
suggested by (2) is the use of elimination techniques (vertex, edge or face elim-
ination) on the computational graph to preaccumulate the partial derivatives. The
elimination steps performed on theGi reference the edge labels as arguments to
fused multiply-add operations, which themselves can be represented as simple ex-
pressions whose minimal vertices are edge labels or maximalvertices of (preceding)
multiply-add operations. They too can be easily added to theGi, and we denote the
computational graph with the partial expressions and the preaccumulation opera-
tions as the extended computational graphG∗i. For the propagation of the adjoint

o= s i n (a) ;
p=cos (b) ;
q=o∗p ;

a b

o p

q

∂o
∂a

∂p
∂b

∂q
∂p

∂q
∂o

∂q
∂a

∂q
∂b

∂o
∂a = cos(a);
∂p
∂b = −sin(b);
∂q
∂p = o;
∂q
∂o = p;























linearization

∂q
∂a =

∂q
∂o ∗ ∂o

∂a;
∂q
∂b =

∂q
∂p ∗

∂p
∂b;

}

preaccumulation

Fig. 2 An example forG∗i, with the nodes for the partials marked by• and the nodes for the
preaccumulation marked by•.

variables, the edge labels of the remainder graph are required. In the example in
Fig. 2, the required set is the maximal nodes{

∂q
∂a,

∂q
∂b}, but not node q, even though

it too is maximal. The question now is how the values for the required nodes are
provided: by storing, by recomputation from the minimal edges, or by a mix of the
two.

4 Heather Cole-Mullen, Andrew Lyons, and Jean Utke

2 A use case for storing edge labels

f f
1 2partials

preacc. p’q’

q p

Fig. 3 Use case illustration, the shaded areas make
up G∗.

We limit the scope of the recompu-
tation to the respectiveG∗i, and if
we decide to always recompute from
the minimal vertices, we replicate the
TBR behavior. However, this may not
be optimal, and in some cases one
may prefer to store preaccumulated
partials. Consider the computation of
a coupled model(q′, p′) = f (q, p),
where we consider theq part of the model state for differentiation, and the cou-
pling is done as a one-way forcing, such thatq′ = f1(q, p) and p′ = f2(p), leaving
the p portion of the model state passive. The scenario is illustrated in Fig. 3. Re-
computing f would require the whole state(q, p), while propagating the adjoint
values requires only the scarcity-preserving remainder graph edges. The original
TBR analysis would store at least the portions of p that impact f1 nonlinearly. Here
we have not even considered the cost of (re)evaluatingf1 and f2. If they are par-
ticularly expensive, then one may prefer to store edge labels or certain intermediate
values as a tradeoff for the evaluation cost.

3 Computational graphs share value restoration

G1
a b

G2
d ec

o1 o2 o3 o4 o5 o6

Fig. 4 An example for the graphGb with re-
spect to two computational graphsG1 andG2.
The two node sets forGb are shown as� andH
symbols, respectively.

For storing the required values, we can
follow the TBR approach [8] by storing
the values before they are overwritten.
This information can be expressed as a
bipartite graphGb = (

⋃

V i
min,O,Eb). An

example forGb associated with two com-
putational graphsG1 andG2 is given in
Fig. 4. In the example, one can see that
recovering the value for nodea requires
restores in overwrite locationso1 ando4;
that implies that the value for noded is
restored, and hence the value restoration
benefits both graphs. Multiple overwrite
locations for a given use are caused by aliasing, for examplevia the use of array in-
dices or the use of pointers or branches in the control flow. The overwrite locations
ok ∈ O can be vertices in

⋃

(V i
inter ∪V i

max) or “placeholder” vertices for variables
(unique for each program variable) that go out of scope without the value in ques-
tion being overwritten by an actual statement. That association is essential only for
the final code generation and not for the formulation of the combinatorial problem.

Storing versus recomputation on multiple DAGs 5

4 Problem Formulation

We assume a setG = {G∗i} of extended computational graphsG∗i, as introduced in
Sect. 1, along with their required setsR i and one common bipartite use-overwrite
graphGb as introduced in Sect. 3. For eachGi, there is a bipartite use-overwrite
subgraphGb[V i

min] = Gi
b = (V i

min,O
i,E i

b) containing only the edges and vertices ad-
jacent toV i

min. The goal is to determineS ⊆ O andU ⊆
⋃

V i such that we minimize
a static estimate for the number of values to be stored on tape.

Given anS andU of values to be restored, we need to be able to recompute
values in the remaining subgraph ofG∗i such that all required nodes inR i can be
recomputed. To impose this as a formal condition onS andU , we denote withG∗

R

the subgraph ofG∗ induced by all the nodes precedingR.

Condition for Recomputation (CR): The setsS andU are sufficient to allow re-
computation of nodes in allRi if ∀G∗i

Ri
: ∃ vertex cutCi with respect toRi such that

∀c j ∈Ci : (c j ∈U)∨
(

(c j ∈V i
min)∧ ((c j,o) ∈ O ⇒ o ∈ S)

)

.

In other words, if we know the values of all the vertices in thevertex cutCi we are
guaranteed to be able to recompute the values of the nodes inRi by re-executing the
computational graph betweenCi andRi. A vertex in any of the cuts is either inU
or it is not inU , in which case it must be a minimal vertex; if there is an overwrite
of that value, then that overwrite location must be inS.

Consider the example shown in Fig. 5 where we reuseG2 from Fig. 4 but add
some example code for it and accordingly extendG2 to G∗2. Note that for scarcity

t =5∗d+4∗e ;
p= s i n (c)+ t ;
r =cos (t) ;

G∗2

d ec

t

p r

∂p
∂c

∂r
∂ t

o1 o3 o4 o5 o6 ∂ t
∂d = 4∗1;
∂ t
∂d = 5∗1;
∂p
∂ t = 1;
∂r
∂ t = −sin(t);

∂p
∂c = cos(c);

Fig. 5 An example code (left) for the graphG∗2 (center) highlighted for the subgraph with required

nodes∂r
∂ t and ∂p

∂c that are computed from nodes{c, t} according to the partials listing (right).

preservation we stop here with an incomplete elimination sequence [9] such that
we have five remaining edges in the graph, of which only two arenon-constant.
These two are easily computable from nodes{c, t} representing our vertex cut for
the sub graph and for which values are to be restored. Therefore, we can choose
S = {o4,o6} andU = {t}. This choice emulates the behavior of TBR [8], whereas
choosingU = { ∂r

∂ t}, for example, would be outside of the options TBR considers.A
simple example for the benefits of a non-TBR choice is a sequence of assignments
vi = φi(vi−1), i = 1, . . . ,n with non-linearφi for which one would prefer storing the

6 Heather Cole-Mullen, Andrew Lyons, and Jean Utke

single preaccumulated scalar∂vn
∂v0

= ∏
i

∂vi
∂vi−1

over the TBR choice of storing all ar-

gumentsvi, i = 0, . . . ,n−1. On the other hand, for the example in Fig. 5, adding∂p
∂c

to U in exchange forS = /0 would prevent any shared benefits that restoring nodec
has on restoring nodea in G1 as shown in Fig. 4.

4.1 A Cost Function

Because the decision aboutS andU has to be made during the transformation (aka
compile time), any estimate regarding the runtime tape sizecannot be more than
a coarse indicator. Most significantly, the problem formulation disregards control
flow, which may lead to an overestimate in case of branches containing the overwrite
location or an underestimate if the overwrite location happens to be in a loop. On
the other hand, the problem formulation as is allows for a very simple formulation
of the cost function as|S|+ |U |.

4.2 A Search Strategy

Because the choice ofS impacts multiple graphs inG and thereby their contributions
to U , there is no obvious best choice for a singleG∗i

Ri
that necessarily implies an

optimal choice for all the other reduced combined graphs in general. For all but the
simplest cases, the size of the search space implies that an exhaustive search is not
a practical option. Therefore, we need a heuristic search strategy, and this strategy
is crucial to obtain useful practical results from the proposed problem formulation.

One difficulty in devising a heuristic search strategy stemsfrom the fact that on
the one hand changingU or S are the elementary steps but on the other hand we
have to adjustS or U , respectively, to satisfy (CR) so we may compute a valid cost
function value on a consistent pairS,U . Adapting the sets to satisfy (CR) involves
the determination of vertex cuts and therefore is rather costly. In addition to deter-
mining vertex cuts, one also has to satisfy that all the overwrite locations of the
minimal vertices in the respective cuts are inS.

Therefore, it appears plausible to choose a search strategythat adds or removes
elements inS in small but consistent groups. The two important special cases estab-
lishing upper bounds for the cost function are: (i) TBR, i.e.U = /0 andS determined
according to (CR), and (ii) saving preaccumulated partials, i.e.U =

⋃

Ri,S = /0. We
pick the one with the lower cost and a given pair(S,U) as a starting point. One has
to note at this point that case (i) is the original TBR case as presented in [8] only if
the graphsGi each represent one individual assignment statement. As soon as mul-
tiple assignments are flattened into a single graphGi, the computed cost for case (i)
will be less than or equal to that of the original TBR.

Storing versus recomputation on multiple DAGs 7

v1 v2 v3 v4 v5

o1 o2 o3 o4 o5

v1 v2 v3 v4 v5

o1 o2 o3 o4 o5

v1 v2 v3 v4 v5

o1 o2 o3 o4

(a) (b) (c)

Fig. 6 Example scenarios forGb.

While removing or adding the elements ofS, we aim at making a change that
will plausibly have the desired effect on the cost function.To get an indication of
the effect on the cost function, we may limit our consideration to Gb. The most
obvious observations for different scenarios inGb which inform changes toS are
shown in Fig. 6. It is clear that for (a) no particular preference ofvi ∈ U vs. oi ∈ S
can be deduced while for (b)U = {v1} andS = {o5} are preferred.

To make consistent changes toS we consider maximal bicliques coveringGb. For
the moment, lets assume the bicliques are not overlapping, i.e. do not share nodes
in V or O, as, for example, in Fig. 6 (a) and (b). For each bicliqueB = (VB,OB), we
can evaluate the node ratios for removing and adding toS

r−B =
|O−

B |

|vB|
; r+B =

|vB|

|O+
B |

(3)

whereO−
B = OB ∩ S and O+

B = OB \ S. Obviously, ther+ is only meaningful for
O+

B 6= /0 and otherwise we setr+ to 0. A bicliqueB∗ = (v∗B,o
∗
B) with the maximal

ratio has the potential for the largest impact on the cost function when applied as
follows

S :=

{

S∪O−
B if maximal ration isr+B

S\O−
B if maximal ratio isr−B

(4)

If S = /0, then all bicliques in Fig. 6(a) have ratio 1. In (b) the biclique for v1 has
r− = 0 andr+ = 1/4 while the one foro5 hasr− = 1/4 andr+ = 4. So, we start by
addingo5 to S as our first step. Clearly, in this setup only ratios greater than one are
hinting at an improvement of the cost function. Ratios equalto one are expected to
be neutral and those less than one are expected to be counterproductive.

After updatingS, we apply (CR) to determineU and evaluate the cost function,
compare to the minimum found so far, and accept or reject the step. If the step
is rejected, we mark the biclique as rejected, remove it fromfurther consideration
for changes toS, restore the previousS, take the next biclique from the list order
by ratio, and so on. If we accept the step, we mark the bicliqueas accepted and
removed it from further consideration for changes toS.

Before we formalize the search algorithm, we have to addressthe case of overlap-
ping bicliques as illustrated in Fig. 6(c). There, biclique({v2},{o3}) overlaps with
({v1,v2}.{o1,o2}) and ({v3,v4,v5},{o3,o4}). If we consider a biclique(VB,OB)
with an overlap to another biclique in theVB, then we need to add toOB all nodes
connected to the nodes in the overlap to obtain a consistent change toS. In our ex-

8 Heather Cole-Mullen, Andrew Lyons, and Jean Utke

Algorithm 1 Apply (CR) an single combined,reduced DAG to updateU
GivenG∗

R
= (Vmin ∪Vinter ∪Vmax,E),R,S,VS,U

01 U :=U \V ; C :=VS ∩Vmin

02 form the subgraphG∗′ induced by all paths fromVmin\C to R

03 determine a minimal vertex cutC′ in G∗′ using as tie breaker the minimal distance fromC′ to R.
04 setC :=C∪C′ as the vertex cut forG∗ and setU :=U ∪C′.

ample, this means that({v2},{o3}) is augmented to({v2},{o1,o2,o3}). After the
augmentation, we no longer have a biclique cover and one may question whether
starting with a biclique cover is appropriate to begin with.However, the rationale
for starting with the minimal biclique cover (maximal bicliques) is to identify large
groups of program variables whose overwrite locations are shared and for whom
the store on overwrite yields a benefit to multiple uses. At the same time, using the
minimal biclique cover implies a plausible reduction of thesearch space, compared
to any other collection of bicliques which do not form a cover. While it is certainly
possible to consider the case where one starts with a biclique collection that is not
a cover, we currently have no rationale that prefers any suchcollection over the one
where theVB are the singletons{vi}.

4.3 Algorithm

We formalize the method in Alg. 1 and Alg. 2. Assume from here on that Gb =
(Vb,O) is the subgraph induced by the vertices occurring in theG∗i

Ri . For a givenS,
the subset of restored verticesVS ⊆Vb contains the vertices whose successors are all
in S. A choice ofδ < 1 permits a cut off in the search which disregards bicliques

Algorithm 2 Search algorithm for pair(S,U)

Givenδ ∈ [0,1],R =
⋃

R i,G∗i
Ri for all Gi ∈ G andGb = (Vb,O,Eb); initialize A = R = /0

01 if |O|< |R| then(S,U) := (O, /0); c := |O|
02 else(S,U) := (/0,R); c := |R|
03 compute minimal biclique coverC for Gb
04 ∀B = (VB,OB) ∈ C setOB := OB ∪{o : ((v,o) ∈ Eb ∧ v ∈VB)}
05 while C 6= /0
06 ∀B ∈ C compute ratiosr−B andr+B according to (3) and sort
07 if maximal ratio is less than 1−δ exit with current(S,U)
08 updateS according to (4)
09 ∀G∗i

Ri updateU using Alg. 2
10 if c ≥ |S|+ |U | then setc := |S|+ |U |
11 else resetS to the value it had before line 07
12 setC := C \{B}

not expected to improve the cost function.

Storing versus recomputation on multiple DAGs 9

5 Observations and Summary

As pointed out in Sect. 4.1, the principal caveat to estimating a runtime memory cost
by counting instructions (i.e. value overwrite locations or uses) as done here is the
lack of control flow information. Conversely, for straight-line code, one will have
either a single DAG graph when there is no aliasing or multiple DAGs with aliasing.
In these cases, the algorithm presented here will produce a result better than or on
par with the cases (i) and (ii). See Sect. 4.2, used as initialization in lines01 and02

of Alg. 2. The instruction count accurately reflects the runtime memory cost for a
single execution of the straight-line code segment in question.

In the presence of control flow, the elements inU are correctly accounted for in
the cost function by|U | for a single execution of the DAG in which the respective
vertices occur. In contrast, the runtime memory requirements for the elements inS
are generally not related to the execution count of the DAGs for which the values
are stored. It has been observed for the store-on-overwriteapproach that the|S|
undercounts if it contains instructions in a loop and overcounts if its instructions are
spread over mutually exclusive branches. Research relatedto the incorporation of
the control flow is ongoing, but given the complexity of our flow-insensitive problem
formulation clearly beyond the scope of this paper. Resultsthat yieldU = /0 are
on par or better than TBR (see 4.2). The problem formulation does not limit the
number of DAGs inG to a single procedure, as long as the reaching definitions
analysis that formsGb is interprocedural. However, going beyond the scope of a
single procedure increases the possibility of loop nestingand thus the error in the
runtime cost estimate when Alg. 2 yields bothS andU as non-empty.

While it is not the final answer to the general problem of storing versus recompu-
tation, we view it as a stepping stone that widens the reach ofautomatic decisions by
combining the information for multiple DAGs and permittingmore recomputation
through instructions flattened into DAGs. For a practical implementation one has
to add logic excluding subgraphs of the combined graphs thatevaluate to constant
values and provide a means to recover the values for integer and address variables
occuring in the memory references for storing and retrieving values from the tape
at overwrite locationso to correctly match the memory references represented as
the DAG verticesv through which the restored values are used for recomputations.
This is already necessary for the original TBR algorithm. Itis quite plausible to
add expressions computing addresses or control flow conditions to the combined
computational graphs and appropriately adding vertices tothe setR of required

Fig. 7 Combined graph in OpenAD.

10 Heather Cole-Mullen, Andrew Lyons, and Jean Utke

values so they become part of the automatic restore-recompute decisions. Then, the
ordering for the adjoint code generation has to abide by certain dependencies of
memory references in the verticesv upon addresses or indices also occuring as re-
quired values in the same graph. These are technical refinements that do not change
the approach of the paper and are therefore left out. An implementation of the al-
gorithms is forthcoming in OpenAD [11]. An example forG∗ from a practical code
using the experimental OpenAD implementation is shown in Fig. 7.

Acknowledgements This work was supported by the U.S. Department of Energy, undercontract
DE-AC02-06CH11357.

References

1. Bischof, C.H., B̈ucker, H.M., Hovland, P.D., Naumann, U., Utke, J. (eds.): Advances in Au-
tomatic Differentiation,Lecture Notes in Computational Science and Engineering, vol. 64.
Springer, Berlin (2008). DOI 10.1007/978-3-540-68942-3

2. Bücker, H.M., Corliss, G.F., Hovland, P.D., Naumann, U., Norris,B. (eds.): Automatic Dif-
ferentiation: Applications, Theory, and Implementations,Lecture Notes in Computational Sci-
ence and Engineering, vol. 50. Springer, New York, NY (2005). DOI 10.1007/3-540-28438-9

3. Giering, R., Kaminski, T.: Recomputations in reverse mode AD. In: G. Corliss, C. Faure,
A. Griewank, L. Hascöet, U. Naumann (eds.) Automatic Differentiation: From Simula-
tion to Optimization, Computer and Information Science, chap.33, pp. 283–291. Springer,
New York (2002). URLhttp://www.springer.de/cgi-bin/search_book.pl?
isbn=0-387-95305-1

4. Giering, R., Kaminski, T.: Applying TAF to generate efficient derivative code of For-
tran 77-95 programs. Proceedings in Applied Mathematics and Mechanics2(1), 54–57
(2003). URLhttp://www3.interscience.wiley.com/cgi-bin/issuetoc?
ID=104084257

5. Griewank, A., Walther, A.: Algorithm 799: Revolve: An implementation of checkpoint for the
reverse or adjoint mode of computational differentiation. ACMTransactions on Mathemat-
ical Software26(1), 19–45 (2000). URLhttp://doi.acm.org/10.1145/347837.
347846. Also appeared as Technical University of Dresden, Technical Report IOKOMO-04-
1997.

6. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation, 2nd edn. No. 105 in Other Titles in AppliedMathematics. SIAM, Philadel-
phia, PA (2008). URLhttp://www.ec-securehost.com/SIAM/OT105.html

7. Hascöet, L., Araya-Polo, M.: The adjoint data-flow analyses: Formalization, properties, and
applications. In: B̈ucker et al. [2], pp. 135–146. DOI 10.1007/3-540-28438-912

8. Hascöet, L., Naumann, U., Pascual, V.: “To be recorded” analysis in reverse-mode automatic
differentiation. Future Generation Computer Systems21(8), 1401–1417 (2005). DOI 10.
1016/j.future.2004.11.009

9. Lyons, A., Utke, J.: On the practical exploitation of scarsity. In: Bischof et al. [1], pp. 103–114.
DOI 10.1007/978-3-540-68942-310

10. Utke, J.: Flattening basic blocks. In: Bücker et al. [2], pp. 121–133. DOI 10.1007/
3-540-28438-911

11. Utke, J., Naumann, U., Fagan, M., Tallent, N., Strout, M., Heimbach, P., Hill, C., Wunsch, C.:
OpenAD/F: A modular, open-source tool for automatic differentiation of Fortran codes. ACM
Transactions on Mathematical Software34(4), 18:1–18:36 (2008). DOI 10.1145/1377596.
1377598

