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Abstract
The ability to extend programming languages with domain-
specific concepts is becoming an essential technology for de-
veloping complex software. However, many domain-specific
languages are implemented in away that interact poorlywith
the host language. There are a number of tools that aim to
improve the situation by simplifying the creation of domain-
specific languages, and allow easier interactions between the
host language and the domain-specific language. However,
many of these tools are limited to a single host language,
and rarely allow extending the language used for language
creation. To improve the situation, we created the language
platform Storm, which aims to make the creation and usage
of multiple extensible languages easy and seamless. This is
accomplished by means of a shared, standardized namespace
and in-process code generation, which gives Storm a high de-
gree of extensibility, making it possible to extend or replace
the built-in languages at will.

CCS Concepts • Software and its engineering → Ex-
tensible languages; Domain specific languages.

Keywords domain-specific language, DSL, extensible lan-
guage
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1 Background
Domain-specific languages (DSLs) are becoming increasingly
popular in many situations [4]. For example, many popular
GUI libraries, such as Gtk+, Android, and WPF include some
kind of DSL that allow defining layout more conveniently
than in a general purpose programming language. These
frameworks clearly demonstrate the usefulness of DSLs, but
they have some shortcomings. Most notably, since the host
language and the DSL are separate, interactions between
the two are usually not straightforward. For example, to
interact with elements defined in the layout, it is necessary
to manually retrieve them using a numeric ID provided in
the form of a constant. Furthermore, this means that the host
language is unaware of the type of the component being
accessed, and thus it is up to the programmer to provide the
type information by using explicit casts.

These issues could be addressed by using a tool like Xtext
[2], Spoofax [8] or MontiCore [5] to develop the layout lan-
guage. DSLs developed using these tools are implemented in
terms of a grammar with a program describing how to com-
pile the DSL into a host language (Java in this case). Since
the DSL compiles to the host language, the two languages
may interact to a higher degree than in the case of the syntax
language in Android.
Aside from the previously mentioned external DSLs, it is

often desirable to embed a DSL inside a host language to
simplify some aspect of the current domain. Since the DSL
is embedded, such DSLs are usually able to interact with
the host language to a higher degree than external DSLs.
Furthermore, creating an embedded DSL is often faster than
creating an external DSL, as much functionality from the
host language can be easily reused [6]. As with external
DSLs, there are a multitude of tools that aid the develop-
ment of embedded DSLs. One of the earlier examples of
allowing syntax extensions in a language is macros in Lisp,
which were further refined and brought into focus in Racket
with pattern-based macros and other facilities that ease the
creation of DSLs [3, 11]. This approach provides a high de-
gree of flexibility as arbitrary code may be executed during
the expansion of a macro. Macros are also easily compos-
able, which allows using multiple extensions simultaneously.
However, this approach requires that the DSLs are repre-
sented as S-expressions unless a custom reader is used [3],
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which parses the source text into a suitable representation.
Since the implementation of a reader is up to the language
designer, they are not easily composable.

There are a number of tools, such as SugarJ [1], ableJ [12]
and ableC [7], that provide composable syntax extensions
to other languages (Java and C in this example). In contrast
to Xtext, Spoofax and MontiCore, these tools focus on em-
bedded DSLs which are typically smaller than external DSLs.
Therefore, these tools make it convenient to select which ex-
tensions to use on a file-by-file basis. Extensions are, much
like with Xtext, Spoofax and MontiCore, implemented in
terms of a grammar that augments the host language’s gram-
mar and a description of the semantics in terms of the host
language. While this approach allows a greater flexibility in
the syntax of the embedded language compared to Racket,
it has drawbacks. First and foremost, a language extension
is limited by the capabilities of the host language, making it
difficult, if not impossible, to implement a DSL that lowers
the level of abstraction or bypasses the type system, for ex-
ample unsafe blocks in Rust1. Furthermore, since the host
language is compiled and executed as separate steps, it is
generally not possible to extend the syntax or semantics
of the language used to describe the language extensions
(which is, to some degree, possible in Racket).

In this paper, we present Storm, which is a language plat-
form aiming to address the shortcomings mentioned above.
Storm supports creating both embedded and external DSLs
that are able to interact, even if the languages are unaware
of each other. Storm also provides a runtime environment
shared between the compiler and the compiled code, which
allows arbitrary code to be executed during compilation.
This in turn means that it is possible to extend or replace the
languages used for language definitions. Furthermore, since
all language implementations are a part of the runtime envi-
ronment just like any code in the system, a new language
may reuse parts of one or more other languages to simplify
its implementation.

2 An Overview of Storm

Storm
(core)

Name tree
Parser

Code generation

Basic Storm

The syntax language

..
.

Figure 1. Overview of Storm

As shown in Figure 1, Storm itself is a language agnostic
collection of tools that aid development of extensible pro-
gramming languages [10]. These tools provide standardized
interfaces that languages may use to interact with each other,
1https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html

and with the system itself. Most importantly, Storm provides
a shared hierarchical namespace called the name tree, a parser
for context free grammars and in-process code generation.
Even though languages are encouraged to comply with the
standardized interfaces in order to provide seamless inter-
action between languages, all interfaces except the runtime
system and the code generation are optional, which means
that a language is free to ignore interfaces that do not suit
its semantics.

Languages in Storm are, as can be seen in Figure 1, imple-
mented as libraries separate from the core system. However,
since Storm would be useless without any language, two
libraries implementing the languages Basic Storm and the
syntax language are bundled with Storm by default. Even
though these languages are bundled with the system, they
do not receive special treatment and could have been imple-
mented in another language. Since all languages are treated
equally by Storm, it is possible to use any language that
conforms to the relevant interfaces to create new languages
and language extensions. For example, as we shall see, it is
possible to create a language extension to Basic Storm that
simplifies the implementation of future language extensions.

In order to make this kind of extensibility possible, Storm
does not distinguish between compilation and execution of
the compiled program; code is generated inside the compiler
process and then executed there, meaning it is possible to
execute arbitrary code in any language during compilation.
Furthermore, Storm employs lazy compilation in most of the
system, meaning that the contents of packages and types
are not loaded until they are needed and that functions are
compiled only when they are executed for the first time. Lazy
compilation works in conjunction with the ability to execute
arbitrary code to make it possible to implement a language
partially in itself, among other things.

Storm is freely available at http://storm-lang.org/.

3 An Extension to Basic Storm

1 use lang:bs; use lang:bs:macro;
2
3 Expr unlessExpr(Block b, Expr c, Expr r) {
4 Expr result = pattern(b) {
5 if (!${c})
6 return ${r};
7 }
8 return result;
9 }

Listing 1. Using patterns to create an AST.

The example in Listing 1 illustrates the extensibility possible
in Storm. The function unlessExpr is a function written
in Basic Storm that generates an AST for an extension that
simplifies early returns in functions. To simplify the imple-
mentation, a language extension providing pattern blocks

https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html
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is used. pattern blocks are similar to backquotes in Lisp;
they evaluate to the AST corresponding to the contents of
the block, with some parts possibly provided by expressions
that refer to the surrounding context.
In this particular example, the pattern block is used to

create an AST for an if-statement that returns the value
of the expression stored in r if the condition in c is false.
These expressions are inserted into the pattern using the
${} syntax, which allows inserting AST nodes produced by
arbitrarily complex Basic Storm expressions.

4 The Syntax Language
The syntax for languages in Storm are often implemented in
the syntax language, which is a DSL for describing context-
free grammars and their associated syntax transformations.
The syntax language emits entities in the name tree in a
language agnostic representation used by the parser. The
representation is not only used for storing the grammar, it
also describes the types representing the parse tree produced
by the parser. The representation is designed to look like
regular types to languages unaware of the syntax language
so that all languages may examine and manipulate parse
trees as if they were regular data structures. Furthermore,
since the representation is language agnostic, it is possible to
create other languages for describing syntax for cases where
the syntax language is deemed insufficient.
In order to simplify the task of transforming the parse

tree into an AST, the syntax language provides a mechanism
called syntax transformations, which aims to simplify the task
by using annotations in the grammar. Each production is
associated with a function, the signature of which is specified
by the nonterminal at the left-hand side of the production.
The function itself examines the node and transforms the
node according to annotations in the matched production.
This is similar to semantic actions [9], commonly used in
parser generators.

1 SExpr => TemplateExpr(block , env , create)
2 : "pattern", "(", SExpr(block) env ,
3 ")", SExpr @create;
4
5 SAtom => insertExpr(pos , block)
6 : "$" - SPatternExpr @pattern
7 = PatternAtom;
8
9 void SPatternExpr ();
10 SPatternExpr : "{", SExpr @expr , "}"
11 = PatternExpr;

Listing 2. Parts of the syntax defining pattern blocks.

To better understand the syntax language, consider the
partial implementation of the syntax for the pattern block
in Listing 2. Three productions and one nonterminal symbol
(called rule) are declared. The first production on lines 1-3

declares a production for the SExpr rule, which describes
expressions in Basic Storm. As such it is declared in the
grammar for Basic Storm, and not included in the extension.
Thus, the production on lines 1-3 injects new syntax into
the language by providing an additional production. Simi-
larly, the production on lines 5-7 augments the SAtom rule,
which describes the smallest parts of an expression (e.g. lit-
erals), with the ${} syntax. Finally, line 9 declares a new
rule, SPatternExpr, which is used to describe an expression
that produces an AST node which is to be inserted, and lines
10-11 declare a production for that rule (the official release
contains additional productions for SPatternExpr, which
are omitted for brevity).

The example also describes the semantics of the new syn-
tax using syntax transformations. The first two productions
in Listing 2 each specify a simple expression (a single func-
tion or constructor call) after the => symbol. This expres-
sion is evaluated when a corresponding node in the parse
tree is evaluated to produce the result of the transforma-
tion. The parameters passed to the function on line 1, block,
env and create originate either from captured parts of the
production (env and create), or from formal parameters
of the rule (block). A part of the production is captured
by adding a name after the desired part. This causes the
corresponding part of the parse tree to be transformed and
bound to the specified name. If an @ is prepended to the
name, the node is not transformed before it is bound to the
name. This is done for create, since the pattern block will
transform its contents at runtime in another context. As
previously mentioned, transformations may also require pa-
rameters, which is the case for SExpr. SExpr is declared as
Expr SExpr(Block block); which means that the trans-
formation returns an Expr instance and requires a Block
instance as a parameter. Parameters to such rules are sup-
plied where the rule is used in the grammar, as can be seen
on line 2.
As previously mentioned, rules and productions accessi-

ble to other languages through the name tree, and appear
as types to languages unaware of the syntax representa-
tion. Each rule appears as an abstract type containing a
transformmethod with a signature matching the one in the
rule declaration, which is why rule declarations look like
C-style function declarations. Each production then appears
as a type inheriting from the type of the rule on the left-
hand side of the production. This type is anonymous unless
a name is specified as on lines 7 and 11. The type overrides
the transform function with the behavior specified by the
syntax transformation, and contain a data member for each
captured part of the production. This arrangement allows
other languages to easily inspect and modify a parse tree in
a convenient manner.
In addition to simplifying interactions with other lan-

guages, the syntax language’s presence in the name tree
is useful for organizing and selecting language extensions.
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The parser in Storm maintains a set of packages (i.e. paths
into the name tree) specifying the productions that are con-
sidered during parsing. Since a rule and a production may be
declared separately (which is the case for SExpr and SAtom
in Listing 2), this mechanism allows languages to control
which languages extensions to use by specifying packages,
which allows implementing inclusions similar to SugarJ [1]
and ableJ [12]. Furthermore, the associated syntax trans-
formations allow language extensions to inject semantics
alongside the syntax without additional mechanisms.

5 Semantics in Basic Storm
The semantics of a language can be implemented in any lan-
guage in Storm, as long as the language produces functions
callable from the syntax language. The goal of the semantics
for any language is to eventually produce executable code
in the intermediate representation used by Storm. However,
this is a low-level representation (similar to x86 assembly),
which means that it is often tedious to use directly. Instead,
a language may reuse parts of another language implemen-
tation for this purpose, which is possible since all language
implementations reside in the name tree and are thereby
available for other language implementations to use. This ap-
proach is used by the syntax language to implement syntax
transformations and, as we shall see, the pattern extension.

1 class TemplateExpr extends ExprBlock {
2 init(Block b, Expr env , SExpr create) {
3 // ...
4 var atoms = create.allChildren(
5 named{PatternAtom });
6 for (id, a in atoms) {
7 if (a as PatternAtom) {
8 a.pattern = PatternExprSrc(id);
9 }
10 }
11 // ...
12 ReferSExpr src(create );
13 add(namedExpr(b, SStr("transform"),
14 exprs , Actuals(src )));
15 // ...
16 }
17 }

Listing 3. Parts of the semantics for the pattern block.

Listing 3 contains part of the semantics for pattern blocks.
A pattern block is implemented in terms of a few Basic
Storm expressions wrapped inside a block (blocks are ex-
pressions in Basic Storm; they behave like progn in Lisp).
As such, the class TemplateExpr, which represents pattern
blocks, inherits from ExprBlock. The constructor (lines 2-16)
first examines the captured syntax tree, create, to find all
expressions that shall be inserted, which are represented by
the PatternAtom class (lines 4-5). Each occurrence is then

modified by replacing the pattern member with a custom
subclass to SPatternExpr that contains information on how
to retrieve the actual value to be inserted (lines 6-10). The
ASTs inside these nodes are evaluated in another context,
and the results are stored for later retrieval (not shown). Fi-
nally, the constructor adds a Basic Storm expression to the
current block that calls the transform method on a previ-
ously created object, which transforms the captured parse
tree (lines 13-14). Since Basic Storm does not allow storing
arbitrary values as constants in the intermediate representa-
tion, a custom AST node, ReferSExpr, which provides this
functionality is used on line 13 by generating a small amount
of code in the intermediate representation.

6 Conclusion
In this paper, we highlight some of the strengths of the ap-
proaches to extensibility used by Storm by examining the
implementation of pattern blocks. First and foremost, the
example illustrates how the tools and languages provided
by Storm can be used to create DSLs that simplify future
language creation, which is beyond the capabilities of other
similar tools, like SugarJ and ableJ. This is possible since
Storm is not tied to a specific language, but rather only de-
fines a handful of interfaces to which languages are expected
(but not required) to conform. This combined with the ability
to execute arbitrary code during compilation means that a
programmer is free to extend or replace the default languages
as long as they conform to the relevant parts of Storm’s in-
terfaces. This too can be done in any language that supports
the relevant interfaces, and does not necessarily have to be
done in one of the default languages.

The core structure in Storm is the name tree, which defines
the namespace shared between languages. The name tree is
not only used for inter-language interactions, Storm also ex-
poses large parts of itself through the name tree. This makes
it possible for languages to inspect and modify the running
system, which is required in order to generate executable
code. Finally, the fact that all language implementations are
exposed in the name tree means that other languages are able
to reuse parts of these implementations in order to reduce
the work required to implement a new language. This ability
is used heavily in the implementation of the syntax language;
the syntax transformations are implemented by utilizing the
functionality of Basic Storm. This was also illustrated in
Section 5, where new semantics was implemented in terms
of already existing semantics. The example also notes the
possibility of providing the missing semantics by generating
the required intermediate code directly, even while utilizing
other language implementations.

The example presented in this paper is available in the offi-
cial release at http://storm-lang.org/. The syntax in Listing 2
is located in the file root/lang/bs/macro/syntax.bnf, and

http://storm-lang.org/
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the semantics in Listing 3 is located in the file root/lang
/bs/macro/pattern.bs.
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