
 A1.1

Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 4th, 2007

Story-Wall: Lightweight Requirements Management
for Agile Software Development

Lorena Delgadillo
Senior Year Honors Student, BS in Computer Science

Seidenberg School of CSIS, Pace University, New York
lorena.m.delgadillo@gmail.com

Abstract

 The majority of commercial requirements
management tools tend to be costly, document-driven
and used by large organizations undertaking
traditional forms of software development. While they
are not immediately in the spirit of the agile
philosophy, which advocates live dialogue over
documentation and encourages small teams of
developers to do the simplest thing possible to satisfy a
requirement, there are some fundamental practices
supported by these tools that play a role in more agile
forms of software development. This paper examines
the core requirements management needs that are
common to software development of all flavors and
describes a tool concept designed to bring lightweight
requirements management to the agile (predominantly
XP) context. This work is based on experiences in
using agile development practices within ibm.com, and
on the transition from manually handling paper-based
story cards to the use of first generation story
management tools. The paper discusses early feedback
on the concept from practitioners.

1. Introduction

 Requirements are needed in order to develop
a system. Requirements are defined as the needs of the
stakeholders for a system. Requirements engineering is
a part of systems engineering whose goal is to better
understand what a system should do and who for [2].
Requirements engineering is applied throughout the
lifecycle of a system’s development. From the
beginning of a project, requirements must be
established, detailing the functionality and constraints
of a system. Requirements engineering encompasses
the creation and development of requirements, as well
as the management of requirements over time.
 In software engineering there exist various
techniques or approaches to developing a software
system. There are traditional approaches which
include: Waterfall, Spiral, Iterative or Incremental
processes, and other types of processes created by and

tailored to specific organizations. On the other hand,
there exist alternative lightweight approaches referred
to as ‘agile’. The key differentiating factors are their
approach to communication, team structure, the build
and testing approach, and the ability to respond to
change [5]. There are many forms of agile
development process, such as Scrum, DSDM, Crystal
and others. The most extreme form of agile
development is eXtreme Programming, also known as
XP, which takes a set of combined agile practices to
the extreme.
 Whether a software system is being built with
a traditional approach or an agile approach,
fundamental requirements engineering activities are
basically the same. Stakeholders need to be identified,
candidate requirements need to be determined, analysis
has to be made on such requirements, and these
requirements need to be checked or validated with
customers. Requirements management is all about
providing some mechanism to deal with inevitable
requirements changes. The major difference is possibly
the explicit emphasis and support given to each
activity in requirements engineering and, in some
cases, how much of one activity is undertaken prior to
another can be started.

2. Research Method

 A combination of different approaches aided
in the development of this work and in the prototyping
of a lightweight requirements management tool.
Figure 1 shows the research methods.

Figure 1: Research methods used.

 A1.2

2.1 Literature

 Literature on the topic of requirements
management, agile methodologies, and requirements
engineering were studied and reviewed to gather
knowledge about the different topics and issues
addressed in this paper. This helped in understanding
the essential requirements management requirements.

2.2 Questionnaires

 Questionnaires were created in order to gather
information from practitioners to corroborate the above
and find out more. The questionnaire for practitioners
was intended to gather their use of agile development
practices in their work force, as well as any
requirements management tools used, to get an
understanding of the state of the practice.
Questionnaires were also given to other IBM
practitioners that work with the Rational Unified
Process and Rational product suite.

2.3 Practitioner Feedback

 Feedback of the early concept and prototype
of the tool was obtained from practitioners using agile
methodologies within ibm.com. The ideas were
discussed with other agile project management leaders
at a meeting held at Pace University in April 2007,
including XP practitioners from IBM and Google.

2.4 Observation and Participation

 Observation of and participation in agile
professional presentations aided in developing
knowledge of agile methodologies and their most basic
requirements management needs.

2.5 Tool Critiques and Use

 Critiques were gathered from Pace University
graduate students regarding different tools that they
had been exposed to in their Systems Requirements
Engineering class (CS 775). These critiques, plus
personal exposure to over twenty various tools via
demo versions, helped in comparing the different
features between current requirements management
tools to understand the state of the art.

3. Requirements Management

 Requirements management is the enabling
process in which requirements, both technical and non-

technical, are developed and maintained by all of the
stakeholders throughout the project life cycle. It
provide the ability to see which requirements have
been implemented and where, and to assess the impact
of potential changes, as well as to help see these
changes through [4].

3.1 Requirements

 The definition of requirements (i.e. what
exactly are these things and where do they come from)
has been a topic of much discussion. Most
practitioners interpret in their own way what
requirements are and mean. Most define requirements
as some expression of the needs of the stakeholders for
a new system.

3.2 Types of Requirements Management Tools

 Current requirement management tools can be
defined as either lightweight or heavyweight in their
process support. Heavyweight tools tend to be costly
and usually are database based or more complex
systems. Complexity in these tools can be due to a
multi-tiered structure, multiple components that need
to be installed, as well as demands on the procedural
configuration of the system (including enforcement of
prescribed processes). Such complex systems can
include server-client interaction, where more than one
software tool has to be installed in order for the
requirements management tool to function. There can
be a high start-up cost and barrier to use. Some
requirements management tools are dedicated only to
requirements management. Others, such as DOORS,
can be used to manage requirements throughout the
project life cycle by integrating with other tools.
Alternatively, there exist lightweight tools that are less
expensive and easier to install and use (discussed
later).

3.3 Stakeholders

 Developers, requirement engineers, quality
assurance (QA) testers and, to some extent, the
business clients/customers that are linked to the project
at hand are all stakeholders in the requirements
management process. Each has their own goal and task
in the requirements management process. The task of
the developer is to build a functional product that
meets expressed and expected requirements, so it fit
for purpose. A requirements engineer focuses on
writing comprehensible, representative and agreed
requirements that can be developed by the application

 A1.3

developers. QA testers need to validate processes are
followed and conduct proper testing of the
requirements for a project. The goal of the business
clients/customers is to have a well developed and
quality product that meets their requirements, without
exceeding allocated time and cost. All of these parties
need to look at requirements and be able to prioritize
and approve them, as well as make changes to them as
all stakeholders learn more about the problems and
opportunities at hand.

3.3.1 Business Client/Customers

 The role of the business client is to supply to
the technical team a project which can be to improve a
current product or create a new product to take
advantage of a business opportunity. The business
client seeks to have the project released by a given
date. Most business clients seek minimal cost and high
productivity and quality. A requirements management
tool must provide to the business client the ability to
organize and prioritize requirements to their needs and
deadlines.

3.3.2 Developers

 The role of the developers is to transform the
requirements into a design or a prototype. Their main
goal is to develop a successful product with minimal
amount of errors. This can be achieved with the help of
having a robust requirements tool. By having
requirements traced to design and code, developers can
determine what requirements have been completed and
which are left to be prototyped. Tracing to test cases
for acceptance testing is also important.

3.3.3 Requirement Engineers

 The role of requirement engineers is to write
requirements that can be agreed by both the technical
team and the business clients. Their task is to be able
to track the status of a requirement and to track the
changes to the requirements. The use of a requirements
management tool for a requirement engineer is to
facilitate the way in which requirement engineers
investigate and develop requirements, as well as
handle changes. A requirements management tool must
have this feature in order for the requirement engineers
to reach commitment to project tasks, provide high
quality requirements and be able to track and trace
them into high quality code.

3.3.4 QA Testers

 QA is a key concept in software development.
Without having any QA testers, how can developers
(also their project managers and paying clients) know
that the system they developed is of acceptable and
anticipated quality? QA testers ensure that the software
that is being developed is being done according to
agreed processes and standards. Such members of the
quality assurance team will also be using requirements
management tools to verify that the requirement was
implemented as specified and satisfies test cases.

3.4 Issues

 Requirements management is that part of
requirements engineering that deals with the problems
in the traceability of project requirements, especially
when checking requirements satisfaction and handling
changes. The traceability problem is compounded by
the types of requirements management tools that exist.
Many are expensive and are not user friendly. Another
aspect of the traceability problem is the human aspect.
Customers and developers do not agree on
requirements and, with many changes in the
requirements, up to date requirements are not stored,
captured, or managed by the developers. At the end of
the day, the potential of having a certain portion of the
project not being traced back to its original
requirement has a high risk. This poses a potential risk
to both the cost and efficiency of the product since it
brings delays to the project plan.
 The definition of requirements traceability has
also been the cause of the traceability problem. Many
practitioners and experts have their own understanding
of the various project and software development tasks
that requirements traceability should help simplify and
support [2]. Most requirements management tools do
not, however, help the user to formulate requirements.
Rather, they leave a free form text area where the user
can input whatever they please. The user may not
know that instead of collecting and managing
requirements, they are managing nonsense. Therefore,
overly bureaucratic requirements management
processes and tools can actually sometimes end up
managing out of date garbage! The tools always rely
on the people to do a good job, and some tools make
this easier than others to encourage and realize.

 A1.4

4. Requirements for Requirements
Management Tools

4.1 Essential Requirements

 A requirements management tool must have,
at a minimum, the following features in order to
manage requirements:

• Requirements Storage
• Requirements Prioritization
• Change Control
• Requirements Progress
• Requirements Traceability

 These requirements for requirements
management do not have to only be implemented
through a software product; they can also be
implemented through some form of manual
documentation, filing system or some form of human
process. The stakeholders wish to have a system,
whether automatic or not, that can be able to allow
them to keep track of the requirements and all changes
to them.

4.1.1 Requirements Storage

 A requirements management tool should be
able to store requirements. Requirements can be stored
in the simplest form via a filing system or spreadsheet
or, more usually, as a database schema. Requirements
need to be stored in order for them to be managed and
tracked for any changes. The requirements
management tool should be able to store requirements
with as much detail about them (i.e. metadata) as
necessary. The more detail, the easier it is for a
developer to understand his or her tasks and the impact
of the change to be assessed.

4.1.2 Requirements Prioritization

 Not all requirements are considered equal.
Trade-offs will always need to be negotiated as to what
can and what should be done on a project. A
requirements management tool must have a
requirements prioritization feature. Business managers
as well as developers must be able to view and
organize requirements according to their need and
release dates. A requirements management tool should
be able to allow the user to change or add attributes to
a requirement, such as cost, effort, risk, priority, etc.
(as above). Such attributes help managers to prioritize
requirements.

4.1.3 Change Control

 Change control is an essential part of
requirements management. Every requirement can
change and it can change more than once. Changes in
requirements should be tracked in a requirements
management tool in order to know the cause for the
change and the impacts due to the requirement change,
on quality, cost, schedule, etc. An ideal level of
granularity should be on an atomic level. The more
detail maintained the better it is to understand what has
changed and to roll-back any problematic changes.
Consequential changes to requirements should be
authorized and agreed upon by project managers and
business managers.

4.1.4 Requirements Progress

 Requirements are subject to changes and
keeping track of the status or state of a requirement is
vital to the requirements management process.
Requirements can be preliminary, to be negotiated and
discussed, or can be in a development stage, tested,
implemented, approved, etc. If a requirement cannot be
linked to any of these stages then it is possible that the
requirement is not needed.

4.1.5 Requirements Traceability

 Requirements traceability is the relationship
between a high-level requirement and a low-level
requirement, and all other project artifacts derived
from and contributing to them. Traceability analysis
has three different types: impact, derivation, and
coverage [3].
 A requirements management tool must be
able to link requirements between design and code and
back to requirements. This is referred as forward-
backward traceability. Further, vertical traceability is
the linkage between a requirement, its design and its
code. Horizontal traceability is the linkage between
versions of requirements. These distinctions are
illustrated in figure 2. Traceability between
requirements and the source of requirements is known
as pre-requirements traceability. Traceability between
requirements and the target feature is known as post-
requirements traceability [2]. The existence of
requirements traceability in a project helps manage
which requirements have changed and cross-impact the
changes throughout the project.

 A1.5

Figure 2: Traceability diagram showing forwards and

backwards, horizontal and vertical traceability.

5. Current Requirements Management
Tools

 There is a vast diversity of requirements
management tools currently in use by many
companies. Such tools can support the full software
development life cycle and all its project artifacts,
while others only manage requirements. A study was
conducted on a sample of approximately twenty
requirements management tools on the market.
 In the study, a comparison was conducted
between requirements management tools used both for
traditional and agile approaches. Each tool was
compared to the essential requirements defined in
section 4.1 of this document. Requirements
management tools must be able to store requirements,
prioritize requirements, keep track of changes,
progress to requirements, and be able to trace
requirements.
 Each requirements management tool surveyed
had a means of storing requirements. Tools such as
TopTeam Analyst and TRUEreq use servers in order to
store the requirements and other data. Other tools are
standalone tools which can be installed on a shared
drive for multiple users to use.
 Not all requirements management tools
prioritize requirements. RMTrak for example, does not
provide features to prioritize requirements, but there
are other tools that help users prioritize requirements.
RequisitePro helps users customize the priority level of
each requirement. Not all tools give the user the ability
to customize the software development process they
can use to undertake their project.
 Changes to requirements need to be tracked
for each requirement. Most tools on the market have

some form of change control. It can be as simple as
generating a change report that details the changes at a
summary level or as complex as having notifications
emailed to managers or ensuring change requests be
approved by managers.
 Most of the tools surveyed showed the
progress of requirements. Some showed which phase
the requirement was in, such as in analysis or in
development. Others such as TRUEreq can show if a
requirement is overdue or completed. RaQuest shows
if a requirement was proposed or actually approved.
 Traceability is an essential part of
requirements management. Tracing the links between
requirements determines the relationship of
requirements in a project as well as the relationship
between design and code of the requirement. Since not
all requirements management tools support the full
development life cycle, most only provide traceability
between requirements and not between design and
code. Tools such as OptimalTrace by Compuware and
RequisitePro by IBM have the feature to develop
requirements through the full development life cycle.
Others such as TRUEreq do not address the
traceability issue, so do not have a traceability matrix
or report.
 A good requirements management tool will
have all the essential requirements. They should all be
able to store requirements, prioritize requirements,
keep track of changes and the progress of
requirements, and trace links between requirements.
Many strongly support these features, but generally
require that rigorous processes are followed, and some
do not support them at all.
 Unfortunately, not much of the requirements
creation and development problem has been addressed
by many of the requirements management tools. In the
study only one tool helped users to actually write
‘good’ requirements. This tool, Leap SE, has
requirements template depending on the type of
requirement. Users can choose to create functional,
structural, or technical requirements from a list of
various templates. Although this tool helps the user to
compose requirements, it does not have any other
features, so is limited.
 Current requirements management tools can
improve only if they can first help users create better
requirements and support this creative and exploratory
interchange process that surrounds their development.
Well written requirements ease the process of
managing requirements; stakeholders will at least
know that the requirements that they are managing are
not nonsense.

 A1.6

6. Agile Requirements Management

 In contrast to the traditional requirements
management techniques, agile software development
practices do not focus on detailed requirements
documentation. In fact, XP [1] uses physical paper
index cards, known as ‘story cards’, to record
requirements. Story cards are used as a way to prompt
discussion about requirements between the developers
and the clients. Communication between the clients
and development team is one of the main practices of
agile.
 Most XP teams do not use a tool to manage
their story cards. This poses an advantage, but also a
potential problem since story cards can be lost or
misplaced in the wrong pile which can affect the
project at hand. It is even a higher risk of not having a
tool to manage stories cards or requirements when
agile becomes distributed in implementation.
 Throughout the software development life
cycle, stories are created, estimated, prioritized, and
placed in iterations for development. Iterations are
short cycles in which features of the software are built,
tested and released. Clients choose those stories they
want developed during each iteration, as well as decide
which stories are no longer needed. Stories are usually
placed on a whiteboard or a wall that has different
stages in which a story can be place in. Usually the
stages are “to do”, “in progress”, “completed”, as well
as others. The terms are usually defined by the team.
 During the creation of stories (aka very loose
requirements), the developer and the client have
various forms of communication which more than
likely are not recorded or stored. This poses a problem
when developers try to remember what the story was
about and the person who they communicated with is
no longer present. Managing stories becomes more
problematic when dealing with a globally distributed
project, where the different team members are placed
in various places around the globe, because
development teams will not be able to view the
physical wall of stories. Tracking changes of stories
becomes more difficult because each team might have
different versions of the story. Agile methodologies
don’t hold requirements traceability as essential to the
development and change process as do traditional
methodologies. This is somewhat due to the perception
that traceability is, by definition, always costly and
heavyweight. However, agile projects can be subject to
requirements change issues too.
 Vendors have created various tools as a
solution to the requirements management problems
sometimes experienced in agile software development

projects. The study found a handful of agile
requirements management tools that, in contrast to
agile practices, were either complex, heavyweight or
had no customer usability. For example, Rally, a web-
based tool, was found too complex in its design to use
effortlessly, which defeats the idea of going agile. The
interface of this tool had too many seemingly
unnecessary features and little explanation of its
expected process of use. The process flow was not
easy to comprehend and not so in line with usual
practice. Other tools such as Project Cards, an Eclipse
plug-in, do not include the idea of pair programming
and developer allocation to stories into its framework.
Although it allows you to customize your project, it is
time consuming to deal with it. Although it is a very
useful tool for developers, it does not give the easy to
use interface that would be preferred by clients to
create and prioritize their own stories with ease.
 Companies such as IBM and Google use
requirements management tools for their agile
development teams. An agile development team for
ibm.com uses a tool called Extreme Planner. Although
it is a lightweight tool, it does not have any
requirements traceability. A group at Google that
focuses on agile development uses a brand new and
custom made tool created by a third party vendor to
suit their needs for agile story management (details
forthcoming).
 Many of the current agile requirements
management tools overload the tool with features that
are not needed very often and, in turn, create a more
complex tool than may be necessary to support what is
meant to be an agile and lightweight process. Hence a
need for an open source and lightweight requirements
management tool for agile software development.

7. Story-Wall Concept
 In order to address the need for a lightweight
requirements management for agile software
development, it was found in this research that a new
tool should be created. This new tool will have the
essential requirements mentioned in section 4.1 as well
as provide a solution to manage requirements in a
globally distributed project.

7.1 Prototype

 In order to provide a solution to the issues
currently seen in requirements management and in
requirements management tools, a prototype of a
lightweight requirements management tool concept
was developed. The name of this prototype is Story-
Wall.

 A1.7

7.2 Users

 Story-Wall will benefit and provide the ability
for developers, project managers, and clients to all
view the stories for a project. Story-Wall is targeted
not only for developers, project managers, and clients,
but also for whoever would like to be aware of the
stories in a project, such as QA testers. According to
roles, these stakeholders can create, elaborate,
estimate, prioritize and allocate stories to iterations.

7.3 Features

 Story-Wall focuses on providing a high level
view of the project. Its main features include:
1. Virtual Wall
2. Story Card Simulation
3. History of Changes
4. Lightweight Requirements Traceability

7.3.1 Virtual Wall

 Practitioners of XP rely on story cards being
placed on a wall or a whiteboard which allows for
them to see what needs to be or has been done on a
project, and to easily move a story between stages.
Having this exact same idea in a tool will allow for
easy transition between a physical wall and a virtual
wall which they will see in the tool. This concept was
adapted in the Story-Wall prototype, as illustrated in
figure 3.

Figure 3: Virtual wall prototype.

 Using drag and drop functionality, developers
can drag story cards from stage to stage until
completion and customer acceptance. The virtual wall
allows for users of the tool to see up to date story card
information and the progress of the project.

 Within the virtual wall users can see where
they are at in the timeline and be able to select
different iterations and view their own virtual wall.
Upon viewing the virtual wall for a project, the current
iteration will be displayed in the context of the project
timeline.
 Users can view the details of a story card by
just selecting it. Users can view the complete list of
stories that are assigned to a certain phase within the
iteration.

7.3.2 Story Card Simulation

 In physical reality, story cards have both a
front and a back side of the card. Usually, on the front
of the card, the details of the story are written, as per
figure 4. The back of the story card is often used to
show the different tasks the story involves and test
cases for the story. This same concept was adapted for
Story-Wall. When a user selects a story card, they can
view the front and back sides of the story card, and
contribute to either as appropriate and needed.

Figure 4: Story card simulation.

7.3.3 Prioritizing and Estimating Stories

 A direct manipulation drag and drop interface
was also created to enable customers to sort their story
cards into priority lists according to perceived business
value or importance of the story. Likewise, developers
directly stretch the virtual story cards to represent their
sizing estimates, this representing the anticipated
development effort to build a story. Stories are selected
per iteration in a further direct manipulation manner
not unlike selecting and moving varying sized pieces
to fill a limited size container which reflects the
development team velocity for the iteration. The
priority and sizing information is visually represented
in the virtual wall that manages the story cards and
displays the big picture context for the agile project.

 A1.8

7.3.4 History of Changes

 Yet to be completed stories are always
changing and these changes are sometimes never
tracked. The Story-Wall tool keeps track of the
changes made to a story by adding a simple history to
the story. A user can choose to view the history of the
story and see from who created the story to the latest
change contributor. Annotations and comment
facilities are provided. Font types can differentiate
contributors, as per a physically annotated card.

7.3.5 Lightweight Requirements Traceability

 Requirements traceability, as mentioned
previously, is often ignored in an agile context as
perceived as burdensome and redundant. However, an
increasing number of development situations and
contexts are actually seeing the need for some form of
traceability to support project longevity. Lightweight
requirements traceability can be achieved via the story
wall concept as a by-product of everyday use.
Additionally, stories can be traced back to the
discussions between clients and the development team
to recover rationale by recording a meeting, phone
conversation, or saving a chat and uploading it to the
tool. The uploaded file will accessible for users to
either listen or read once they view the story details.
Tracking multimedia requirements information of this
nature to support understanding is a current research
topic at organizations such as Siemens.

7.4 Ongoing and Future Work

 Currently the tool is in prototype phase. The
implementation of this tool will use the following
technologies: AJAX, Web 2.0 and Ruby on Rails. The
platform on which this tool will be created will be
Wiki-based. Web 2.0, AJAX, and Ruby on Rails were
chosen as the ideal technologies to implement drag and
drop functionality for the tool. A wiki-based tool will
allow for more collaboration between users as well as
discussion forums for questions and comments about
stories and the overall project. Wikis are very much
used in Agile since they allows for an easy and
intuitive way for members in teams to communicate.
The tool will continue to be validated with targeted
practitioners to help refine the concept prior to full
implementation.

8. Conclusions

 Requirements management tools should be
able to ease the management of changing

requirements. In order for requirements management
tools to work efficiently they must be able to store
requirements, prioritize requirements, track changes to
requirements, track the progress of requirements, and
provide a level of requirements traceability.
 Current requirements management tools are
known to be heavyweight and hence a turn-off to the
growing community of agile software developers.
They generally force processes and procedures that are
viewed as overly burdensome and contrary to the agile
philosophy of ‘doing the simplest thing possible’ at all
stages. Since current agile story/requirements
management tools do not have all of the most
fundamental of requirements for a requirements
management tool, this work has involved exploring a
lightweight requirements management tool concept
that can go someway towards addressing this gap.

9. References

[1] Beck, K. Extreme Programming Explained,
Embrace Change. Addison-Wesley. 2001.
[2] Gotel, O.C.Z. and Finkelstein, A.C.W. An Analysis
of the Requirements Traceability Problem. Proc. 1st
IEEE International Conference on Requirements
Engineering, IEEE Computer Society Press, Colorado
Springs, CO (April 1994), 94-101.
[3] Hull, M. E. C. Jackson K., and Dick J.J.,
Requirement Engineering. Springer-Verlag, London,
UK, 2002.
[4] Ludwig Consulting Services, LLC,
http://www.jiludwig.com. July 2006.
[5] Pressman, R.S., Software Engineering, Sixth
Edition, McGraw Hill, New York, NY, 2005.

10. Acknowledgments

 The author would like to thank Dr. Olly Gotel
for her mentoring and support as well as the CS 775
Systems Requirements Engineering class for
completing the requirements management tools
questionnaires.
 The author would also like to thank the IBM
practitioners and researchers who provided input and
feedback on this work, especially David Leip and Joe
Krebs.
 This research work is supported by a Pace
University Presidential Grant for 2006-2007: a Eugene
M. Lang Student Research Fellowship entitled
“Lightweight Requirements Management for Agile
Software Development”. The full report for this
ongoing work is available from the author on request.

