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Abstract 

Chemical compounds can be identified through a graphical depiction, a suitable string representation, or a chemi-

cal name. A universally accepted naming scheme for chemistry was established by the International Union of Pure 

and Applied Chemistry (IUPAC) based on a set of rules. Due to the complexity of this ruleset a correct chemical name 

assignment remains challenging for human beings and there are only a few rule-based cheminformatics toolkits avail-

able that support this task in an automated manner. Here we present STOUT (SMILES-TO-IUPAC-name translator), a 

deep-learning neural machine translation approach to generate the IUPAC name for a given molecule from its SMILES 

string as well as the reverse translation, i.e. predicting the SMILES string from the IUPAC name. In both cases, the sys-

tem is able to predict with an average BLEU score of about 90% and a Tanimoto similarity index of more than 0.9. Also 

incorrect predictions show a remarkable similarity between true and predicted compounds.

Keywords: Neural machine translation, Chemical language, IUPAC names, SMILES, DeepSMILES, SELFIES, Deep neural 

network, Attention mechanism, Recurrent neural network
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Introduction

Assigning names to chemical compounds so that an 

author can refer to them in the text of a scientific arti-

cle, book or patent has a long history. In the early days 

and even still today, such names were often chosen based 

on physicochemical or perceptible properties, but also 

named after species, people, named after fictional char-

acters, related to sex, bodily functions, death and decay, 

religion or legend, or other [1]. Usually, this makes it 

impossible to conclude from the name to the chemical 

structure of the compound. To overcome this dilemma, 

the International Union of Pure and Applied Chemis-

try (IUPAC) established a set of rules and guidelines for 

chemical nomenclature [2–5] so that a systematic name 

can be generated from the structure and substructures of 

a chemical compound and vice versa. Often, more than 

one systematic IUPAC name can be generated for the 

same compound: �erefore, the IUPAC introduced the 

IUPAC preferred name in their current edition of the 

Blue Book, preferring one of the possible names over all 

others.

Other types of string representations of molecules, 

such as SMILES [6], InChI [7], SYBYL line notation [8], 

Wiswesser line notation [9], and SMARTS [10] are more 

concise forms of line representations. While in principle 

being human-readable, these representations are primar-

ily designed to be understood by machines. �us, they 

are not commonly used in text to denominate chemical 

compounds for recognition by human readers, but have 

been incorporated into many major open-source and 

proprietary cheminformatics toolkits.

IUPAC name generation, due to its algorithmic com-

plexity and the large set of rules, is missing in many 

cheminformatics toolkits in general. For a human, IUPAC 

name generation for more than a handful of molecules is 

cumbersome. People, therefore, resort to the few avail-

able automatic tools for IUPAC name generation.

Among the available and reliable solutions are the 

“molconvert” software, a command-line program in 
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Marvin Suite 20.15 from ChemAxon (https:// www. 

chema xon. com) [11]. It is available for researchers under 

an academic license. Open-source programs such as the 

Chemistry Development Kit (CDK) [12], RDKit [13], 

or Open Babel [14] do not (yet) provide any algorithms 

that can automate the process of IUPAC naming for 

molecules.

With this work, we report a proof-of-concept applica-

tion of Neural Machine Translation (NMT) for the con-

version of machine-readable chemical line notations into 

IUPAC names and vice versa. A large training set was 

generated with ChemAxon’s molconvert software and we 

would like to emphasise that this work would not have 

been possible without the generous offer by ChemAxon 

for the academic scientific community to use their soft-

ware for free. We also like to point out that the purpose 

of this work is not to make ChemAxon’s tool obsolete. As 

a deterministic tool, it will continue to be the first choice 

for practical naming tasks in databases.

For the work presented here, we were inspired by 

Google’s multiple NMT models and came up with the 

idea to build a SMILES-TO-IUPAC-name translator 

called STOUT. STOUT was developed based on lan-

guage translation and language understanding. We 

treated the two chemical representations as two differ-

ent languages—each SMILES string and corresponding 

IUPAC name was treated as two different sentences that 

have the same meaning in reality.

All these language models can only achieve greater 

than 90% accuracy with sufficient data to train them 

on. �e majority of state-of-the-art language translation 

models are trained on millions of words and sentences 

to achieve such high levels of accuracy. Moreover, to 

train such large models in an adequate amount of time 

dedicated and powerful machine learning hardware is 

required. In this work, we report substantially shortened 

training times for our models using Google’s Tensor Pro-

cessing Units (TPU).

Methods

Using deep machine learning methods such as NMT 

for SMILES-to-IUPAC-name translation is a completely 

data-driven task so that high-quality data from a reliable 

source is mandatory. In this work, datasets were created 

for SMILES-to-IUPAC-name translation as well as for 

IUPAC-name-to-SMILES translation respectively.

Data

All molecules were obtained from PubChem [15], one 

of the openly available large small molecule databases, 

where the entire PubChem database was downloaded 

from its FTP site in SDF format. Using the CDK, explicit 

hydrogens were removed from the molecules and their 

topological structures were converted to canonical 

SMILES strings. �e obtained 111 million molecules 

were filtered according to the ruleset of our previous 

DECIMER work [16], i.e. molecules must

• have a molecular weight of fewer than 1500 Da,

• not possess any counter ions,

• contain only C, H, O, N, P, S, F, Cl, Br, I, Se and B,

• not contain any hydrogen isotopes (D, T),

• have between 3 and 40 bonds,

• not contain any charged group,

• contain implicit hydrogens only, except in functional 

groups,

to arrive at a dataset of 81 million molecules. �ese 

selected SMILES strings were converted into IUPAC 

names using Chemaxon’s molconvert software, a com-

mand-line program in Marvin Suite 20.15 from Che-

mAxon (https:// www. chema xon. com).

Using SMILES strings directly for training Neural Net-

works (NN) may cause various problems due to their 

intricate structure which is difficult to split into separate 

meaningful tokens necessary for the machine input. To 

tackle this problem, two other representations are avail-

able, DeepSMILES [17] and SELFIES [18]. For a dis-

cussion of the problems of string tokenization for deep 

learning, we refer our readers to those two publications. 

Our results confirm the superiority of SELFIES for the 

task discussed here and in our work on Optical Chemical 

Entity Recognition [16]. �us, for this work all SMILES 

strings were converted into SELFIES using a custom 

python script (Fig. 1).

Two datasets were constructed, a 30 million and 60 

million molecule set with SELFIES and corresponding 

IUPAC names, where the 60 million sets contained all 

30 million molecule entries of the former. Every SELFIES 

string and IUPAC name was split into separate tokens 

using the space character as a delimiter. SELFIES were 

split according to a closed square bracket “]” and an open 

square bracket “[”. For IUPAC names a small set of rules 

was applied to split them uniformly: After every,

• open bracket “(”, “{” and “[”,

• close bracket “)”, “}” and “]”,

• dash symbol “-”,

• full stop “.”,

• comma “,”

and after every word in the following list,

• mono,di,tri,tetra,penta,hexa,hepta,octa,nona

• deca,oxo,methyl,hydroxy,benzene,oxy,chloro,cyclo,a

mino,bromo,hydro,fluoro

https://www.chemaxon.com
https://www.chemaxon.com
https://www.chemaxon.com
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• methane,cyano,amido,ethene,phospho,amide,butane,

carbono,hydro,sulfane,butane,sulfino

• iodo,ethane,ethyne,bi,imino,nitro,butan,idene,sulfo,c

arbon,propane,ethen,acetaldehyde,benzo,oxa,nitroso,

hydra,iso

a space character was added as a delimiter. After add-

ing the delimiter, the dataset was padded to fit the maxi-

mum length of 48 characters for SELFIES strings and 

78 characters for IUPAC name strings, a “start” token 

was added to each string to indicate its beginning, and 

an “end” token was added at the end of the string. �e 

strings were tokenized and saved into small TFRecord 

files for training with GPUs or TPUs. Finally, two SELF-

IES-to-IUPAC-name datasets and two IUPAC-name-to-

SELFIES datasets—with 30 million (exactly 30,000,128) 

and 60 million (exactly 60,000,256) molecules each - were 

generated.

Network

�e NMT network follows the implementation reported 

by Google for their language translation models, which 

itself is built on the network designed by Luong et  al. 

[19] for neural machine translation, using a soft atten-

tion mechanism developed by Bahdanau et  al. [20]. It 

is based on an autoencoder–decoder architecture and 

is written on Python 3 with Tensorflow 2.3.0 [21] at the 

backend. �e encoder network and the decoder network 

use Recurrent Neural Networks (RNNs) with Gated 

Recurrent Units (GRU). �e input strings are passed to 

the encoder and the output strings to the decoder. �e 

encoder network generates the encoder output and the 

encoder hidden state. �e attention weight is calculated 

by the attention mechanism implemented in the network. 

Encoder output with attention weights then creates the 

context vector. Meanwhile, the decoder output is passed 

through an embedding layer. �e output generated by the 

embedding layer and the context vector is concatenated 

and passed on to the GRUs of the decoder. An Adam 

optimizer with a learning rate of 0.0005 is applied and 

sparse categorical cross-entropy is used to calculate the 

loss with a modified loss function. A batch size of 256 

Strings is used for a GPU and a global batch size of 1024 

Strings for a TPU where the global batch size is divided 

between the nodes.

For SELFIES-to-IUPAC-name and IUPAC-name-

to-SELFIES translation the same network architecture 

is used with the input/output datasets simply being 

swapped. Figure  2 shows the STOUT architecture for 

SMILES-to-IUPAC-name translation.

Model training

For large datasets, training a neural network efficiently 

is a challenging task. As an initial test, the network 

was trained with 15 million molecules on a server with 

an nVidia Tesla V100 GPU, 384GB of RAM, and two 

Intel(R) Xeon(R) Gold 6230 processors. �e average 

training epoch was evaluated to be about 27 h so that 

training of larger datasets appeared to be prohibitive. 

With more than 100 epochs of training time used in our 

training described below, those 27 h per epoch translate 

into almost 4 months of training time, with multiples of 

that for training with 30 million or 60 million structures. 

�us, the training scripts were modified to use Tensor 

Processing Units (TPUs) available on the Google cloud 

using the Tensorflow distributed training API. A cor-

responding training with TPU V3-8 units (with 8 nodes 

each) reduced the average training epoch to about 2 h.

Model testing

To evaluate the models’ performance, a test set of 2.2 Mil-

lion molecules was used, which was not present in the 30 

Fig.1 SMILES, DeepSMILES and SELFIES split into tokens which are separated by a space character
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million and the 60 million molecules training sets. A uni-

form and highly similar frequency distribution of unique 

SELFIES tokens in training and test data were ensured by 

corresponding test molecule selection. �e SELFIES-to-

IUPAC-name translation and the reverse IUPAC-name-

to-SELFIES translation were tested with the same set.

To assess the predictive accuracy BLEU scoring [22] 

was used (see Appendix for details). Also, Tanimoto simi-

larities were calculated between original and predicted 

strings using PubChem fingerprints. For the predictions 

of IUPAC names as an output, the IUPAC names were re-

converted to SMILES using OPSIN 2.5 [23] and canoni-

calised using the CDK, with the resulting SMILES being 

utilized for Tanimoto similarity calculations.

Results and discussion

Computational considerations

Table  1 shows the number of unique SELFIES/IUPAC-

name tokens for both data sets. Note that the 30 million 

and the larger 60 million molecules datasets have the 

same number of tokens. To keep the same number of 

tokens we removed the least occurring tokens from both 

sets using a cutoff. In contrast, the SELFIES token set size 

is smaller than that of the IUPAC name tokens because 

the IUPAC names cover a far greater language space.

We used a 15 Mio training dataset to compare the 

training speed between a GPU and TPUs. Training 15 

Million molecules on a TPU V3-8 requires 2 h per epoch 

which is 13 times faster than using a GPU V100. Using 

a TPU V3-32 allows for an additional 4 times faster per-

formance in comparison to a TPU V3-8 and is 54 times 

faster compared to a GPU V100, see Fig. 3.

Figure 4 shows the different training times per epoch 

of the different datasets on TPU V3-8 units where all 

Fig. 2 STOUT architecture for SMILES-to-IUPAC-name translation

Table 1 Number of unique SELFIES and IUPAC-name tokens for 

each dataset

Dataset size Number of SELFIES tokens Number 
of IUPAC 
tokens

30 Million 27 1190

60 Million 27 1190
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models were trained for more than 100 epochs until 

convergence. �e difference between the SELFIES-to-

IUPAC-name and IUPAC-name-to-SELFIES training is 

caused by the different number of I/O tokens of each 

dataset: For the SELFIES-to-IUPAC-name translation, 

the output tokens are derived from the IUPAC names 

whereas for the IUPAC-name-to-SELFIES transla-

tion the output tokens are taken from SELFIES strings. 

Since SELFIES strings are smaller and less complex 

than IUPAC name strings the IUPAC-name-to-SELF-

IES translation is faster.

Test results

SELFIES-to-IUPAC-name translation

Table  2 summarizes the average and individual BLEU 

scores for the 30 million and the 60 million molecules 

dataset. A predicted string with a BLEU score of 1.0 

means a score of 1.0 using the NLTK sentence BLEU 

scoring function[24] and they are mostly identical 

strings (see Appendix).

Fig. 3 Average training time per epoch on different hardware (lower is better)

Fig. 4 Average training time per epoch for different datasets using 

TPU V3-8

Table 2 BLEU scores analysis

Training dataset size 30 Mio 60 Mio

Average BLEU score 0.89 0.94

Total number of strings with BLEU 1.0 52.48% 66.65%

BLEU-1 0.92 0.95

BLEU-2 0.90 0.94

BLEU-3 0.88 0.93

BLEU-4 0.86 0.92
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Compared to the 30 million molecules dataset, a model 

trained with 60 million molecules makes better predic-

tions, as demonstrated by all BLEU score types.

To assess the network’s ability to learn “chemis-

try” we calculated the Tanimoto similarities between 

the predicted and the original molecules by translat-

ing the original and the predicted IUPAC names back 

to SMILES strings using OPSIN and canonicalised the 

retranslated SMILES using the CDK. We used the CDK 

with Pubchem fingerprints to calculate the Tanimoto 

similarity indices. �e IUPAC names that OPSIN was 

able to translate back to SMILES strings were counted 

as valid IUPAC names while the others were counted as 

invalid. Only the valid IUPAC-name-to-SMILES transla-

tions were used for the Tanimoto similarity calculations. 

�e average Tanimoto similarity was measured on valid 

IUPAC-name-to-SMILES translations. Additionally, both 

Tanimoto similarity calculations were readjusted to the 

number of data points present on the test dataset (see 

Table  3). We also computed full isomorphism matches 

using InChIs and found that 98% of all Tanimoto similar-

ity 1.0 cases were full graph isomorphisms.

�e invalid IUPAC names are the ones that were 

rejected by OPSIN and could not be converted into 

SMILES. �is inability is the result of errors of the IUPAC 

names being predicted. In most cases, the IUPAC-name-

to-SMILES translation failed because

• they did not contain a comma,

• some of them were missing a close bracket symbol 

corresponding to the open bracket symbol,

• the valence of an atom was wrong,

• a certain block of text was uninterpretable,

• they failed to assign all bonds correctly,

• of a disagreement between lengths of bridges and 

alkyl chain length

• of long names with repeating words.

Table 4 presents a few examples of IUPAC names that 

could not be converted to SMILES strings with an expla-

nation of the failure.

�e Tanimoto similarity index 1.0 count with 72% (60 

million molecules set) of the test data is already remark-

able but the average Tanimoto similarity of 0.83 (60 mil-

lion molecules set) suggests that an “understanding” of 

the “language of chemistry” emerged. Also, it becomes 

obvious that the number of predictions with a Tanimoto 

similarity of 1.0 is greater than the number of predictions 

with a BLEU score of 1.0, see Table  5: Although there 

are different IUPAC names, using OPSIN to re-translate 

these names led to SMILES representations with simi-

lar or even identical chemical graphs, see Figure 5. �is 

also illustrates the extent to which the model is capable 

to successfully generalise the information of the training 

data. We found that only five predictions had a Tanimoto 

similarity index less than 1.0 but a BLEU score of 1.0, see 

Table 6 and Fig. 6.

IUPAC-name-to-SELFIES translation

�e IUPAC-name-to-SELFIES translation was tested 

with the same 2.2 million test molecules as the SELFIES-

to-IUPAC-name model before, but in reverse order. To 

use OPSIN as a performance measure, we analyzed our 

test set using OPSIN. It was able to convert 98.31% of 

IUPAC names generated by the molconvert algorithm 

back to SMILES and 96.24% were found to show a Tani-

moto 1.0 similarity, see Table 7 for details. Table 8 sum-

marizes the average BLEU score, the calculated BLEU 

Table 3 Tanimoto similarities

Training dataset size 30 Mio 60 Mio

Invalid IUPAC names 21.41% 14.50%

Valid IUPAC names 78.59% 85.50%

Tanimoto 1.0 count on the total test dataset 58.36% 72.33%

Tanimoto 1.0 count on valid IUPAC names 74.26% 84.59%

Average Tanimoto (measured for total test dataset) 0.75 0.83

Average Tanimoto (measured for valid IUPAC names) 0.96 0.98

Table 4 Failed IUPAC-name-to-SMILES translations

IUPAC names Reason for failure (OPSIN error messages)

1. N-[6-(2,3-diaminopropylidene)-1-methyl-1,2,4a,5,6,8a-hexahydroquinolin-6-yl]-
N-methylpropanamide

Atoms are in an unphysical valency state. Element: C valency: 5

2. 2-[({[(3-ethoxypropyl)amino]({[2-(2-fluorophenyl)ethyl]amino})methylidene}
amino)-N,N-dimethylacetamide

Unmatched opening bracket found

3. 3’-(propan-2-yl)-2’,3’,4’,5’,6’,7’,8’,8’a-octahydro-2’H-spiro[imidazole-4,1’-indolizin]-2-
amine

The following being uninterpretable: 2’,3’,4’,5’,6’,7’,8’,8’

4. ({2’,6’-difluoro-2’,6’-dimethyl-[1,1’-biphenyl]-4-yl}methyl)(propyl)amine Failed to assign all double bonds

5. 1,4,5-trimethyl-1-[1,2-dimethylpropyl)-2-methyl-1-propylbicyclo[12.2.1]tetradeca-
1,5-diene

Disagreement between lengths of bridges and alkyl chain length
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Fig. 5 Chemical structures depicted with the CDK depiction generator for predictions with Tanimoto similarity 1.0 but low BLEU score

Table 6 Predicted IUPAC name strings with a BLEU score of 1.0 but a low Tanimoto similarity index

No. IUPAC names BLEU Score IUPAC names translated into SMILES using OPSIN Tanimoto 
similarity 
IndexOriginal Predicted Original Predicted

1 4-[(4-amino-2,3,6-trimeth-
ylphenyl)methyl]-2,3,5-
trimethylaniline

4-[(4-amino-2,3,5-trimeth-
ylphenyl)methyl]-2,3,6-
trimethylaniline

1.0 NC=1C=C(C(=C(C1C)C)
CC=2C(=CC(N)=C(C2C)
C)C)C

NC1=C(C=C(C(=C1C)C)
CC2=CC(=C(N)C(=C2C)
C)C)C

0.97

2 3-[(3-amino-2,6-diethyl-
phenyl)methyl]-2,4-di-
ethylaniline

3-[(3-amino-2,4-diethyl-
phenyl)methyl]-2,6-di-
ethylaniline

1.0 NC1=CC=C(C(=C1CC)
CC=2C(=CC=C(N)C2CC)
CC)CC

NC=1C(=CC=C(C1CC)
CC2=CC=C(C(N)=C2CC)
CC)CC

0.92

3 2-{4-[(dimethylamino)
methyl]-6-[(2,6-dimeth-
ylphenoxy)methyl]-
6-hydroxycyclohexa-
2,4-dien-1-yl}acetonitrile

2-{4-[(2,6-dimethyl-
phenoxy)methyl]-
6-[(dimethylamino)
methyl]-6-hydroxycy-
clohexa-2,4-dien-1-yl}
acetonitrile

1.0 N#CCC1C=CC(=CC1(O)
COC=2C(=CC=CC2C)C)
CN(C)C

N#CCC1C=CC(=CC1(O)
CN(C)C)
COC=2C(=CC=CC2C)C

0.93

4 4-[4-(3-hydroxycyclo-
hepta-1,3,6-trien-1-yl)
phenyl]-N-(7-methylcy-
clohepta-1,4,6-trien-1-yl)
butanamide

4-[4-(3-hydroxycyclo-
hepta-1,4,6-trien-1-yl)
phenyl]-N-(7-methylcy-
clohepta-1,3,6-trien-1-yl)
butanamide

1.0 O=C(NC1=CCC=CC=C1C)
CCCC=2C=CC(=CC2)
C=3C=CCC=C(O)C3

O=C(NC1=CC=CCC=C1C)
CCCC=2C=CC(=CC2)
C=3C=CC=CC(O)C3

0.95

5 (but-1-en-2-yl)(prop-1-en-
1-yl)amine

(but-1-en-1-yl)(prop-1-en-
2-yl)amine

1.0 C=C(NC=CC)CC C=C(NC=CCC)C 0.97
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scores, and the Tanimoto similarities that were carried 

out on the test molecules for IUPAC-name-to-SELFIES 

translation.

�e larger 60 million molecules dataset again performs 

better than the 30 million molecules dataset. Invalid SELF-

IES do not occur because all the predicted SELFIES were 

retranslated into SMILES without any error. Again, the pre-

dictions with Tanimoto similarity index 1.0 exceed those 

with BLEU scores 1.0. �e reason for this is that BLEU is 

calculated by mapping word to word for an original and 

predicted SELFIES string while Tanimoto similarity is cal-

culated according to the corresponding chemical structure, 

see Table  9 and Figure  7. To improve these results, more 

molecules with the same set of unique tokens would be 

needed. We also saw that 860 out of 2.2 million molecules 

(0.0003%) had BLEU 1.0 but a slightly lower Tanimoto sim-

ilarity index because of slight differences in the chemical 

structures.

Conclusion

With this work, purely data-driven deep learning models 

for translation between different chemical entity represen-

tations are reported. We show that deep learning models 

are able to capture the essence of SMILES to IUPAC name 

string conversion (and vice versa) with reaching the 90% 

accuracy threshold. Despite this promising finding, any 

large scale and uncurated application should be currently 

handled with care.

With more data and additional training epochs STOUT 

is expected to further improve its prediction accuracy in 

the future. At best, it may finally play in the ballpark of the 

rule-based systems which further on define the possible 

top performance. Using the TPU platform will enable the 

models to be trained in an acceptable amount of time in the 

order of a few weeks. In addition, STOUT may be extended 

to alternative sophisticated models used in language trans-

lation and understanding, such as BERT [25].

During our revisions, there were two similar preprints, 

Struct2IUPAC [26] and Translating the Molecules [27], 

which has been published, reflecting an increase of interest 

in the translation of SMILES into IUPAC names and vice 

versa.

Fig. 6 Chemical structures depicted with the CDK depiction 

generator for predictions with BLEU score 1.0 but Tanimoto similarity 

less than 1.0

Table 7 Analysis on test set using OPSIN

OPSIN analysis on test set Values

Invalid IUPAC names 1.69%

Valid IUPAC names 98.31%

Tanimoto 1.0 count on the total test dataset 97.89%

Tanimoto 1.0 count on valid IUPAC names 96.24%

Average Tanimoto (measured for total test dataset) 0.99

Average Tanimoto (measured for valid IUPAC names) 0.98

Table 8 Average BLEU scores, BLEU Scores, and Tanimoto 

similarity calculations

30 Mio 60 Mio

Average BLEU score 0.90 0.94

Total number of predicted strings with BLEU 1.0 46.78% 68.47%

BLEU-1 0.94 0.97

BLEU-2 0.91 0.95

BLEU-3 0.89 0.94

BLEU-4 0.85 0.92

Tanimoto calculations

 Average Tanimoto similarity index 0.89 0.94

 Number of predicted strings with Tanimoto 1.0 52.27% 73.26%
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Appendix

BLEU scoring for machine translations is a scoring 

metric introduced in 2002 used to compare a predicted 

sentence with the original sentence. Each predicted 

word is compared with the original, and each word is 

called an unigram or a 1-gram. In longer sentences we 

can also compare word pairs or bigrams. Here, we cal-

culated BLEU-1 for unigram comparison, BLEU-2 for 

the bigram comparison, BLEU-3 for 3-gram compari-

son and BLEU-4 for 4-gram comparison.

In order to compare the predicted IUPAC name with 

the original IUPAC name a sentence to sentence com-

parison should be done, so we used the sentence BLEU 

scoring function inbuilt in Python Natural Language 

Toolkit [28]. We use the original IUPAC name as the 

reference string and the predicted IUPAC name as the 

candidate string to calculate the BLEU scores.

For all BLEU calculations we used the NLTK sentence 

BLEU scoring function [24].

Weight distributions for different BLEU scores,

• BLEU-1: weights = (1.0, 0, 0, 0)

• BLEU-2: weights = (0.5, 0.5, 0, 0)

• BLEU-3: weights = (0.3, 0.3, 0.3, 0)

• BLEU-4: weights = (0.25, 0.25, 0.25, 0.25).

BLEU score can reduce according to the following,

– each wrong word match

– each wrong n-gram matches

– length of the candidate string is longer/shorter than 

reference string

– order of the predicted words are wrong.

For these a penalty will be awarded so the overall score 

will decrease. A few examples are given below.

Reference: 1,3,7-trimethylpurine-2,6-dione

Candidate: 1,3,7-trimethylpurine-2,6-dione

BLEU score: 1.0

BLEU-1: 1.00

Fig. 7 Chemical structures depicted with the CDK depiction generator for predictions with Tanimoto similarity 1.0 and low BLEU score
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BLEU-2: 1.00

BLEU-3: 1.00

BLEU-4: 1.00

Wrong word

Reference: 1,3,7-tri methyl purine-2,6-di one

Candidate: 1,3,7-tri methyl purine-2,6-tri one

BLEU score: 0.87

BLEU-1: 0.94

BLEU-2: 0.90

BLEU-3: 0.90

BLEU-4: 0.88

Wrong word pair

Reference: 1,3,7-tri methyl purine-2,6-di one

Candidate: 1,3,7-tri methyl purine-2,6,tri one

BLEU score: 0.81

BLEU-1: 0.88

BLEU-2: 0.84

BLEU-3: 0.84

BLEU-4: 0.81

Shorter prediction

Reference: 1,3,7-tri methyl purine-2,6-di one

Candidate: 1,3,7-tri methyl purine-2

BLEU score: 0.63

BLEU-1: 0.63

BLEU-2: 0.63

BLEU-3: 0.63

BLEU-4: 0.63

Longer prediction

Reference: 1,3,7-tri methyl purine-2,6-di one

Candidate: 1,3,7-tri methyl purine-2,6-di one, 6-di one, 

6-di one

BLEU score: 0.52

BLEU-1: 0.63

BLEU-2: 0.59

BLEU-3: 0.59

BLEU-4: 0.52

Wrong order of predictions

Reference: 1,3,7-tri methyl purine-2,6-di one

Candidate: 1,3,7-tri methyl purine-6,2-di one

BLEU score: 0.71

BLEU-1: 1.00

BLEU-2: 0.86

BLEU-3: 0.80

BLEU-4: 0.71

For the BLEU score calculation, we are using the default 

settings of sentence BLEU. �is corresponds to a four-

gram comparison. �e weights are distributed evenly. 

In very few cases as reported in the Results section, we 

encountered the predictions with BLEU 1.0 where the 

strings were not identical. �e problem can be rectified 

using more N-gram comparisons with different weight 

distributions. In our results these cases were very low in 

number so we used the default settings.

Reference: 4-[(4-amino-2,3,6-tri methyl phenyl) 

methyl]-2,3,5-tri methyl aniline

Candidate: 4-[(4-amino-2,3,5-tri methyl phenyl)

methyl]-2,3,6-tri methyl aniline

With sentence BLEU, 4-gram (weights = 

(0.25,0.25,0.25,0.25))

BLEU score: 1.00

With sentence BLEU, 5-gram (weights = 

(0.2,0.2,0.2,0.2,0.2))

BLEU score: 0.98

With sentence BLEU, 8-gram (weights = (0.125,0.125,

0.125,0.125,0.125,0.125,0.125,0.125))

BLEU score: 0.88.
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