
International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.10, September 2016

5

STQP: Spatio-Temporal Indexing and Query Processing

Nikhat Fatima
Department. of CSE,

Deccan College of Engineering
and Technology,

Darussalam, Hyderabad, T.S

Ayesha Ameen
Associate Professor IT Dept.,

Deccan College of Engineering
and Technology,

Darussalam, Hyderabad, T.S

Syed Raziuddin, PhD
Professor & Head of CSE

Dept.,
Deccan College of

Engineering and Technology,
Darussalam, Hyderabad, T.S

ABSTRACT
In this ongoing work, the location-aware ranking query (LRQ)

are considered, an important category of location-aware query.

Types of location-aware ranking query are the k-nearest

neighbour (NN) query and location-aware keyword

query(LKQ). NN LKQs and inquiries have vast applications in

many domains. However, there are a great number of location-

aware datasets that demand better and flexible location aware

rank queries. They are a lot more complex than spatio-textual

objects. These things are termed as location-aware things. For

location-aware things, simple NN LKQs and queries may well

not be expressive enough to find the objects of interests. In this

particular proposed work the generic location-aware rank query

is formulated, which retrieves the objects satisfying a query

predicate, ranks and returns the full total results predicated on

spatial proximity, textual relevance's and measures extracted

from attribute values. We create a construction called location

aware indexing and query processing(LINQ), for useful

indexing and querying of GLRQs. LINQ evolves the synopses

tree to work with synopses of non-spatial features, and

combines the synopses tree with other indexes to query and

index the GLRQ. The global buckets can be used to provide

efficiency and faster computation time by using Bin sort

algorithm this proposed method is recognized as STQP. The

increased proposed system will provide better results with

respect to faster and output for spatial query results.

Keywords
Location Aware, Query, Synopsys Tree

1. INTRODUCTION
With all the proliferation and popular adoption of mobile

telephony, it is increasingly more convenient for users to fully

capture and submit geo-locations. As a result, increasingly

more location-aware datasets have been made and created on

the Web. For instance, Flickr, one of the primary photo-sharing

website, has an incredible number of geo-tagged items every

full month. The popularity and large scale of the location-

aware datasets make location-aware queries important.

In the ongoing work, an important class of location-awarequery

techniques is considered and explored which is termed as

Location-aware Ranking Query (LRQ), an important course of

location-aware query. Types of location-aware list query are

the k-nearest neighbour (NN) query and location-aware

keyword query. NN questions and LKQs have extensive

applications in many domains. However, there are always a

complete great deal of location-aware datasets that demand

better and adaptable location aware ranking concerns. For

instance on Yelp, the restaurant, Yelp gives its location "1429

Mendel St, SAN FRANCISCO BAY AREA, CA 94124",

categories "Soul Food, American Traditional, Music Venues",

rating 4.5 celebrities as well as the true quantity of reviews 150.

Another example is the photographs on Flickr, where as well as

the geo-location and text, each image also has some numeric

attributes, like the range of views, the real volume of favourites,

the true variety of comments, etc. The restaurants on

photographs and Yelp on Flickr are mixtures of location, text

and other styles of information. They may be much more

sophisticated than spatio-textual things. These items are termed

as location-aware things. For location-aware items, simple NN

LKQs and queries might not exactly be expressive enough to

find the objects of interests. For instance, on the restaurant

dataset, through LKQs, one will discover the most nearest and

relevant restaurants. But you can desire to find the nearest and

relevant restaurants gratifying certain conditions, such as no-

smoking, healthy, or top-ranked. Within the Flickr dataset,

users might want to fetch the relevant and nearest photographs

that are highly-rated. On these datasets, people may decide to

search by not only location and keywords, but conditions on

other attributes also

In prior work Location-aware list query is recognized as an

important school of query, and many subsets have been

examined. Nearest neighbour query is the most well-known

LRQ. It requires a spatial location as suggestions and outputs

the closest items in the dataset. The prevailing algorithms use

index buildings plus some pruning solutions to limit the search

space. Several NN algorithms have been suggested, where in

fact the best-first algorithm is one of the very most influential

methods, which proves to attain the optimum I/O performance.

Location-aware keyword query is another school of LRQ. The

essential LKQ will not contain any predicates, and has a

standing function incorporating spatial proximity and textual

relevance. There are a few other variations of LKQs also. One

variant specifies a spatial region, which restricts the locations

of the full total results. Another variant interprets the keywords

as Boolean conditions. That is, it retrieves the items including

all the keywords, and ranks the results just in line with the

spatial distances.

In this suggested work the universal location-aware list query

is formulated, which retrieves the things gratifying a query

predicate, rates and earnings the full total results predicated on

spatial proximity, textual relevance's and steps obtained from

feature values. A platform called Location aware Indexing and

Query processing(LINQ), for useful indexing and querying of

Generic Location Aware Rank Queries(GLRQs). LINQ

evolves the synopses tree to work with synopses of non-spatial

characteristics, and combines the synopses tree with other

indexes to query and index the GLRQ. The experiments on real

datasets and the results demonstrate the effectiveness and

efficiency of the method. The enhancement of this proposed

system is to add temporal data as yet another attribute by which

the ranking function can be increased and can provide reliable

scores over time frame. The global buckets can even be used to

provide efficiency and faster computation time by using Bin

variety algorithm and this suggested method is recognized as

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.10, September 2016

6

STQP. The increased proposed system shall provide better

results with respect to faster output for spatial query results.

2. PREVIOUS WORKS
Driven in part by the emergence of the mobile Internet, the

conventional Internet is acquiring a geo-spatial dimension. On

the one hand, many (geo-referenced) points of interest e.g.,

stores, tourist attractions, hotels, entertainment services, public

transport, and public services are being associated with

descriptive text documents. On the other hand, web documents

are increasingly being geo-tagged. This fusion of geo-location

and documents enables queries that take into account both

location proximity and text relevancy. One study has found that

about one fifth of web search queries are geographical and

have local intent, as determined by the presence of

geographical terms such as place names and postal codes.

Indeed commercial search engines have started to provide

location based services, such as map services, local search, and

local advertisements. For example, Google Maps supports

location-aware text retrieval queries. Additional examples of

location-based services include online yellow pages.

The R-tree is arguably the dominant index for spatial queries,

and the inverted file is the most efficient index for text

information retrieval. These were developed separately and for

different kinds of queries. We aim to develop an approach that

is able to leverage both techniques for the efficient processing

of LkT queries. To achieve this goal, a simple approach is to

use the inverted file to generate a number of top candidate

objects based on text relevancy and then compute the spatial

distances (resp. text relevancy) of the candidate objects using

the other index. However, this approach is not efficient since

there is no sensible way to determine the number of candidate

objects needed from the first step in order to ensure that k top-k

objects are found in the end. Instead, we propose a hybrid

indexing structure, the IRtree that utilizes both indexing

structures in a combined fashion. The IR-tree is essentially an

R-tree, each node of which is enriched with reference to an

inverted file for the objects contained in the sub-tree rooted at

the node. In the IR-tree, a leaf node N contains a number of

entries of the form (O; rectangle(O:di), where O refers to an

object in database D, rectangle is the bounding rectangle of

object O, and O:di is the identifier of the document of object O.

A leaf node also contains a pointer to an inverted file for the

text documents of the objects being indexed. The inverted file

is stored separately, for two reasons: First, it is more efficient

to store each inverted file contiguously, rather than as a

sequence of blocks or pages that are scattered across a disk.

Second, the inverted file can be distributed across several

machines while this is not easily possible for the R-tree. [2]

Let D be a database. Each spatial web object O in D is defined

as a pair (O.λ,O.ψ), where O.λ is a location descriptor in

multidimensional space and O.ψ is a document (e.g., a dining

menu) that describes the object (e.g., an Italian restaurant).A

two-dimensional geographical space composed of latitude and

longitude is assumed, but the paper’s proposals generalize to

other multidimensional spaces of low dimensionality.

Intuitively, a Location-aware top-k Text retrieval (LkT) query

retrieves k objects in database D for a given query Q such that

their locations are the closest to the location specified in Q and

their textual descriptions are the most relevant to the keywords

in Q. Formally, given a query Q, defined as a pair (Q.λ, Q.ψ),

where Q.λ is a location descriptor and Q.ψ is a set of keywords,

the objects returned are ranked according to a ranking function

given by: f (Dε(Q.λ, O.λ), P(Q.ψ| O.ψ)), where Dε(Q.λ, O.λ) is

the Euclidian distance between Q and O and P(Q.ψ|O.ψ) is the

text relevancy of O.ψ with regard to Q.ψ. The text relevancy

can be computed as the probability of generating query Q.ψ

from the language models of the documents or other text

models. We tackle the problem of efficiently answering LkT

queries. Thus, given a query Q, we retrieve a ranked list of k

objects according to their ranking scores as computed by the

ranking function f (·, ·) introduced above. The paper’s

proposals are applicable to a wide range of ranking functions,

namely all functions that are monotone with respect to distance

proximity and text relevancy.

Figure 1: Objects and Bounding Rectangles

Table 1: Document by Term Matrix

 English Hindi Restaurant Food

O1 0.5 0.5

O2 0.5 0.5

O3 0.7 0.1

O4 0.7 0.1

O5 0.4 0.4

O6 0.4 0.3

O7 0.1 0.1 0.4 0.1

O8 0.3 0.3

The IR-tree is essentially an R-tree, each node of which is

enriched with a reference to an inverted file for the objects

contained in the sub tree rooted at the node. In the IR-tree, a

leaf node contains a number of entries of the form (O, O.r),

where O refers to an object in database D and O.r is the

bounding rectangle of object O. A leaf node also contains a

pointer to an inverted file for the text documents of the objects

being indexed. The inverted file is stored separately from the

R-tree, for two reasons: First, it is more efficient to store each

inverted file contiguously, rather than as a sequence of blocks

or pages that are scattered across a disk. Second, the inverted

file can be distributed across several machines, while this is not

easily possible for the R-tree.

An inverted file consists of the following two main

components.

• A vocabulary of all distinct terms in a collection of

documents.

• A set of posting lists, each of which relates to a term t.

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.10, September 2016

7

Each posting list is a sequence of pairs O,w_, where O refers to

an object whose document O.ψ contains term t, and w is the

weight of term t in document O.ψ. A non-leaf node N contains

a number of entries of the form (e, e.r) where e points to a

child node of N and e.r is the Minimum Bounding Rectangle

(MBR) of all rectangles in entries of the child node. A pseudo

document is constructed for each non-leaf entry in the IR-tree.

The pseudo document is an important concept in the IR-tree. It

represents all documents in the entries of the child node,

enabling us to estimate a bound on the text relevancy to a query

of all documents contained in the sub tree rooted at e. The

weight of a term t in the pseudo document referenced by e is

the maximum weight of t in the documents contained in the sub

tree rooted at node e. A non-leaf node N also contains a pointer

to an inverted file for the pseudo documents of the entries

stored in N. [3]

3. PROPOSED SYSTEM

3.1 Architecture
The user query Q is a query predicate of the form P1, P2, …..

Pn, where Pi is a simple selection predicate specified on a

single attribute. The other component Q:f is a ranking function.

In module tree of synopses is built. The histograms are

constructed in holistic way. A bucket in the global histograms

stands for a hyper-rectangle within the domain of data. The

synopses tree summarizes the distribution of numeric attributes.

To answer the GLRQ, we need to combine synopses tree with

other indexes on locations and texts. The state-of-the-art index

structures supporting locations and texts are the IR-tree family.

The basic structure of IR-tree index is an R-tree, where each

entry is associated with an inverted file. The synopses tree can

be easily combined with IR-tree index

Figure 2: Architecture

3.2 Data Initialization

In this module initialization is done by denoting location-aware

object O as a triple < λ, W, A>, where O: λ is a location

descriptor, O: W is a set of keywords, and O: A {O:A1;

O:A2; …… } is a set of attributes. We use O:Ai to denote the

value of O on attribute Ai. The attributes in O:A are numeric

attributes. The locations of the objects are implied by their

positions on the plane, and the attributes and keywords are

Retrieved. Formally, in a GLRQ Query Q:P is a query

predicate of the form P1, P2, ….. Pn, where Pi is a simple

selection predicate specified on a single attribute. The other

component Q:f is a ranking function. Each attribute, including

location and text, has a scoring function, measuring the

“goodness” of an object in terms of the attribute. The scoring

function on location returns spatial proximity, whereas the

function on text measures the textual relevance.

3.3 Factorization and Buckets
After In this module histograms are used for synopses, as more

than one attributes are concerned, we build multi-dimensional

histograms to summarize the datasets. Multi-dimensional (nD)

histogram has been widely used to summarize multi-

dimensional data. Basically, an nD histogram is obtained by

partitioning the multi-dimensional domain into a set of hyper-

rectangular buckets, and then storing summary information for

each bucket. As a synopsis, nD histogram is able to provide

accurate approximation, but it is very expensive to construct

and maintain an nD histogram. To reduce the complexity of nD

histogram, nD factor data distribution into two-dimensional

(2D) distributions is used. The modeling of a dataset generates

a model called junction tree. The junction tree is a tree

structure where each node is a pair of attributes. Then,

according to the junction tree, the joint distribution of multiple

attributes can be factorized into a set of 2D distributions.

In this module tree of synopses is built. If the nD-histograms in

the synopses tree are constructed independently, the cost would

be too high. It is proposed to construct the synopses with

reduced cost. The datasets of different nodes may be similar or

overlapping. The dataset of a node at a higher level is a

superset of that of its descendants. Considering the

characteristics, we construct the histograms in a holistic way.

Specifically, we construct a set H { H1, H2, …….} of global

histograms for the whole dataset D, where Hi is a global

histogram, and Bij is a bucket the histogram Hi. The set of

global histograms is used by all entries in the synopses tree. Let

B be the set of buckets in all histograms. For any entry e, an

array b elements is maintained, where each element in the array

is the statistics about the D in a bucket. Thus the array records

the summary statistics of e:D. By using global histogram

buckets, the construction cost and storage overhead of

histograms are decreased. This is because the global

histograms are constructed and stored only once. For each

entry in a non-leaf node, only some local statistics are kept.

3.4 Compact Information and Synopsys

Tree

In A bucket in the global histograms stands for a hyper-

rectangle within the domain of data. To approximate the data

points falling in the hyper-rectangle, some statistics about the

distribution of data in the rectangle are needed. Only one bit

kept for a bucket, indicating whether the bucket is empty or not.

To improve the accuracy of estimation, more bucket

information is needed. In this module, we use a compact bit-

based representation of the local information in each bucket.

We split each bucket into M partitions, and then stores a M-bit

string where each bit is 1 if the corresponding partition is not

empty or 0 otherwise. We keep the splitting information, and

the correspondence between the bits and the partitions. As all

the buckets are split in the same way, this information can be

stored only once as background information.

The synopses tree summarizes the distribution of numeric

attributes. It is able to address part of the GLRQ processing

problem. To answer the GLRQ, we need to combine synopses

tree with other indexes on locations and texts. The state-of-the-

art index structures supporting locations and texts are the IR-

tree family. The basic structure of IR-tree index is an R-tree,

where each entry is associated with an inverted file. Our

synopses tree can be easily combined with IR-tree index. Each

entry in the R-tree is associated with two additional

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.10, September 2016

8

components: the inverted file from the IR-tree, and the

synopsis from the synopses tree. The inverted files and the

synopses are stored separately from the R-tree. This structure is

flexible in that the structure of the R-tree is not influenced by

other parts, and the R-tree can be queried alone, with or

without the inverted files and the synopses.

Algorithm STQP

Input: Dataset.

Output: Top-k results.

1. Extract attributes

2. Compute the ranking function

 d ← w1.prox(O.Q)+

w2(O.Q)+w3(O.rating)+w4(O.health) +w5(O.time)

3. Create and factorize multidimensional

histograms.

4. Divide each histograms into buckets.

5. Sort the buckets using Bin-sort algorithm.

6. Create inverted indices.

7. Create a synopses tree.

8. Process the STQP query.

9. Return the top-k result.

3.5 Query Processing and STQP
In this module Query processing algorithm is implemented

which exploits the best-first strategy to search the combined

index. In this priority queue is used to keep track of the nodes

and objects to explore in decreasing order of their scores. A

maximum matching score of entry e to query Q, which are used

as the keys of entries in the queue. TopK keeps the current top-

k results. The R-tree is traversed in a top-down manner. At

each node N, if N is an internal node instead of a leaf, for each

entry e in node N, the algorithm estimates maxf. If maxf > 0 , it

implies that there may be objects enclosed by e satisfying the

query predicate, so e with maxf is added to the queue. If N is a

leaf, it computes the score of each entry, and pushes the entries

with non-zero scores to the queue. If N is an object, N is

directly reported as a top-k result. The algorithm terminates if

the top-k results have been found. Given a query Q and a node

N in the R-tree, we compute a metric maxf, which offers an

upper bound on the actual scores of the objects enclosed by N

with respect to Q. Conceptually, the synopsis associated with a

node N as a multi-dimensional space (called data space of N)

consisting of hyper-rectangles. Similarly, a query Q can be

considered as a set of hyper-rectangles (called query space of Q)

encompassing the points satisfying the query predicate

In this module Spatio Temporal Query processing method is

implemented which exploits to include temporal data as an

additional attribute through which the ranking function can be

enhanced and will provide reliable scores over period of time.

The global buckets can also be used to provide efficiency and

faster computation time by using Bin sort algorithm this

proposed method is known as STQP. Best-first strategy is used

to search the combined index. This enhancement works the

same way as previous module of query processing.

4. RESULTS
The concept of this paper is implemented using comments

retrieved from Facebook API. Different results are shown

below; The proposed paper is implemented in Java technology

on Intel Core i3 Processor with minimum 20 GB hard-disk and

1GB RAM. Extensive experiments with UK location database

are conducted.

The performance of the query methods is evaluated based on

their efficiency in terms of computing time taken by each

querying method. In this evaluation the LINQ and STQP

graphs are mentioned.

Figure 3: Location and Places from Dataset

Figure 4: Graph for Factorization

Figure 5: Graph for Execution Time

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.10, September 2016

9

Figure 6: Graph for Memory Usage

The analysis is performed by using the above parameters. The

comparison between LINQ and STQP is performed for

execution time and Memory usage. It is observed that Memory

and Execution time on the datasets clearly shows that STQP

has better performance than LINQ.

5. CONCLUSION
In this paper, An important course of query, general location-

aware get ranking query is formulated, and propose a

construction called LINQ to process the query. In this

particular platform, a novel index composition called synopses

tree is made, which indexes synopses of things, and permits

efficient pruning and estimation. This technique is increased by

including temporal data as yet another attribute by which the

ranking function can be increased and can provide reliable

scores over time frame. The global buckets can even be used to

provide efficiency and faster computation time by using Bin

type algorithm this suggested method is recognized as STQP.

The increased proposed system provided better results with

respect to faster output for spatial query results. The synopses

tree was created to reduce the price tag on construction while

preserving accuracy. We show how to process GLRQs in the

LINQ framework efficiently, leveraging synopses tree and

other index set ups. Experimental results show that the

proposed solution performs better than the existing solutions.

6. ACKNOWLEDGMENTS
This research was supported Mrs. AYESHA AMEEN,

Associate Professor, D.C.E.T. We thank our colleagues from

Deccan College Of Engineering and Technology,who provided

insight and expertise that greatly assisted the research, although

they may not agree with all of the interpretations/conclusions

of this paper.

We thank Mr. Naqeeb Ahmed, Assistant professor for

assistance and Dr. Syed Raziuddin, head, D.C.E.T for

comments that greatly improved the manuscript.

We are also immensely grateful to (List names and positions)

for their comments on an earlier version of the manuscript,

although any errors are our own and should not tarnish the

reputations of these esteemed persons

7. REFERENCES
[1] Xiping Liu, Lei Chen, and Changxuan Wan, “LINQ: A

Framework for Location-Aware Indexing and Query

Processing,” IEEE Transactions on Knowledge and Data

Engineering, vol. 27, no 5, may 2015.

[2] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of

the top-k most relevant spatial web objects,” Proc. VLDB

Endowment, vol. 2, pp. 337–348, 2009.

[3] D. Wu, G. Cong, and C. Jensen, “A framework for efficient

spatial web object retrieval,” VLDB J., vol. 21, pp. 797–

822, 2012.

[4] Z. Li, K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, andX. Wang,

“IRTree: An efficient index for geographic document

search,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 4, pp.

585–599, Apr. 2011.

[5] J. A. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K.

Nørva g, “Efficient processing of top-k spatial keyword

queries,” in Proc. Int. Conf Adv. Spatial Temporal

Databases, 2011, pp. 205–222.

[6] C. Zhang, Y. Zhang, W. Zhang, and X. Lin, “Inverted

linear quadtree: Efficient top k spatial keyword search,” in

Proc. Int. Conf. Data Eng., 2013, pp. 901–912.

[7] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine,

“Synopses for massive data: Samples, histograms,

wavelets, sketches,” Found. Trends Databases, vol. 4, nos.

1–3, pp. 1–294, 2012.

[8] K. Tzoumas, A. Deshpande, and C. S. Jensen, “Lightweight

graphical models for selectivity estimation without

independence assumptions,” Proc. VLDB Endowment,

vol. 4, no. 11, pp. 852–863, 2011.

[9] D. Lemire, O. Kaser, and K. Aouiche, “Sorting improves

wordaligned bitmap indexes,” Data Knowl. Eng., vol. 69,

no. 1, pp. 3–28, 2010.

[10] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial

keyword query processing: An experimental evaluation,”

Proc. VLDB Endowment, vol. 6, no. 3, pp. 217–228, 2013.

[11] J. Fan, G. Li, L. Zhou, S. Chen, and J. Hu, “Seal: Spatio-

textual similarity search,” Proc. VLDB Endowment, vol. 5,

no. 9, pp. 824–835, 2012.

[12] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A.

Skovsgaard, D. Wu, and M. L. Yiu, “Spatial keyword

querying,” in Proc. Int. Conf. Conceptual Model., 2012,

pp. 16–29.

[13] J. Qi, R. Zhang, L. Kulik, D. Lin, and Y. Xue, “The min-

dist location selection query,” in Proc. Int. Conf. Data

Eng., 2012, pp. 366– 377.

[14] Y. Sun, J. Huang, Y. Chen, R. Zhang, and X. Du,

“Location selection for utility maximization with capacity

constraints,” in Proc. Int. Conf. Inf. Knowl. Manag., 2012,

pp. 2154–2158.

[15] I. De Felipe, V. Hristidis, and N. Rishe, “Keyword search

on spatial databases,” in Proc. Int. Conf. Data Eng., 2008,

pp. 656–665.

.

0

200000

400000

600000

1 2 3 4 5 6

M
e

m
o

ry
 U

e
d

 (
b

yt
e

s)

Instances

LINQ

STQP

IJCATM : www.ijcaonline.org

